
Daisy: A Block-Based Environment for Learning Data Modeling
Jessica Belicia Cahyono
jessica@prg.is.titech.ac.jp

Tokyo Institute of Technology
Tokyo, Japan

Youyou Cong
cong@c.titech.ac.jp

Tokyo Institute of Technology
Tokyo, Japan

Hidehiko Masuhara
masuhara@acm.org

Tokyo Institute of Technology
Tokyo, Japan

ABSTRACT
When solving a problem through programming, we start with data
modeling, i.e., defining data structures in a programming language
that represent information in the problem description. Despite
its crucial role in program design, data modeling is difficult for
novice programmers. The main reasons include the lack of clear
instructions, the need for syntax knowledge, and unavailability of
feedback when solving problems on their own.

We aim to support learners in mastering data modeling skills.
To achieve this goal, we elaborate on the steps of the data model-
ing process and implement a block-based environment Daisy for
solving data modeling exercises. We also report the results from a
preliminary experiment, which shows the potential usefulness of
Daisy.

CCS CONCEPTS
• Applied computing → Education; • Social and professional
topics→ Computing education.

KEYWORDS
data modeling, algebraic data type, block-based environment, auto-
generated feedback, programming education
ACM Reference Format:
Jessica Belicia Cahyono, Youyou Cong, and Hidehiko Masuhara. 2024. Daisy:
A Block-Based Environment for Learning Data Modeling. In Proceedings
of Proceedings of the 36th Symposium on Implementation and Application of
Functional Languages (IFL ’24). ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Problem solving through programming is better taught by taking
multiple steps. These steps include thinking about the shapes of
data, giving concrete examples of inputs and outputs, and writing
and verifying a function [3, 7].

The conversion from information to data, which we call data
modeling, is essential to be mastered by programmers. This is be-
cause the representation of data generally affects the planning of
the whole program. In fact, Felleisen et al. [2] describe the process
of designing programs in such a way that data representation drives
later design steps.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IFL ’24, August 26–28, 2024, Nijmigen, The Netherlands
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

However, learning the data modeling process is challenging, es-
pecially for novice programmers. For instance, in an undergraduate
course taught at the authors’ institution, we observed that stu-
dents often have difficulty completing the process for the following
reasons.

• Lack of instructions on the data modeling process
• Need for knowledge of programming language syntax
• Unavailability of feedback on the outcomes in the absence
of instructors

To the best of our knowledge, there do not seem to exist clear
instructions on data modeling, nor are there any tools that support
data modeling. This could reduce the learner’s motivation to start
solving the exercise, let alone finishing it.

We aim to assist learners in acquiring data modeling skills. To
achieve this goal, we make the following contributions.

• Give explicit instructions on how to do data modeling.
In particular, we decompose the data modeling process into
two steps: information mining and data representation.

• Develop Daisy, a block-based environment for solving
data modeling exercises. To make data modeling acces-
sible to beginners, Daisy provides block components and
automatic feedback generation features.

In the rest of this paper, we discuss related work (Section 2),
define the data modeling process (Section 3), and explain the fea-
tures of Daisy (Section 4). We then report on the user experiment
(Section 5) and discuss the results (Section 6). Lastly, we describe
future work (Section 7) and conclude the paper (Section 8).

2 RELATEDWORK
2.1 Design Recipe
The program design recipe [2] is a sequence of steps that guide
learners through the process of developing a program in a system-
atic manner. It breaks down the program design process into the
following six steps:

(1) Define data types and create data examples
(2) Write a signature, purpose statement, and function header
(3) Create input/output examples
(4) Develop a function template (i.e., an incomplete function

definition)
(5) Complete the function definition
(6) Run the tests

Among these steps, Step 1 is equivalent to the data modeling
process. The outcome of Step 1 is used extensively in later steps.
For example, in Step 3, we create an input/output example for every
data example created in Step 1. As another example, in Step 4, we
introduce a case analysis covering all possible patterns and extract

https://orcid.org/0009-0005-8300-5548
https://orcid.org/0000-0003-2315-6182
https://orcid.org/0000-0002-8837-5303
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


IFL ’24, August 26–28, 2024, Nijmigen, The Netherlands Jessica Belicia Cahyono, Youyou Cong, and Hidehiko Masuhara

the components of data according to the data definition from Step
1.

2.2 Block-Based Environments and Tools
Block-based programming environments are widely used in in-
troductory computer science courses. These environments ensure
syntax error freedom, allowing novice programmers to focus on
the essential task of building programs [1]. Blocks are also effective:
they make it possible for a learner to understand a wide variety of
concepts within a short amount of time [4].

Besides coding, blocks have been used to assist program design.
Closest to ours is Mio [5], a programming environment in which
one uses blocks to complete tasks in the design recipe. Another
study in this line of work is Rivera et al. [6], who develop a tool for
planning programs using higher-order function blocks.

3 DEFINITION OF DATA MODELING PROCESS
To make data modeling easier to learn, we define data modeling as
a two-step process.

(1) Information Mining
In this step, the learner identifies relevant information in
the problem description, then extracts and refines keywords
necessary for representing the information and solving the
problem.

(2) Data Representation
In this step, the learner develops a representation of the
information as data, using the keywords obtained in the
previous step.

In Figure 1, we provide an example showing how we solve the
Shape exercise below following the above steps.

Exercise: Shape� �
Define the function area to calculate the area of a shape. The
shape is either a square or a triangle.� �
In the information mining step, the learner extracts the words

shape, square, and triangle from the problem description. Then, the
learner refines the set of keywords by adding new keywords side,
base, and height, which are needed to calculate the area of the shape,
and Int, which is the type of side, base, and height. Subsequently, in
the data representation step, the learner defines data representing
shapes using those keywords. In our example, shapes are repre-
sented as an algebraic data type (ADT) in Scala, but there are many
other possible representations, such as structures and classes.

4 DESIGN OF DAISY
For smooth acquisition of data modeling skills, we develop Daisy
(Data modeling is easy to learn), an exercise environment for prac-
ticing data modeling. The kind of exercise supported by Daisy is
one that asks creation of an ADT that is needed to solve a given
problem. To make such exercises feasible for novice programmers,
we implement the following features in Daisy.

(1) Block Components
Daisy provides components for building ADTs as blocks.
This allows the learner to focus on the essential task of

data modeling without spending time struggling with syntax
errors.

(2) Automatic Feedback Generation
Daisy generates feedback based on the ADTs created. The
feedback is composed according to the correct solution pre-
pared by the instructor and helps the learner identify their
mistakes and stay motivated.

Our ultimate goal is to support both steps of data modeling in
Daisy. So far, we have implemented the easier step, namely data
representation, assuming that all necessary keywords are given by
the instructor. In what follows, we demonstrate how data represen-
tation is done in the current implementation of Daisy.

4.1 Overview
Daisy is implemented on top of Snap!1. As shown in Figure 2,
Daisy has a block palette on the left, a workspace area in the cen-
ter, a feedback area at the top right, and a set of exercises at the
lower right. The blocks provided in the block palette include ones
for defining a data type (green), data constructors (yellow), and
constructor arguments (orange), as well as keywords (purple) from
the information mining step (which are currently provided by the
instructor).

4.2 Demonstration
Let us guide the reader through the steps of data representation
using Daisy. We use the Shape exercise from Section 3 for the
demonstration.

Constructing ADT using Block Components. Based on the
information given in the problem description, the learner constructs
an ADT by dragging and dropping the blocks from the block palette.
In our example, the exercise requires an ADT representing shapes,
which are either a square or a triangle. Thus, the learner defines
a data type called Shape, which has two constructors Square and
Triangle. The exercise also requires measuring the area of a given
shape, and to do that, we need the length of a square’s side and the
length of a triangle’s base and height. Hence, the learner gives the
Square constructor an argument length, the Triangle constructor
two arguments base and height, all having type Int. Figure 3
shows the outcome of the Shape exercise, which is a complete
definition of the Shape data type.

Requesting Feedback.While constructing an ADT, the learner
can request feedback regarding their outcome by clicking the feed-
back generator button. If the outcome is correct, the learner receives
a positive message as shown in Figure 4. If the outcome is incorrect,
the learner sees a warning as shown in Figure 5. The feedback can
be requested at any time during the construction of an ADT, even
when the ADT is incomplete.

4.3 Comparison with Previous Work
The design of Daisy is inspired by Mio [5], a block-based environ-
ment for learning program design. Like Daisy, Mio allows construc-
tion of ADTs using blocks and generates feedback on constructed
ADTs. However, there are two key differences. First, while blocks
in Daisy are based on natural language, blocks in Mio reflect the

1Snap! Build Your Own Blocks. https://snap.berkeley.edu/



Daisy: A Block-Based Environment for Learning Data Modeling IFL ’24, August 26–28, 2024, Nijmigen, The Netherlands

Figure 1: Decomposition of Data Modeling Process

Figure 2: Overview of Daisy

Figure 3: Shape Data Type Constructed Using Daisy

Figure 4: Feedback on Correct ADT

syntax of Scala. The use of natural language makes the environ-
ment more beginner-friendly and applicable to a wider range of
programming languages. Second, while Daisy provides keywords

Figure 5: Feedback on Incorrect ADT

as building components, Mio asks the learner to fill in the holes of
blocks by text. The use of keywords makes it possible to generate
problem-specific feedback, rather than general warnings such as
the presence of unfilled holes.

5 EXPERIMENT
To see whether Daisy would potentially be helpful for learning data
modeling, we conducted a preliminary experiment. The experiment



IFL ’24, August 26–28, 2024, Nijmigen, The Netherlands Jessica Belicia Cahyono, Youyou Cong, and Hidehiko Masuhara

was done in a course called Introduction to Computer Science, an
undergraduate course taught by the second author. The course was
about basic functional programming in Scala, and it introduced the
students to design recipe-based program development. Among the
enrolled students, 27 of them participated in the experiment.

In the experiment, we asked the participants to solve three data
modeling exercises using Daisy. Since the course was taught in
Japanese, we used a version of Daisy in which blocks had Japanese
text, while leaving the feedback in English to make it close to
conventional error messages.

Here are the three data modeling problems we provided to the
participants.

Problem 1: Money� �
Define the data type Money that represents cash used in Japan.
Cash is either a banknote or a coin. A banknote has the in-
formation of its amount and the name of the person whose
portrait is on it. A coin has the information of its amount,
color, and whether it has a hole or not.� �
Problem 2: Device� �
Define the data type Device that represents devices.
A device is either a laptop or a television.� �
Problem 3: Path� �
Define the data type Path that represents the file location in
a file system. For example, /Home/Download/ex1.scala is a
path to the ex1.scala file.
The path is either a file or a directory. A file has information
of its name and extension. A directory has the information
of its name and the file or directory inside it. We assume that
each directory can only have one directory or file.� �
In Problems 1 and 2, we asked the participants to define a non-

recursive data type. For Problem 2, we did not specify the arguments
of the constructors in the problem statement, but instead provided
necessary argument names as keywords. In Problem 3, we asked
them to define a recursive data type.

After the exercises, we asked the participants to share their
thoughts about how the environment helps in learning data model-
ing. This was done through a questionnaire survey consisting of
the following questions.

1. Helpfulness of the Environment
How helpful was the environment with respect to the fol-
lowing aspects?

1a. Concentrating on constructing ADTs without worrying
about the syntax.
(a. Very helpful, b. Somewhat helpful, c. Not very helpful,
d. Not helpful at all)

1b. Checking the correctness of the ADTs you constructed.
(a. Very helpful, b. Somewhat helpful, c. Not very helpful,
d. Not helpful at all)

2. Block Components
2a. Did you think the process of constructing ADTs becomes

easier when constructors and argument names are given

by the environment?
(a. Agree, b. Disagree)

2b. Which mode do you think is easier to use when construct-
ing ADTs, blocks or text?
(a. Block, b. Text, c. Other)

2c. Please write your thoughts about the block components
feature.

3. Automatic Feedback
3a. Did you get any feedback from the environment during

the exercises?
(a. Yes, b. No)

3b. For which kind of mistake(s) did you receive feedback?
3c. Was the feedback appropriate?

(a. Yes, b. No, c. I did not get any feedback while solving
the exercises)

3d. Did the feedback help you correct your mistake?
(a. Yes, b. No, c. I did not get any feedback while solving
the exercises)

3e. Please write your thoughts about the automatic feedback
feature.

6 RESULTS AND DISCUSSION
Overall, we received positive reactions regarding the helpfulness
of Daisy in learning data modeling. Below we provide the details
of the results.

6.1 Helpfulness of the Environment
Figure 6 shows the participants’ responses regarding their thoughts
about the benefits of block components (Question 1a) and automatic
feedback (Question 1b). More than 80% of the participants agreed
that the environment helps them concentrate on the construction
of ADTs and check the correctness of their outcomes.

6.2 Usefulness of the Block Components
As we can see in Figure 7, most participants agreed that having
block components in the environment makes the process of con-
structing ADTs easier. In particular, the availability of constructor
and argument names helps them figure out what to do.

Regarding the ease of use, two-thirds of the participants thought
that a block-based environment is easier to use compared to a text-
based one. They said that the usage of blocks makes the process of
constructing ADTs more intuitive and easier to understand.

On the other hand, several participants indicated that they pre-
fer a text-based environment. Their arguments include “It takes
more time to drag-and-drop the block components” and “Drag-
and-drop is troublesome; I prefer typing the code.” One participant
also argued that a block-based environment is not really suitable
for teaching data modeling because ADTs are an advanced pro-
gramming concept typically taught to students who have prior
programming experience.

6.3 Automatic Feedback
Of the 27 participants, 20 of them received feedback while solving
the exercises (Figure 8, Question 3a). We observed that a majority of
them received feedback for Problem 3, which involves recursive data



Daisy: A Block-Based Environment for Learning Data Modeling IFL ’24, August 26–28, 2024, Nijmigen, The Netherlands

Figure 6: Responses of Questionnaire - Q1

Figure 7: Responses of Questionnaire - Q2 (multiple choice)

Figure 8: Responses of Questionnaire - Q3 (multiple choice)

type. Most of the generated feedback addressed incorrect argument
names, argument numbers, and type mismatch (Question 3b).

Among those who received feedback, all of them agreed that
the content of the feedback was appropriate, although a few of
them did not feel that the feedback was helpful in correcting their
mistakes (Questions 3c and 3d). This might be because the feedback
was given in English, which is not their mother tongue.

As additional comments (Question 3e), we received suggestions
such as keeping previous feedback messages when generating a
new message and requests for more detailed messages including
the exact location of errors.

6.4 Summary
The results indicate the potential usefulness of Daisy in learning
data modeling. In particular, the positive reactions on Daisy’s blocks
and feedback imply that the overall design of the environment is
on the right track.

7 FUTUREWORK
7.1 Support for Information Mining Step
An obvious next step is to support the information mining step in
Daisy.We do so by letting the learner select words from the problem

description and add more necessary keywords by themselves, as
shown in Figure 9. Thus, the learner will be able to practice the
whole process of data modeling in Daisy.

Figure 9: Implementation Idea of Information Mining Step

7.2 Quantitative Assessment of the
Environment

Another thing we plan to do is to conduct quantitative assessments
on the effectiveness of Daisy in learning data modeling. Specifically,
we are interested in investigating how long-term use of Daisy im-
proves learning outcomes. We are currently brainstorming possible
ways of doing this assessment, and we look forward to discussing
this with the IFL participants.

8 CONCLUSION
Data modeling is an important step in program design, yet the
lack of instructions and tool support makes data modeling hard for
novices to master. To solve this problem, we defined the steps of
data modeling and implemented one of them into Daisy. We also
conducted a preliminary experiment in the classroom and obtained
results suggesting the potential helpfulness of Daisy. We believe
that the full version of Daisy would be an effective tool for learning
data modeling.

REFERENCES
[1] David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon, and Franklyn Turbak. 2017.

Learnable programming: blocks and beyond. Commun. ACM 60, 6 (May 2017),
72–80. https://doi.org/10.1145/3015455

[2] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. 2018. How to Design Programs: An Introduction to Programming and
Computing. The MIT Press.

[3] Rajib Mall. 2014. Fundamentals of Software Engineering, Fourth Edition. PHI
Learning Private Limited, Delhi.

[4] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. 2010. The Scratch Programming Language and Environment. ACM Trans.
Comput. Educ. 10, 4, Article 16 (nov 2010), 15 pages. https://doi.org/10.1145/
1868358.1868363

[5] Junya Nose, Youyou Cong, and Hidehiko Masuhara. 2022. Mio: A Block-Based
Environment for Program Design. In Proceedings of the 2022 ACM SIGPLAN Inter-
national Symposium on SPLASH-E (Auckland, New Zealand) (SPLASH-E 2022).
Association for Computing Machinery, New York, NY, USA, 62–69. https:
//doi.org/10.1145/3563767.3568127

[6] Elijah Rivera, Shriram Krishnamurthi, and Robert Goldstone. 2022. Plan Composi-
tion Using Higher-Order Functions. In Proceedings of the 2022 ACM Conference
on International Computing Education Research - Volume 1 (Lugano and Virtual
Event, Switzerland) (ICER ’22). Association for Computing Machinery, New York,
NY, USA, 84–104. https://doi.org/10.1145/3501385.3543965

[7] Lorrie Willey, Barbara White, and Cynthia Deale. 2023. Teaching AI in the college
course: Introducing the AI Prompt Development Life Cycle (PDLC). 24 (10 2023),
123–138. https://doi.org/10.48009/2_iis_2023_111

https://doi.org/10.1145/3015455
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/3563767.3568127
https://doi.org/10.1145/3563767.3568127
https://doi.org/10.1145/3501385.3543965
https://doi.org/10.48009/2_iis_2023_111


IFL ’24, August 26–28, 2024, Nijmigen, The Netherlands Jessica Belicia Cahyono, Youyou Cong, and Hidehiko Masuhara

A ADDITIONAL INFORMATION ABOUT
EXPERIMENT EXERCISES

In this section, we provide some additional information about the
exercises given in the preliminary experiment. Specifically, we
present the keywords provided for each exercise, as well as the
expected answers.

Problem 1: Money� �
Define the data type Money that represents cash used in Japan.
Cash is either a banknote or a coin. A banknote has the in-
formation of its amount and the name of the person whose
portrait is on it. A coin has the information of its amount,
color, and whether it has a hole or not.� �

Keywords: String, Boolean, Int, Coin, portrait, hasHole, Money,
color, Bill, value

Answer:

Figure 10: Expected Answer for Problem 1

Problem 2: Device� �
Define the data type Device that represents devices.
A device is either a laptop or a television.� �

Keywords: String, Boolean, Int, brand, Device, size, Laptop, memory,
Television

Answer:

Figure 11: Expected Answer for Problem 2

Problem 3: Path� �
Define the data type Path that represents the file location in
a file system. For example, /Home/Download/ex1.scala is a
path to the ex1.scala file.
The path is either a file or a directory. A file has information
of its name and extension. A directory has the information
of its name and the file or directory inside it. We assume that
each directory can only have one directory or file.� �

Keywords: String, Boolean, Int, name, Directory, content, File, Path,
extension

Answer:

Figure 12: Expected Answer for Problem 3


	Abstract
	1 Introduction
	2 Related Work
	2.1 Design Recipe
	2.2 Block-Based Environments and Tools

	3 Definition of Data Modeling Process
	4 Design of Daisy
	4.1 Overview
	4.2 Demonstration
	4.3 Comparison with Previous Work

	5 Experiment
	6 Results and Discussion
	6.1 Helpfulness of the Environment
	6.2 Usefulness of the Block Components
	6.3 Automatic Feedback
	6.4 Summary

	7 Future Work
	7.1 Support for Information Mining Step
	7.2 Quantitative Assessment of the Environment

	8 Conclusion
	References
	A Additional Information about Experiment Exercises

