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Abstract
Type-preserving compilation is an approach to building reli-

able compilers. The technique has recently been extended

to dependently typed languages, but existing approaches

have practical and theoretical shortcomings. We present a

dependent-type-preserving translation into continuation-

passing style (CPS). As improvements from previous work,

our translation yields no administrative redexes, and its

output can be typed using standard typing rules. This is

achieved by defining an auxiliary translation that produces

let-represented continuations in selected cases. The unique

design makes the output of the translation partly look like

A-normal form (ANF).
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1 Introduction
Type-preserving compilation converts a well-typed source

program to a well-typed target program through a series of

type-preserving translations. The technique is a practical

approach to building reliable compilers: it provides us a form

of safety guarantees without requiring as much proof effort

as full verification does [1].

In the past decade, there have been some notable advances

in type-preserving compilation of dependently typed lan-

guages. The compiler passes considered so far include CPS

translation [8, 11, 21], ANF translation [20], defunctionaliza-

tion [18], closure conversion [7], and memory allocation [19].

It has been shown that all of these passes can be formulated

as a type-preserving mapping if the source and/or target

languages are designed appropriately.

This work is a continuation of Bowman et al. s [8] work

on CPS translation of dependently typed languages. Specifi-

cally, we aim to address the following shortcomings of their

translation.
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1. The output of the translation contains administrative
redexes. These redexes have to be eliminated through

a second pass; otherwise the output would be slow to

execute and hard to reason about.

2. The target language of the translation is equipped with

a non-standard typing rule. This rule has to be proven

not to break consistency of the language, which re-

quires non-trivial reasoning.

To solve these issues, we define an auxiliary translation

that, in some selected cases, yields a continuation expressed

as a let expression. The auxiliary translation is essentially

equivalent to what is called colon translation [16, 24], a tradi-

tional technique for avoiding administrative redexes. When

tweaked to produce let-represented continuations, the trans-
lation further eliminates the need for a non-standard typing

rule. An implication of this tweak is that the output of the

translation is not fully CPS; it may contain parts that look

like ANF [17].

In this paper, we report our outcomes so far, which include

a formalization of the source and target languages (Sections 3

and 4), a definition of the CPS translation (Sections 5), and a

sketch of our ongoing type preservation proof (Section 6).We

also provide an informal description of our ideas (Section 2)

as well as discussions of related and future work (Section 7

and 8).

2 Main Ideas
In this section, we give the reader a high-level idea of what

is challenging with CPS translation of dependently typed

languages and how we solve those challenges. Following

previous work [8, 11], we use a non-bold blue sans-serif
font to typeset the source language and a bold red serif
font to typeset the target language. We also use the symbol

÷ to mean a computation translation, which introduces a

continuation, and + to mean a value translation, which does

not introduce a continuation.

2.1 Translating Terms into CPS
A CPS translation converts a term into a form that receives

a continuation. As an example, let us look at the call-by-

name CPS translation of snd e, which represents the second

projection of a pair.

(snd e)÷ = 𝝀k. e÷ (𝝀y. snd y k)
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The result of the translation says: given a continuation k,
we evaluate e, and when we obtain the result y, we take its
second element and continue evaluation with k.
The above translation contains an application of a CPS-

translated term e÷ to a continuation. Such an application is

called an administrative redex: it arises from the translation,

not the source term. Administrative redexes are undesirable

from a practical perspective, because they increase the num-

ber of reduction steps. They are also unpreferred from a

theoretical point of view, as they complicate the reasoning

of translated terms. Hence, in compilers such as Steele’s [29]

Rabbit, CPS translation is followed by a second pass that

reduces administrative redexes.

Instead of taking the two-pass approach, one could also

avoid generation of administrative redexes by optimizing

the translation. This can be done by defining an auxiliary

colon translation [16, 24], which translate a source term with

respect to a target continuation. Below is the optimizing

translation of second projection. To avoid confusion with

the typing relation, we use a vertical bar to represent the

colon translation.

(snd e)÷

= 𝝀k. snd e | k
= e | 𝝀y. (snd y) k

=

{
(𝝀y. (snd y) k) e if e is a value
e (𝝀y. (snd y) k) if e is not a value

As we can see, the translation produces different forms of

output depending on whether e is a value or not. If e is a
value, it applies the continuation 𝝀y. snd y k to e (where

e is a translation of e), which corresponds to returning the

value e. If e is not a value, it passes the continuation to e,
which corresponds to running the computation e. In general,

a colon translation places the continuation directly to the

“right place”, rather than letting it go to the right place via

administrative reductions.

2.2 Typing Result of Translation
For a CPS translation to be type preserving, it must satisfy

the following property: if we have e : A in the source, then

we have e÷ : (A+ →𝝎)→𝝎 in the target, where 𝝎 is an

answer type. This property holds trivially for second pro-

jection snd e when e has a non-dependent pair type A × B,
but not when e has a dependent pair type Σx : A.B and

is a non-value. To see the challenge, let us recall that the

second projection of a dependent pair has a type that de-

pends on the first element of the pair. This means, the source

term snd e to be CPS translated has type B [fst e/x], and
the target term snd y in the reuslt of the translation has

type (B+ [fst y/x]→⊥)→⊥. Now, notice that the latter

type refers to the variable y, which is introduced by the

translation. This variable cannot appear in the type of the

continuation k, because it is calculated from the type of

the source term snd e. Indeed, when instantiating the type

preservation statement to second projection, we can easily

see that k must have type B+ [(snd e)÷/x]→𝝎. What this

implies is that the application snd y k is not well-typed.

This kind of type mismatch occurs not only in the transla-

tion of second projection, but also in, e.g., the call-by-value
translation of application. More generally, it arises in any

cases where the translation yields a termwhose type depends

on a variable representing the argument of a continuation

(y in the case of second projection).

Fortunately, if the source language is pure, it is possible

to prove that the application snd y k is well-typed. The

well-typedness relies on the fact that, if e is a pure term,

the continuation passed to e÷ must receive a unique value.

This unique value correponds to the result of evaluating e,
and it can be obtained by running a CPS-translated term

e÷ with the identity continuation id (in the case of a non-

optimizing translation), or by colon-translating a source term

with the identity continuation (in the case of an optimizing

translation).

The above fact leaves us with two questions.

1. How to ensure that the unique value received by a

continuation can always be obtained in a type-safe

way

2. How to make the knowledge about the unique value

available for use in the type preservation proof

These questions were answered by Bowman et al. [8] in

the following way.

1. Replace the fixed answer type of the translation with

a polymorphic one. This makes the use of the identity

continuation type-safe.

e : A ⇒ e÷ : 𝚷𝜸 : ∗A . (A+ →𝜸 )→𝜸

2. Define a special typing rule [T-Cont] in the target

language. This introduces into the typing environment

a definition binding the unique value to the argument

of a continuation.

𝚪 ⊢ e1 : 𝚷𝜶 : ∗A. (A→𝜶 )→𝜶
𝚪, y = e1 A id : A ⊢ e2 : B

𝚪 ⊢ e1 B (𝝀y. e2) : B
[T-Cont]

These answers solve the type mismatch in the application

snd y k, but there is room for improvement. In a dependently

typed language, where consistency (i.e., non-inhabitance of
the bottom type ⊥) is often critical, adding a new typing

rule is a delicate task that requires careful justification. The

[T-Cont] rule of Bowman et al. has been proven safe, but

the proof is no simpler than the type preservation proof,

involving sophisticated reasoning based on parametricity.

To reduce the justification effort, we give a different an-

swer to the second question: whenever we need the informa-

tion about the argument of a continuation, we represent that
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Universes U,V ::= ∗ | □
Kinds K ::= ∗ | Π𝛼 : K.K | Πx : A.K
Types A,B ::= 𝛼 | 𝜆𝛼 : K.A | 𝜆x : A.A

| A A | A e
| Π𝛼 : K.A | Πx : A.A
| Σx : A.A
| let 𝛼 = A : K in A
| let x = e : A in A

Terms e ::= v | p
Values v ::= 𝜆𝛼 : K. e | 𝜆x : A. e

| ⟨e, e⟩ as A
Non-values p ::= x | e A | e e

| fst e | snd e
| let 𝛼 = A : K in e
| let x = e : A in e

Environments Γ ::= · | Γ, 𝛼 : K | Γ, x : A
| Γ, 𝛼 = A : K | Γ, x = e : A

Figure 1. CC Syntax

continuation using a let expression. For instance, we trans-

late the second projection of a non-value e in the following

way. Note that the colon translation takes three arguments,

among which the second one is used to instantiate the poly-

morphic answer type.

(snd e)÷

= 𝝀k. snd e | 𝜶 | k
= let y = e | 𝚺x : A÷ .B÷ | id in snd y 𝜶 k

Observe that the continuation 𝝀y. snd y k is now repre-

sented as let y = [.] in snd y 𝜶 k, where [.] denotes a
hole. The expression inside the hole is the target language

counterpart of the value of e, and it is bound explicitly to the
variable y. When typing the let expression, we use the stan-
dard typing rule [Let] given by Severi and Poll [28], which

allows us to type the body snd y 𝜶 k using the definition

y = e | 𝚺x : A÷ .B÷ | id.
𝚪, x = M : A ⊢ N : B

𝚪 ⊢ let x = M : A in N : B [M/y]
[Let]

In general, if we use a let to represent any continuation

whose typing requires [T-Cont], we are able to preserve

types without non-standard rules.

3 Source Language
The source language CC of our CPS translation is an ex-

tension of the Calculus of Constructions (CoC) [13] with

dependent pairs and let expressions. In this section, we give

the syntax, reduction, equivalence, and typing of CC.

3.1 Syntax
Figure 1 shows the syntax of CC. The language has two

universes: ∗, which is the type of types, and □, which is

Γ ⊢ z ⊲𝛿 M where z = M : T ∈ Γ

Γ ⊢ (𝜆z : T.M) N ⊲𝛽 M [N/z]
Γ ⊢ fst (⟨e1, e2⟩ as A) ⊲𝜋1

e1
Γ ⊢ snd (⟨e1, e2⟩ as A) ⊲𝜋2

e2
Γ ⊢ let z = M : T in N ⊲𝜁 M [N/z]

Γ ⊢ M ≡ M
(≡-Refl)

Γ ⊢ M1 ≡ M2

Γ ⊢ M2 ≡ M1
(≡-Sym)

Γ ⊢ M1 ≡ M2 Γ ⊢ M2 ≡ M3

Γ ⊢ M1 ≡ M3
(≡-Trans)

Γ ⊢ M1 ⊲
∗ N Γ ⊢ M2 ⊲

∗ N

Γ ⊢ M1 ≡ M2
(≡-⊲∗)

Figure 2. CC Reduction and Equivalence

the type of kinds. Function types are defined in both kind

and type categories, whereas pair types are only defined in

the type category. Terms are stratified into values and non-

values.While the stratification is not necessary for specifying

the semantics of CC, it is useful for defining an optimizing

CPS translation. Lastly, environments consist of variable

bindings (𝛼 : K and x : A) introduced by functions, as well

as definitions [28] (𝛼 = A : K and x = e : A) introduced by

let expressions.

As the figure shows, there are syntactic constructs that

have variations differing in which categories their compo-

nents belong to. To avoid having to define reduction and

typing rules for each variation, we use the following nota-

tional convention throughout the paper.

M,N = a kind K, type A, or term e

S, T = a universe U, kind K, or type A

z = a type variable 𝛼 or term variable x

We also use “expression” as an umbrella word for kinds,

types, and terms.

3.2 Reduction and Equivalence
Figure 2 top shows the reduction rules of CC. The judgment

carries an environment Γ, which is used by the 𝛿 rule to re-

place a variable with an expression according to a definition.

Other rules define how functions, pairs, and let expressions
are eliminated, and they are completely standard.

We define Γ ⊢ M ⊲∗ N as the reflexive, transitive, and

compatible closure of Γ ⊢ M ⊲ N.
Figure 2 bottom shows the equivalence rules of CC. The

first three rules define equivalence as a reflexive, symmetric,

and transitive relation. The last rule defines equivalence in
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⊢ ·
(Empty)

⊢ Γ Γ ⊢ T : U z ∉ 𝑑𝑜𝑚(Γ)
⊢ Γ, z : T

(Extend)

⊢ Γ Γ ⊢ M : T z ∉ 𝑑𝑜𝑚(Γ)
⊢ Γ, z = M : T

(ExtendDef)

⊢ Γ

Γ ⊢ ∗
(Star)

⊢ Γ

Γ ⊢ □
(Box)

⊢ Γ

Γ ⊢ ∗ : □
(Ax)

z : T ∈ Γ ⊢ Γ

Γ ⊢ z : T
(Var)

Γ ⊢ S : U Γ, z : S ⊢ T : V

Γ ⊢ (Πz : S. T) : V
(Pi)

Γ ⊢ A : ∗ Γ, x : A ⊢ B : ∗
Γ ⊢ (Σx : A.B) : ∗

(Sigma)

Γ, z : S ⊢ M : T

Γ ⊢ (𝜆z : S.M) : (Πz : S. T)
(Abs)

Γ ⊢ M : (Πz : S. T) Γ ⊢ N : S

Γ ⊢ M N : T [N/z]
(App)

Γ ⊢ e1 : A Γ ⊢ e2 : B [e1/x]
Γ ⊢ (⟨e1, e2⟩ as Σx : A.B) : (Σx : A.B)

(Pair)

Γ ⊢ e : (Σx : A.B)
Γ ⊢ fst e : A

(Fst)
Γ ⊢ e : (Σx : A.B)

Γ ⊢ snd e : B [fst e/x]
(Snd)

Γ ⊢ M : S Γ, z = M : S ⊢ N : T

Γ ⊢ let z = M : S in N : T [M/z]
(Let)

Γ ⊢ M : S Γ ⊢ T : U Γ ⊢ S ≡ T

Γ ⊢ M : T
(Conv)

Figure 3. CC Typing

terms of reduction: if two expressions reduce to the same

expression, they are considered equivalent.

3.3 Typing
Figure 3 shows the typing rules of CC. The rule (Pi) allows

the variable z to appear in the co-domain B, and similarly

for (Sigma). The rule (Let) makes the definition z = M : S
available for use in the typing of the body N. The last rule

Universes U,V ::= ∗A | □
Kinds K ::= ∗R | ∗A | ∗C

| 𝚷𝜶 : K.K | 𝚷x : R.K
Root Types R ::= 𝚷𝜸 : ∗A. (A→𝜸 )→𝜸
Value Types A,B ::= 𝜶 | 𝝀𝜶 : K.A | 𝝀x : R.A

| A A | A r
| 𝚷𝜶 : K.R | 𝚷x : R.R
| 𝚺x : R.R
| let 𝜶 = A : K in A
| let x = r : R in A

Answer Types 𝜔𝜃 ::= (𝜽 = c) A | (𝜽 = o) 𝜸
Roots r ::= 𝝀𝜸 : ∗A.𝝀k : A→𝜸 . a
Values v ::= y | 𝝀𝜶 : K. r | 𝝀x : R. r

| ⟨r, r⟩ as A | a𝑐
Non-values p ::= x | v A | v r

| fst v | snd v
Answers a𝜃 ::= 𝜅𝜃 v | p 𝜔𝜃 𝜅𝜃

| let 𝜶 = A : K in a𝜃
| let x = r : R in a𝜃
| let y = v : A in a𝜃

Continuations 𝜅𝜃 ::= (𝜽 = c) idA
| (𝜽 = o) k
| 𝝀y : A. a𝜃

Annotations 𝜽 ::= c | o
Environments 𝚪 ::= · | 𝚪,𝜶 : K | 𝚪, x : R

| 𝚪,𝜶 = A : K | 𝚪, x = r : R
| 𝚪, y = v : A

Figure 4. CC𝑘
Syntax

(Conv) converts the type of an expression to a syntactically

different but semantically equivalent type.

4 Target Language
The target language CC

𝑘
of our CPS translation is roughly

a subset of CC conforming to certain syntactic constraints
1
.

In this section, we go through the specification while high-

lighting what are the constraints and how they are imposed.

4.1 Syntax
Figure 4 shows the syntax of CC

𝑘
. The language has five

groups of expressions: roots, answers, values, non-values,

and continuations. Roots are the output of the computation

translation, and answers are the output of the answer transla-

tion (or, equivalently, the result of running a CPS-translated

term with an answer type and a continuation). In the cate-

gories of answer types and continuations, 𝜸 and k are fixed

variables introduced by the translation.

1
We could use the plain CoC (with dependent let) as the target language,
but we choose to define a precise target language because it allows us to

discuss the inverse of CPS translation, which is useful for proving compiler

correctness [27].
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𝚪 ⊢ z ⊲𝛿 M where z = M : T ∈ 𝚪

𝚪 ⊢ y ⊲𝛿 v where y = v : A ∈ 𝚪

𝚪 ⊢ (𝝀z : T.A) M ⊲𝛽 A [M/z]
𝚪 ⊢ (𝝀z : T.𝝀𝜸 : ∗A.𝝀k : A→𝜸 . a) M 𝝎 𝜿 ⊲𝛽 a [M/z,𝝎/𝜸 ,𝜿/k]

𝚪 ⊢ (𝝀y : A. a) v ⊲𝛽 a [v/y]
𝚪 ⊢ fst (⟨𝝀𝜸 : ∗A .𝝀k : A→𝜸 . a, r⟩ as B) 𝝎 𝜿 ⊲𝜋1

a [𝝎/𝜸 ,𝜿/k]
𝚪 ⊢ snd (⟨r,𝝀𝜸 : ∗A.𝝀k : A→𝜸 . a⟩ as B) 𝝎 𝜿 ⊲𝜋2

a [𝝎/𝜸 ,𝜿/k]
𝚪 ⊢ let z = M : T in A ⊲𝜁 A [M/z]
𝚪 ⊢ let z = M : T in a ⊲𝜁 a [M/z]
𝚪 ⊢ let y = v : A in a ⊲𝜁 a [v/y]

𝚪 ⊢ 𝝀𝜸 : ∗A.𝝀k : A→𝜸 . p 𝜸 k ≡ p
[≡-𝜂]

𝚪 ⊢ M1 ≡ M2 𝚪 ⊢ N1 ≡ N2

𝚪 ⊢ M1 N1 ≡ M2 N2
[≡-App]

Figure 5. CC𝑘
Reduction and Equivalence (excerpt)

⊢ 𝚪 𝚪 ⊢ M : T z ∉ 𝑑𝑜𝑚(𝚪)
⊢ 𝚪, z = M : T

[ExtendDef]
⊢ 𝚪 𝚪 ⊢ v : A y ∉ 𝑑𝑜𝑚(𝚪)

⊢ 𝚪, y = v : A
[ExtendDef𝑐 ]

𝚪 ⊢ S : U 𝚪, z : S ⊢ T : V

𝚪 ⊢ (𝚷z : S.T) : V
[Pi]

𝚪 ⊢ R1 : ∗R 𝚪, x : R1 ⊢ R2 : ∗R

𝚪 ⊢ (𝚺x : R1 .R2) : ∗R
[Sigma]

𝚪, z : T ⊢ A : K

𝚪 ⊢ (𝝀z : T.A) : (𝚷z : T.K)
[Abs□]

𝚪 ⊢ A : (𝚷z : T.K) 𝚪 ⊢ M : T

𝚪 ⊢ A M : K [M/z]
[App□]

𝚪, z = M : T ⊢ A : K

𝚪 ⊢ let z = M : T in A : K [M/z]
[Let□]

𝚪 ⊢ A : ∗A

𝚪 ⊢ 𝚷𝜸 : ∗A. (A→𝜸 )→𝜸 : ∗R
[RootTy]

z : T ∈ 𝚪 ⊢ 𝚪

𝚪 ⊢ z : T
[Var]

⊢ 𝚪 𝚪 ⊢ A : ∗A

𝚪 | A ⊢ 𝜸 : ∗A
[AVar]

𝚪 ⊢ A : ∗A 𝚪 | 𝚯 ⊢ 𝝎 : ∗A

𝚪 | 𝚯 ⊢ A→𝝎 : ∗C
[ContArrow]

𝚪 ⊢ M : S 𝚪 ⊢ S ≡ T

𝚪 ⊢ M : T
[Conv]

𝚪 | A ⊢ a : 𝜶

𝚪 ⊢ 𝝀𝜸 : ∗A.𝝀k : A→𝜸 . a𝑜 : 𝚷𝜸 : ∗A. (A→𝜸 )→𝜸
[Root]

𝚪 | _ ⊢ a𝑐 : A
𝚪 ⊢ a𝑐 : A

[ClosedAns∗]
𝚪, z : T ⊢ r : R

𝚪 ⊢ (𝝀z : T. r) : (𝚷z : T.R)
[Abs∗]

𝚪 ⊢ r1 : R1 𝚪 ⊢ r2 : R2 [r1/x]
𝚪 ⊢ (⟨r1, r2⟩ as 𝚺x : R1.R2) : (𝚺x : R1 .R2)

[Pair]

𝚪 ⊢ v : (𝚷z : T.R) 𝚪 ⊢ M : T

𝚪 ⊢ v M : R [M/z]
[App∗]

𝚪 ⊢ v : (𝚺x : R1 .R2)
𝚪 ⊢ fst v : R1

[Fst]
𝚪 ⊢ v : (𝚺x : R1.R2)

𝚪 ⊢ snd v : R2 [fst v/x]
[Snd]

𝚪 | 𝚯 ⊢ 𝜅𝜃 : A→𝜔𝜃

𝚪 ⊢ v : A

𝚪 | 𝚯 ⊢ 𝜅𝜃 v : 𝜔𝜃

[Return]

𝚪 ⊢ p : 𝚷𝜸 : ∗A. (A→𝜸 )→𝜸
𝚪 | 𝚯 ⊢ 𝜔𝜃 : ∗A 𝚪 | 𝚯 ⊢ 𝜅𝜃 : A→𝜔𝜃

𝚪 | 𝚯 ⊢ p 𝜔𝜃 𝜅𝜃 : 𝜔𝜃

[Run]

𝚪, z = M : T | 𝚯 ⊢ a𝜃 : 𝜔𝜃

𝚪 | 𝚯 ⊢ let z = M : T in a𝜃 : 𝝎 [M/z]
[Let𝜃 ]

𝚪, y = v : A | 𝚯 ⊢ a𝜃 : 𝜔𝜃

𝚪 | 𝚯 ⊢ let y = v : A in a𝜃 : 𝜔𝜃 [v/y]
[Let𝑐 ]

⊢ 𝚪 𝚪 ⊢ A : ∗A

𝚪 | _ ⊢ idA : A→A
[IdCont]

⊢ 𝚪 𝚪 ⊢ A : ∗A

𝚪 | A ⊢ k : A→𝜸
[ContVar]

𝚪, y : A | 𝚯 ⊢ a𝜃 : 𝜔𝜃

𝚪 | 𝚯 ⊢ 𝝀y : A. a𝜃 : A→𝜔𝜃

[ExtendCont]

Figure 6. CC𝑘
Typing (exerpt)
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An important observation we can make here is that an-

swers and continuations carry an annotation 𝜽 2
. These an-

notations are borrowed from existing work on optimizing

CPS translations of control effects [5, 6], and are used to pre-

cisely characterize the image of the CPS translation. When

𝜽 = c, we say the answer or continuation is closed, in the

sense that it does not have free occurrences of the answer

type variable 𝜸 or continuation variable k. When 𝜽 = o, we
say the answer or continuation is open, in that it has free

occurrences of 𝜸 and k. Closed answers are identified with

values, and they appear in the definition of let expressions

let y = v : A in a𝜃 introduced by the translation.

As we did for the source language, we define the following

notational convention to keep the specification concise.

M,N = a value kind K, value type A, or root term r
S,T = a universe U, value kind K, or root type R

z = a type variable 𝜶 or term variable x

4.2 Reduction and Equivalence
Figure 5 top shows the reduction rules of CC

𝑘
. The 𝛿 rule has

two variations, among which the first one reduces a redex

arising from the source program and the second one reduces

a redex arising from the translation. The second 𝛽 rule and

the two 𝜋 rules perform substitutions for the answer type

variable 𝜸 and continuation variable k. These substitutions
correspond to administrative reductions, and performing

them as part of 𝛽 and 𝜋 rules help us establish a one-to-one

correspondence between source and target reductions [5, 6].

The third 𝛽 rule takes care of an application of a continuation

to a value.

Figure 5 bottom shows selected equivalence rules of CC
𝑘
.

Other than the four rules we have in CC, there is a rule defin-

ing 𝜂 equivalence on roots. We also have congruence rules

that allow us to regard expressions consisting of equivalent

subexpressions as equivalent, although we do not include all

of them in the figure due to space reasons. These additional

rules are required for proving type preservation.

4.3 Typing
Figure 6 shows selected typing rules of CC

𝑘 3
. Most rules use

the standard typing judgment, but the rules for answers and

continuations use a judgment that has an extra component

𝚯. This component represents the typing assumptions intro-

duced by root abstractions 𝝀𝜸 and 𝝀k. More precisely, when

the answer or continuation is open, 𝚯 is a value type A rep-

resenting the domain of the continuation k; this is sufficient

because the return type of k must be 𝜸 and 𝜸 has type ∗A.

2
For readability, we elide annotations when they are not essential.

3
Omitted rules include environment extension, kind well-formedness, and

conversion.

⊢ · {+ ·

⊢ Γ {+
𝚪 Γ ⊢ K : □ {+ K

⊢ Γ, 𝛼 : K {+
𝚪,𝜶 : K

⊢ Γ {+
𝚪 Γ ⊢ A : ∗ {÷ R

⊢ Γ, x : A {+
𝚪, x : R

⊢ Γ {+
𝚪 Γ ⊢ A : K {+ A Γ ⊢ K : □ {+ K

⊢ Γ, 𝛼 = A : K {+
𝚪,𝜶 = A : K

⊢ Γ {+
𝚪 Γ ⊢ e : A {÷ r Γ ⊢ A : ∗ {÷ R

⊢ Γ, x = e : A {+
𝚪, x = r : R

Figure 7. CPS Translation of Typing Environments

When the answer or continuation is closed, 𝚯 carries no in-

formation (_). A similar judgement has previously appeared

in Barthe et al.’s [4] CPS translation of the CoC.

5 CPS Translation
We now define a call-by-name CPS translation of CC. Our

design principle is to combine existing techniques, but with

a twist.

• Following Danvy and Nielsen [16], we use an auxiliary

translation of terms to avoid administrative redexes.

• Following Bowman et al. [8], we make the answer type

polymorphic so that we can obtain the value of any

CPS-translated term.

• As our own idea, we use a let expression to represent

continuations at selected places and thus restore type

preservation.

Let us begin with the translation of environments, uni-

verses, kinds, and types (Figures 7 and 8). The translation

is defined on the typing derivation, not on the syntax. This

is because we need the information of types to annotate

continuation variables and their arguments in the transla-

tion of terms. For types, we have two kinds of translations:

a computation translation ÷ and a value translation +. The
former essentially corresponds to double negation, with the

consequence being a polymorphic answer type. The latter

keeps the top-level shape of the original type. Note that,

since we are modelling a call-by-name semantics, we apply

the computation translation to the domain of function types,

the two components of pair types, and the right-hand side

of definitions.

We next look at the translation of terms. Again, we have

a computation translation that introduces answer type and

continuation abstractions, and a value translation that does

not introduce those abstractions. In addition to these, we
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Γ ⊢ ∗ {+ ∗ Γ ⊢ □ {+ □

Γ ⊢ ∗ : □ {+ ∗

Γ ⊢ K1 : □ {
+ K1 Γ, 𝛼 : K1 ⊢ K2 : □ {

+ K2

Γ ⊢ (Π𝛼 : K1.K2) : □ {+
𝚷𝜶 : K1 .K2

Γ ⊢ A : ∗ {÷ R Γ, x : A ⊢ K : □ {+ K

Γ ⊢ (Πx : A.K) : □ {+
𝚷x : R.K

Γ ⊢ A : ∗ {+ A

Γ ⊢ A : ∗ {÷
𝚷𝜸 : ∗A. (A→𝜸 )→𝜸

Γ ⊢ 𝛼 : K {+ 𝜶

Γ ⊢ K1 : □ {
+ K1 Γ, 𝛼 : K1 ⊢ A : K2 {

+ A

Γ ⊢ (𝜆𝛼 : K1.A) : (Π𝛼 : K1.K2) {+ 𝝀𝜶 : K1.A

Γ ⊢ A : ∗ {÷ R Γ, x : A ⊢ B : K {+ B

Γ ⊢ (𝜆x : A.B) : (Πx : A.K) {+ 𝝀x : R.B

Γ ⊢ A : (Π𝛼 : K1 .K2) {+ A Γ ⊢ B : K1 {
+ B

Γ ⊢ A B : K2 [B/𝛼] {+ A B

Γ ⊢ A : (Πx : B.K) {+ A Γ ⊢ e : B {÷ r

Γ ⊢ A e : K [e/x] {+ A r

Γ ⊢ K1 : □ {
+ K1 Γ, 𝛼 : K1 ⊢ A : K2 {

÷ R

Γ ⊢ (Π𝛼 : K1.B) : ∗ {+
𝚷𝜶 : K1.R

Γ ⊢ A : ∗ {÷ R1 Γ, x : A ⊢ B : K {÷ R2

Γ ⊢ (Πx : A.B) : ∗ {+
𝚷x : R1 .R2

Γ ⊢ A : ∗ {÷ R1 Γ, x : A ⊢ B : K {÷ R2

Γ ⊢ (Σx : A.B) : ∗ {+
𝚺x : R1 .R2

Γ ⊢ A : K1 {
+ A Γ ⊢ K1 : □ {

+ K1
Γ, 𝛼 = A : K1 ⊢ B : K2 {

+ B

Γ ⊢ let 𝛼 = A : K1 in B : K2 [A/𝛼] {+ let 𝜶 = A : K1 in B

Γ ⊢ e : A {÷ r Γ ⊢ A : ∗ {÷ R
Γ, x = e : A ⊢ B : K {+ B

Γ ⊢ let x = e : A in B : K [e/x] {+ let x = r : R in B

Γ ⊢ A : K1 {
+ A Γ ⊢ K2 : □ Γ ⊢ K1 ≡ K2

Γ ⊢ A : K2 {
+ A

Figure 8. CPS Translation of Universes, Kinds, and Types

Γ ⊢ e : A | 𝜸 | k {★ a Γ ⊢ A : ∗ {+ A

Γ ⊢ e : A {÷ 𝝀𝜸 : ∗A.𝝀k : A→𝜸 . a

Γ ⊢ v : A {+ v

Γ ⊢ v : A | 𝝎 | 𝜿 {★ 𝜿 v Γ ⊢ x : A | 𝝎 | 𝜿 {★ x 𝝎 𝜿

Γ ⊢ (Π𝛼 : K.B) : ∗ {+
𝚷𝜶 : K.B Γ ⊢ A : K {+ A

Γ ⊢ p : (Π𝛼 : K.B) | 𝝎 | 𝝀y : (𝚷𝜶 : K.B). y A 𝝎 𝜿 {★ a

Γ ⊢ p A : B [A/𝛼] | 𝝎 | 𝜿 {★ a

Γ ⊢ (Πx : A.B) : ∗ {+
𝚷x : R.B Γ ⊢ e : A {÷ r

Γ ⊢ p : (Πx : A.B) | 𝝎 | 𝝀y : (𝚷x : R.B). y r 𝝎 𝜿 {★ a

Γ ⊢ p e : B [e/x] | 𝝎 | 𝜿 {★ a

Γ ⊢ v : (Π𝛼 : K.B) {+ v Γ ⊢ A : K {+ A

Γ ⊢ v A : B [A/𝛼] | 𝝎 | 𝜿 {★ v A 𝝎 𝜿

Γ ⊢ v : (Πx : A.B) {+ v Γ ⊢ e : A {÷ r

Γ ⊢ v e : B [e/x] | 𝝎 | 𝜿 {★ v r 𝝎 𝜿

Γ ⊢ (Σx : A.B) : ∗ {+
𝚺x : R1 .R2

Γ ⊢ p : (Σx : A.B) | 𝝎 | 𝝀y : (𝚺x : R1 .R2). fst y 𝝎 𝜿 {★ a

Γ ⊢ fst p : A | 𝝎 | 𝜿 {★ a

Γ ⊢ v : (Σx : A.B) {+ v

Γ ⊢ fst v : A | 𝝎 | 𝜿 {★ fst v 𝝎 𝜿

Γ ⊢ (Σx : A.B) : ∗ {+
𝚺x : R1 .R2

Γ ⊢ p : (Σx : A.B) | Σx : A.B | idΣx:A.B {★ v
Γ ⊢ snd p : B [fst e/x] | 𝝎 | 𝜿 {★

let y = v : (𝚺x : R1 .R2) in snd y 𝝎 𝜿

Γ ⊢ v : (Σx : A.B) {+ v

Γ ⊢ snd v : B [fst e/x] | 𝝎 | 𝜿 {★ snd v 𝝎 𝜿

Γ ⊢ A : K {+ A Γ ⊢ K : □ {+ K
Γ, 𝛼 = A : K ⊢ e : B | 𝝎 | 𝜿 {★ a

Γ ⊢ let 𝛼 = A : K in e : B [A/𝛼] | 𝝎 | 𝜿 {★ let 𝜶 = A : K in a

Γ ⊢ e1 : A {÷ r Γ ⊢ A : ∗ {÷ R
Γ, x = e1 : A ⊢ e2 : B | 𝝎 | 𝜿 {★ a

Γ ⊢ let x = e1 : A in e2 : B [e1/x] | 𝝎 | 𝜿 {★ let x = r : R in a

Γ ⊢ e : A | 𝝎 | 𝜿 {★ a Γ ⊢ B : ∗ Γ ⊢ A ≡ B

Γ ⊢ e : B | 𝝎 | 𝜿 {★ a

Figure 9. Computation and Answer Translations of Terms
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x : A ∈ Γ

Γ ⊢ x : A {+ x

Γ ⊢ K : □ {+ K Γ, 𝛼 : K ⊢ e : B {÷ r

Γ ⊢ (𝜆𝛼 : K. e) : (Π𝛼 : K.B) {+ (𝝀𝜶 : K. r)

Γ ⊢ A : ∗ {÷ R Γ, x : A ⊢ e : B {÷ r

Γ ⊢ (𝜆x : A. e) : (Πx : A.B) {+ (𝝀x : R. r)

Γ ⊢ e1 : A {÷ r1 Γ ⊢ e2 : B [e1/x] {÷ r2
Γ ⊢ (Σx : A.B) : ∗ {+

𝚺x : R1 .R2

Γ ⊢ (⟨e1, e2⟩ as Σx : A.B) : (Σx : A.B) {+

⟨r1, r2⟩ as 𝚺x : R1.R2

Γ ⊢ v : A {+ v Γ ⊢ B : ∗ Γ ⊢ A ≡ B

Γ ⊢ v : B {+ v

Figure 10. Value Translation of Terms

have a third translation★, which we call answer translation. It
is equivalent to what is referred to as colon translation in the

literature [16, 24], despite the notational difference. As the

name suggests, the answer translation produces an answer

(result of a computation) using a given answer type and

continuation. Observe that the translation has multiple cases

for most non-atomic constructs, differing in which subterms

are values and which are computations. For instance, the

translation has two cases for an application of two terms:

when the function is a non-value p, and when the function

is a value v. In the former case, the translation recursively

applies itself to p with an extended continuation. In the

latter case, the translation applies the value translation to

v and builds an application using the result. Having both

cases makes it possible to produce a compact term that is

administrative redex-free.

The answer translation has one interesting case, which is

the second projection of a non-value term (snd p). What is

unique here is that the translation yields a let expression
introducing the definition y = v. Here, v is a value (more

precisely, closed answer) produced by the answer transla-

tion of p with respect to the identity continuation, which

corresponds to the result of evaluating the source term p.
The definition is key to establishing type preservation of the

translation. Specifically, it allows us to type check the appli-

cation snd y 𝝎 𝜿 with the information about what value is

bound to y. If we applied the answer translation to p while

representing its continuation using a 𝜆 abstraction, we would

not be able to use this information unless we augment the

target language with a non-standard typing rule [10].

6 Proving Type Preservation
We are currently proving type preservation of our CPS trans-

lation. So far, we have proved representative cases while

assuming several lemmas, and we are hoping to finish the

proof by the time when we submit the proceedings version

of this paper. Below, we provide an overview of the proof

and detail a key case.

For conciseness, we use the following notations in the

statements and proofs.

Γ+ ≡ 𝚪 where ⊢ Γ {+
𝚪

M◦ ≡ M where Γ ⊢ M : T {◦ M and ◦ ∈ {÷, +}
(e | 𝝎 | 𝜿)★ ≡ a where Γ ⊢ e : A | 𝝎 | 𝜿 {★ a

The type preservation theorem we would like to prove

says: for any well-typed source term, the CPS translation

produces a well-typed target term. Formally, the theorem is

stated as follows.

Theorem 6.1 (Type Preservation).

1. If ⊢ Γ, then ⊢ Γ+.
2. If Γ ⊢ M : T, then Γ+ ⊢ M◦

: T◦.
3. If Γ ⊢ e : A, Γ+ | 𝚯 ⊢ 𝜔𝜃 : ∗A, and Γ+ | 𝚯 ⊢ 𝜿 :

A+ →𝜔𝜃 , then Γ+ | 𝚯 ⊢ (e | 𝜔𝜃 | 𝜿)★ : 𝜔𝜃 .

To prove this theorem,we need three lemmas. The first one

is the substitution lemma, which states that the translation

commutes with substitution.

Lemma 6.2 (Substitution).

1. (M [A/𝛼])◦ ≡ M◦ [A+/𝜶 ]
2. (M [e/x])◦ ≡ M◦ [e÷/x]
3. (e [A/𝛼] | 𝝎 | 𝜿 [A+/𝜶 ])★ ≡ (e | 𝝎 | 𝜿)★ [A+/𝜶 ]
4. (e [e′/x] | 𝝎 | 𝜿 [e′÷/x])★ ≡ (e | 𝝎 | 𝜿)★ [e′÷/x]

The second lemma is correctness, that is, the translation

preserves equivalence.

Lemma 6.3 (Correctness).
If Γ ⊢ M ≡ N, then Γ+ ⊢ M◦ ≡ N◦.

The last lemma is naturality, which is a variation of Bow-

man et al.’s [8] [≡-Cont] taylored to our translation.

Lemma 6.4 (Naturality).
For any source term e : A, target type 𝝎 : ∗A, and target
continuation 𝜿 : A+ →𝝎, we have (e | 𝝎 | 𝜿)★ ≡ 𝜿 (e | A+ |
idA+ )★ .

Assuming these lemmas hold, we prove the type preserva-

tion theorem. The overall strategy is to use mutual induction

on the derivation of Γ and M. Here we show one case of the

third proposition (type preservation of the answer transla-

tion), where M = snd p and the last rule used is (Snd).

Our goal is to prove
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𝚪 | B [fst p/x]+ ⊢ let y = v : (𝚺x : R1 .R2) in snd y 𝝎 𝜿 : 𝝎

where v = (p | 𝚺x : A÷ .B÷ | id𝚺x:A÷ .B÷ )★.
Let us first focus our attention to the typing of snd y. By

rule [Snd], we have

𝚪, y = v : 𝚺x : A÷ .B÷ ⊢ snd y : B÷ [fst y/x]

Applying 𝛿 reduction, we obtain

𝚪
′, y = v : 𝚺x : A÷ .B÷ ⊢ snd y : B÷ [fst v/x]

We next shift our attention to the domain of k. The goal
says that the domain must be (B [fst p/x])+. By the substitu-

tion lemma, we know that it is equivalent to B+ [(fst p)÷/x].
Now, we need to show

(fst p)÷ ≡ fst v

This equivalence can be established via the following rea-

soning.

(fst p)÷

= 𝝀𝜸 : ∗A.𝝀k : A+
→𝜸 .

(p | 𝜸 | 𝝀y : (𝚺x : A÷ .B÷). (fst y) 𝜸 k)★

by definition of translation

≡ 𝝀𝜸 : ∗A.𝝀k : A+
→𝜸 .

(𝝀y : (𝚺x : A÷ .B÷). (fst y) 𝜸 k) v
by naturality

⊲ 𝝀𝜸 : ∗A.𝝀k : A+
→𝜸 . (fst v) 𝜸 k

by 𝛽

≡ fst v
by ≡-𝜂

Using this equivalence and congruence, we can conclude

that the goal statement holds.

It is promissing that the proof goes well for second pro-

jection, because this is the only case where the translation

introduces a let expression. As for the lemmas used, substi-

tution and correctness could be proved by straightforward

induction on the derivation. Naturality seems to require a

stronger induction principle, but it should be provable given

that similar properties have been proved elsewhere [2, 31].

7 Related Work
Type-Preserving Compilation. The technique of type-

preserving compilation emerged as an approach to improv-

ing safety and efficiency of generated code. Tarditi et al. [30]

construct the TIL compiler for SML, where “TIL” stands for

“typed intermediate languages”. They show that, by perform-

ing translations and optimizations on typed intermediate

languages, one can support polymorphism and garbage col-

lection without introducing overhead, and also gain the op-

portunities to identify bugs in the compiler. Morrisett et

al. [22] define a typed assembly language (TAL) and a type-

preserving translation from System F to TAL. They demon-

strate that having types in an assembly language allows one

to compile higher-order functions and data types in a safe

and concise manner.

Dependent-Type-Preserving Compilation. Dependent-
type-preserving compilation is being studied as a way of

guaranteeing safety of code compiled from languages such

as Coq and Agda. Closest to our work is Bowman et al. [8],

who develop call-by-name and call-by-value CPS transla-

tions of a source language that is identical to CC. As we

discussed in Section 2, they equip the target language with

new typing and equivalence rules to allow parametricity

reasoning needed in the type preservation proof. The tech-

nique has proven applicable to CPS translations of effectful

source languages as well, under the condition that no type

depends on effectful terms [11, 21]. Also relevant to our work

is Koronkevich et al. [20], who define an ANF translation of

CoC extended with natural numbers, dependent let, and a

universe hierarchy. They show that, unlike CPS, ANF does

not require parametricity, and hence is applicable to a wider

range of type theory. Other translations developed so far

include defunctionalization [18], closure conversion [7], and

memory allocation [19].

Non-UniformCPSTranslations. Non-uniformCPS trans-

lations like ours have mainly been developed for optimiza-

tion purposes. Danvy and Hatcliff [15] define a selective

CPS translation of a call-by-name language, using the result

of a strictness analysis to avoid unnecessary suspensions.

Nielsen [23], Rompf et al. [26], and Asai and Uehara [3] each

give a selective CPS translation of a language with control

operators, under the principle “convert effectful terms into

CPS, keep pure terms in direct style”. Reppy [25] implements

a local CPS translation in the Moby compiler, which im-

proves performance of nested loops by introducing a return

continuation to non-tail calls.

Apart from these, there is a line of work that makes use of

the selectiveness of CPS translations to preserve dependent

types. Cong and Asai [12] and Cong [9] develop selective

CPS translations of CoC extended with the delimited con-

trol operators shift and reset [14]. They establish type

preservation by restricting source types to depend only on

pure terms, and by keeping pure terms in direct style. This is

similar to what we do; indeed, their direct style translation

works like our answer translation whose continuation ar-

gument is the identity function. The difference is that their

translation yields administrative redexes, and that it is no-op

when applied to a pure program.

8 Conclusion and Next Steps
We present a CPS translation of a dependently typed lan-

guage that produces terms involving ANF-like components.
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The use of let expressions allows us to avoid administra-

tive redexes while preserving dependent types, although the

proof is still under development.

After proving type preservation, we will extend our re-

sults to a call-by-value CPS translation, as well as a source

language with inductive data types. A call-by-value transla-

tion would involve more uses of let expressions, as more

subterms must be evaluated for the entire term to be evalu-

ated [8]. Inductive data types would require a target language

that has extentional equality, which allows us to equate the

scrutinee of a pattern matching and the pattern of a specific

branch [20].

As a different direction for future work, we plan to de-

velop a direct-style (DS) translation from CC
𝑘
to a subset

of CC. Such a translation is useful for proving correctness

of compilers. In particular, when a CPS translation (compil-

ing function) and a DS translation (decompiling function)

form a reflection [27], there is a rigorous correspondence

between source and target optimizations. It would thus be

beneficial to define a type-preserving DS translation and use

it to establish a typed reflection.

In addition to these, we would like to investigate the us-

ability of our translation as a compiler pass. We are especially

interested inwhich of the knownCPS andANF optimizations

are applicable to the result of the translation, and whether

any new optimizations arise from the unique design of the

translation. At the symposium, we hope to discuss this with

other participants, especially with those who have experi-

ence in building realistic compilers.
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