
Shiranui: A Live Programming with Support for Unit Testing

Tomoki Imai
Tokyo Institute of Technology, Japan

imai.t.af@m.titech.ac.jp

Hidehiko Masuhara
Tokyo Institute of Technology, Japan

masuhara@acm.org

Tomoyuki Aotani
Tokyo Institute of Technology, Japan

aotani@is.titech.ac.jp

Abstract
Live programming environments help the programmers to
try out expressions by giving immediate feedback on the
results as well as intermediate evaluation processes. How-
ever, the feedback is transient, and its correctness is merely
confirmed by the programmers’ manual inspection. We
seamlessly integrate live programming with unit testing by
proposing novel features (1) that converts a lively-tested ex-
pression into a unit test case, and (2) that extracts a unit test
case from an execution trace of a lively-tested expression. In
this poster, we overview Shiranui, our live programming en-
vironment, and present the proposed features implemented
in Shiranui.

Categories and Subject Descriptors D.2.6 [Software En-
gineering]: Programming Environments—Interactive Envi-
ronments

General Terms Languages, Human Factors

Keywords Live Programming, Testing, Debugging

1. Introduction
When the programmers develop a program, they constantly
test functions in order to reason about their behaviors. They
do so through an interactive environment or a testing frame-
work.

A live programming environment [1] is such an inter-
active environment that provides feedback for every few
keystrokes in the programming editor. It is useful when the
programmers write functions by trial-and-error.

Testing frameworks like JUnit provide a persistent way
to test function’s bahaviors. It however takes time to formu-
late test cases for a function with proper sets of parameters
and expected results, especially when functions involve with
first-class function values or complicated data structures.

Figure 1. Screenshot of Shiranui

We propose a set of features for a live programming
environment that combine advantages of both approaches:
quick feedback in live programming, and persistency in unit
testing. With those features, the programmers can check
function’s behaviors in a lively manner, and can convert the
results of the checking into persistent test cases.

2. Test Supporting Features in Live
Programming Environment Shiranui

We are developing Shiranui, a live programming environ-
ment, and a set of features that supports testing on top of
Shiranui. Below, we first overview the basic features of Shi-
ranui, and then discuss the test supporting features.

2.1 Overview of Shiranui
Shiranui is a live programming environment similar to
YinYang [3] and Apple Swift [4]. It automatically re-
executes the program while being edited, and immediately
displays the program’s results (including intermediate ones)
as an overlay on top of the program text.

Figure 1 is a screenshot of Shiranui, consisting of a pro-
gram text (left) and an environment view (right). The lan-
guage is also called Shiranui, which is a dynamically-typed
functional language with explicit mutable data structures. A
program consists of flylines start with a # symbol, and top-
level variable/function definitions. A flyline, whose details
are explained in the later section, specifies an experimental
expression to be executed1. Whenever the programmer edits
the text, the environment automatically re-executes the ex-

1 Since a flyline allows only one expression there, it currently does not
support tests about side effects.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

SPLASH Companion’15, October 25–30, 2015, Pittsburgh, PA, USA
ACM. 978-1-4503-3722-9/15/10
http://dx.doi.org/10.1145/2814189.2817268

36



pressions in the flylines, and inserts the results at the end of
flylines.

When the programmer issues the focus command on a
flyline (say the one at line 3), Shiranui highlights with green
color the fragments of code that are executed by the expres-
sion on the flyline, and also shows a value-history of vari-
ables during the execution (e.g., the numbers at line 7). The
programmer can then issue the focus command on one of
the values so as to examine the execution that yielded the
focused value (as shown by overstrikes on unexecuted code
fragments at lines 8–10 and the values of the expressions in
the environment view).

2.2 Testing Features in Shiranui
Unlike other live programming environments 2, Shiranui
supports the following features for connecting live program-
ming to unit testing, namely, converting experimental ex-
pressions to test cases, converting (even complicated) values
into expressions, and executing each flyline in an isolated
execution environment.

With those features, the programmer can develop a pro-
gram by first writing functions with experimental expres-
sions to understand the behavior of the functions in a trial-
and-error fashion, and then convert the experimental expres-
sions into unit test cases just by issuing a command on each
experimental expression. The programmer can reuse the val-
ues shown in the value-history of variables as parameters to
those experimental expressions. This is particularly useful
when a function involves with a complicated data structure
or a function value with lexical variables. The isolated exe-
cution environment is crucial to evaluate those experimental
expressions and test cases without interference.

2.2.1 Converting Experimental Expressions to Test
Cases

Shiranui provides a command to quickly convert experimen-
tal expressions (what we call idle flylines) to unit test cases
(what we call test flylines). It is done by just changing #+ in
a idle flyline to #- in a test flyline. We can also use a part
of output of idle flylines to make expected results in test fly-
lines.

When the programmer is defining a function, he or she
first writes idle flylines to check the behavior of the function
being written, and once they show expected results, he or she
can promote them to test flylines by issuing the command.

2.2.2 Converting Complicated Values into Expressions
Shiranui can display complicated data as a valid expression,
even if the value has a circular structure or contains a func-
tion value with lexical variables. This feature is useful when
creating test cases with complicated data because the pro-
grammer can simply copy-and-paste once it appears in the

2 It is announced that Apple Swift 2’s Playgrounds can “Create new tests
and verify they work before promoting into your test suite [4].” We inde-
pendently proposed our testing feature in Shiranui [2].

environment view. It also enables the programmer to test
even anonymous functions with free variables.

2.2.3 Executing Each Flyline with an Isolated
Execution Environment

When Shiranui executes flylines, the execution environment
of each expression is separated from each other. This is an
important feature for testing, where test fixtures must be
initialized for a run of each test case. By isolating execution
environments, each test expression can assume that top-level
variables initially have the same values, and can be allowed
to destruct those values without affecting the executions of
other expressions. Other live programming environments,
Swift for example, simply execute top-level expressions in
turn, which is sometimes confusing when evaluation causes
side-effects on top-level variables.

3. Conclusion and Future Work
We proposed a set of features that support unit testing in
a live programming environment. The features include an
editor command that converts experimental expressions into
unit test cases, an editor command that converts complicated
values into expressions, and execution of experimental and
testing expressions under isolated environments. We believe
that those features allow the programmer to construct func-
tions in a “lively” fashion, at the same time to obtain persis-
tent unit test cases with minimal efforts.

The implementation of Shiranui consists of a backend
written in C++ (about 7,200 LoC) and an Emacs-based fron-
tend written in Emacs Lisp (about 900 LoC). The backend
is implemented as an interpreter, and is supposed to evalu-
ate a whole program text for each time a character is edited
in the frontend. The implementation is publicly available at
https://github.com/tomoki/Shiranui.

Our future work includes improvement of performance
and scalability, improvement of user-interface, and empiri-
cal evaluations. As for the performance and scalability, the
runtime would need to re-execute only a part of a program
that is affected by a change. The language would also need
modularity mechanisms for describing larger applications.

References
[1] C. M. Hancock. Real-time Programming and The Big Ideas of

Computational Literacy. PhD thesis, Massachusetts Institute of
Technology, 2003.

[2] T. Imai, H. Masuhara, and T. Aotani. Shiranui: Test-friendly
Live Programming Environment. In The 31st JSSST Annual
Conference, Sep. 2014.

[3] S. McDirmid. Usable Live Programming. Proceedings of
Onward! ’13, pages 53–62, 2013.

[4] Apple Inc. Swift - Overview - Apple Developer. https:

//developer.apple.com/swift/. Accessed 2015-6-30.

37

https://github.com/tomoki/Shiranui
https://developer.apple.com/swift/
https://developer.apple.com/swift/

	Introduction
	Test Supporting Features in Live Programming Environment Shiranui
	Overview of Shiranui
	Testing Features in Shiranui
	Converting Experimental Expressions to Test Cases
	Converting Complicated Values into Expressions
	Executing Each Flyline with an Isolated Execution Environment


	Conclusion and Future Work

