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Abstract: This paper supplements the evaluation of libraries for parallel computing in Haskell by Matsumoto and
Matsuzaki. The previous work implemented an image processing program by using two different libraries and com-
pared expressiveness and parallel execution performance. In particular, it found that a parallel execution of the Accel-
erate program on a GPU is slower than the execution of the handwritten CUDA-C program by a factor of more than
70. We analyzed the execution of the Accelerate program and identified that the major sources of the overhead are
in the process of the syntax tree before execution of a GPU kernel. Since the program realizes repeated execution by
constructing a large syntax tree whose size is proportional to the number of repetitions, we rewrote this part by using
a while-construct, which significantly reduces the overhead as it runs half as fast as the CUDA-C program. We also
discuss language design alternatives for avoiding this type of overhead.
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1. Introduction

This work supplements the verification of usefulness of paral-
lel libraries in Haskell studied by Matsumoto and Matsuzaki [4]
(previous work). In the previous work, they compared two par-
allel libraries in Haskell —specifically, Repa [2] and Acceler-
ate [1]—in terms of the performance and expressiveness with a
target application that performs image super-resolution. In the
paper, they reported that the execution time of the Accelerate pro-
gram with 640 GPU cores was 1.15–1.29 times as long as that of
the sequential Haskell program and sequential Java programs and
was 80 times as long as that of the CUDA program with the same
number of GPU cores.

Although this result could be due to the poor performance of
Accelerate compared with CUDA-C and/or due to a bad descrip-
tion in the Accelerate program, it was not clear which of them was
the main cause. Only the following facts were found by the inves-
tigation in the previous work: there were no problems in terms of
branch divergence and the number of threads and 70% of the ex-
ecution time was consumed for the process on the Haskell (CPU)
side.

In this work, we analyze the execution time of the Accelerate
program and report that there is significant overhead caused by
the processing of syntax trees at the runtime. We also show that
we can suppress the performance degradation up to about twice
that of the CUDA program by changing the description of the
program.
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The problem addressed in this work is indeed restrictive. How-
ever, we consider that this work complements the previous work
considerably since the Accelerate program has achieved reason-
able performance for a practical application.

2. Image Super-resolution Naively Imple-
mented with Accelerate

Firstly, we show the Haskell program with the Accelerate li-
brary developed and evaluated in the previous work [4] and re-
view how it is processed.

Figure 1 shows the Haskell program developed with the Ac-
celerate library. This program was developed by straight porting
from the Haskell program with the Repa (REgular PArallel ar-
rays) library. The following four changes were made for using
the Accelerate library. (1) We used specific types wrapped by
Acc and/or Exp defined in the Accelerate library for the arrays
and variables processed on the GPU side (lines 8 and 11). (2)
We used special operators for the conditional branches and their
conditions processed on the GPU side (lines 19–22, 26, and 28).
(3) We expanded a list comprehension by hand since list compre-
hensions were not allowed (line 27). (4) To apply function step
many times on a GPU, we linked the processes by operator >->
(line 5).

In the previous work, the performance of this program was
evaluated and compared with the original sequential Java pro-
gram [5], a sequential Haskell program, and a program imple-
mented in C and CUDA. The evaluation was conducted on a
computer equipped with two CPUs, Intel Xeon E5-2620 v3
2.40 (3.20 GHz, 6 cores, HT off), 32 GB of memory, and GPU
GM107-400-A2 (1,020 MHz, 640 CUDA cores, VRAM 2 GB)
with the software GHC 7.6.3, Accelerate 0.13.0.3, CUDA 6.0,
and GCC 4.8.4. The Haskell program with the Accelerate library
ran in 18.4s. This execution time was longer than those of the
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Fig. 1 Haskell (Accelerate) program (Fig. 5 in previous work [4]).

sequential Java program (16.0s) and the sequential Haskell pro-
gram (14.3s). It was 76 times longer than the execution time of
the CUDA-C program on the same GPU.

3. Overhead Analysis

We examined the breakdown of the execution time of the Ac-
celerate program developed in the previous work and considered
the reason for the low performance. In this section, we outline
the execution of Accelerate and explain the processes in the exe-
cution of the image super-resolution program. We then show the
methods of measuring the execution time of each step and report
the results.

3.1 Execution of Accelerate
Accelerate [1] is a data-parallel extension of Haskell and is

implemented as an embedded domain-specific language. In Ac-
celerate programs, we describe the sequential parts as functions
in Haskell and the parallel parts with constructors provided for
data-parallel computation (parallel primitives), such as generate,
map, and fold.

The sequential parts of Accelerate programs are compiled by
the Haskell compiler. In the runtime, parallel primitives generate

a syntax tree for the parallel parts. When the CUDA.run function
is applied to the syntax tree, the runtime system transforms the
parallel primitives in the syntax tree to CUDA programs and calls
the CUDA compiler to generate PTX codes *1. Then, the runtime
system executes operations in the syntax tree in order and exe-
cutes PTX codes through the foreign function interface of Haskell
for parallel primitives.

*1 Parallel thread execution codes, which are virtual machine codes exe-
cuted by GPU cores. Here, PTX codes are assumed to include C++ host
programs that call the virtual machine codes.

Fig. 2 Execution of Image Super-resolution Application.

The runtime system caches the PTX codes on filesystems.
When the CUDA.run function is applied to the same syntax tree,
the runtime system skips the generation and compilation of the
CUDA programs and executes the cached (compiled) PTX codes.

3.2 Execution of Image Super-resolution Application
To discuss possible overheads, we divide the execution of the

super-resolution application into steps (Fig. 2). In the figure, we
described the steps as pseudo code in which indentation means
division of an execution step. The labels put on the rightmost of
the lines are used in this work. The symbols in superscript above
the labels show that the corresponding step is: (H) Haskell code,
(A) code in the Accelerate library, (D) a sequential part of the
Accelerate DSL program, and (C) (compiled CUDA code from)
a parallel part of the Accelerate DSL program.

We explain the process of each step.
fileH reads and writes input/output data. We exclude the per-

formance of this step from the target of the study as in the
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Table 1 Experiment Environments.

CPU Intel Xeon X5670 2.93 GHz (6 cores) × 2 (Hyperthreading
enabled)

RAM PC3-10600 54 GB

GPU NVIDIA Tesla K20X × 3,732 MHz, 2688 CUDA cores
VRAM 6 GB (each)

OS SUSE Linux Enterprise Server 11 SP3

previous work.
srH stands for the whole process of image super-resolution ap-

plication executed on memory. In the actual program, it cor-
responds to Haskell function superResolution *2.

astdefH generates a syntax tree that executes the “single step
of the image super-resolution” 200 times consecutively. In
Fig. 1, it corresponds to accSuperResolution, and the sin-
gle step of the image super-resolution corresponds to step.
The syntax tree generated from function step corresponds
to a single execution of a parallel primitive.

runA (CUDA.run) generates and executes a CUDA program
from the given syntax tree. It includes mainly three steps:
convertA, compileA, and execA.

convertA corresponds to function convertAccWith in the Ac-
celerate runtime program. As the comment in the source
code *3 states “convert a closed array expression to de Bruijn
form while also incorporating sharing observation and array
fusion,” it applies preprocessing to the given syntax tree.

compileA corresponds to function compileAcc in the Acceler-
ate runtime program. As the comment in the source code
states “initiate code generation, compilation, and data trans-
fer for an array expression,” it generates CUDA code from
the syntax tree and compiles it to PTX code. In the per-
formance measurement, this step was not executed since the
runtime system used the cached PTX code.

execA corresponds to function execAcc in the Accelerate run-
time program. As the comment in the source code states “in-
terleave compilation & execution state annotations into an
open array computation AST,” it executes the given syntax
tree.

repeatD calls a parallel primitive (generated from the image
super-resolution application) 200 times.

kernC corresponds to a call of parallel primitive generate,
which calls the compiled PTX code.

3.3 Experiment Methods
We used Tsubame 2.5 (Table 1) in the Tokyo Institute of Tech-

nology for the measurement of execution time. It is equipped
with 3 GPUs, but Accelerate used only one of them. Note that
since we used different CPUs and GPUs from the previous work
we cannot directly compare the execution time.

The software environment used was as follows. We used a dif-
ferent version of software due to the restrictions of the hardware
environment.
Accelerate: GHC 7.8.3 + Accelerate-0.15.1.0 -O2

-threaded -rtsopts / +RTS -H256M -s

CUDA: NVIDIA CUDA SDK 7.0.27 -O3 + GCC 4.9.3

*2 This function is not in Fig. 1.
*3 https://github.com/AccelerateHS/, reference on May 2017

Table 2 Execution time of each step (s).

Prev This CUDA

total 10.151 0.913 0.809

– srH 9.864 0.602 0.289

– – copyH 0.003 0.005 0.002

– – kernC 0.139 0.139 0.041

– – astdefH+ runA− kernC 9.722 0.458 —

GC 5.17 0.15 —

Table 3 Duration ratio of each step (%).

Prev This

total 100.0 100.0

– runA(CUDA.run) 72.3 36.5

– – convertA(convertAccWith) 59.6 3.5

– – compileA(compileAcc) —* 0.0

– – execA(executeAcc) 2.2 31.5

(* We did not calculate an accurate duration ratio for compileAcc because
many items corresponding to it appeared in the profiler’s output. We estimate
that it is about 10% from the other items.)

We measured the execution time of each step in the following
way. It is ideal to measure the execution time of each step, but it
is not easy due to the lazy evaluation of Haskell. Therefore, we
measured the time for some steps at a time.
total, fileH, srH: We measured the execution time with the

language-specific functions for obtaining the current time
(function System.IO.getCurrentTime in Haskell and
function clock gettime in CUDA). We measured 4 times
and computed the average of the 2nd–4th measurements.
Due to the lazy evaluation, we did not measure the break-
down of srH.

kernC, copyH: We executed the whole program on the profiler
nvprof (nvprof is attached to CUDA SDK) and measured
the time for executing kernels and for data transfer between
CPU and GPU memory. Note that we conducted the mea-
surement with nvprof independently from the other measure-
ments, and the overhead caused by nvprof did not affect the
other execution times.

GC We measured the time for GC during the whole execution
with the runtime option of GHC -s.

runA, convertA, compileA, execA: We executed the whole
program with GHC profiler and measured the duration ratio

of the Haskell functions. Here, the duration ratio includes
the duration of the function and that of the (other) functions
called from the function. Note that the duration of functions
may include the time for evaluating the parameters due to
the lazy evaluation.
In fact, some other functions were executed, but the ratio of
execution times for those functions were negligible as seen
in the results.

3.4 Experiment Results
Tables 2 and 3 show the execution time of each step. The row

(astdefH+runA − kernC) in Table 2 shows the time for srH sub-
tracted by the time for kernC and copyH. Note that the GC time is
the time for GC to execute the program, and the time of each step
includes part of the GC time. The columns named “Prev” and
“CUDA” show the execution times of the programs developed in
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Table 4 Number of iterations and execution time of srH (s).

Prev This

1 0.278 0.286
40 1.744 0.363
80 3.330 0.442
120 5.043 0.532
160 7.262 0.557
200 9.893 0.616

R2 value 0.9869 0.9778

the previous work when executed in the new environment. The
column named “This” shows the execution time of the program
improved in this work. Although we introduce the improvement
in the next section, we show the results in this table for compari-
son.

As we can see in Table 2, the program in the previous work
spent most time executing astdefH and runA, and the time exe-
cuting kernC was relatively short. It also spent about half of the
time executing GC. Although the kernC of the Accelerate pro-
gram took 3.5 times more than that of the CUDA program, it was
less than 2% of srH.

As we can see in Table 3, 80% of the execution time of runA

was for convertA. As we described before, convertA is a prepro-
cess for syntax trees.

Finally, Table 4 shows the execution time of srH while chang-
ing the number of iterations of the image super-resolution pro-
cess *4. The last row shows the R2 value computed from the fit-
ting linear line by the least squares method. From these values,
we can confirm that the execution time is almost proportional to
the number of iterations.

3.5 Consideration
From the experiment results, we can learn the following for the

program in the previous work. As observed in the previous work,
the overhead of the Accelerate program is not the execution of the
PTX code. In particular, the main overhead is in the preprocess of
syntax trees by the Accelerate runtime system. Since the whole
execution time was proportional to the number of iterations, the
overhead also increases as the number of iterations increases.

Here, we point out the fact that the syntax tree of the program
in the previous work has a size proportional to the number of it-
erations. The syntax tree is defined in lines 5–6 in Fig. 1, and the
the main part is as follows.
foldl1 (>->) [step iImg | _ <- [1..200]] oImg

The function step performs a single super-resolution process,
i.e., a call of parallel primitive generate. The operator >-> takes
two computations for an array and returns a syntax tree so that
the result of the first computation is passed to the second compu-
tation. Therefore, the syntax tree has a size proportional to the
number of iterations.

4. Cutting Overheads and Improved Perfor-
mance

Based on the consideration in the previous section, we modify

*4 We used a modified program in which the number of iterations was given
as a parameter. The time for 200 iterations was not the same as that in
Table 2, but the difference was less than 4%.

Fig. 3 Program after modification.

the Accelerate program so that the size of the syntax tree does not
depend on the number of iterations. In this section, we show the
modifications and the performance of the improved program.

4.1 Improved Accelerate Program
We modified the accSuperResolution function in the Accel-

erate program in the previous work as in Fig. 3.
In the modified code, we implemented the 200 times iteration

of function step with the awhile syntax provided by the Accel-
erate DSL. The program awhile cond body init starts with
init as the initial value of v and updates v with body v while
cond v is true. Since awhile is a control structure provided in
Accelerate, the size of syntax trees stays constant, and the itera-
tions are performed in CUDA.run, which are the differences from
the previous work.

To make the function take the output image (updated by step)
and the number of iterations as a single input parameter, we de-
scribed the construction and decomposition of a pair in the pro-
gram in Fig. 3. Furthermore, the transforms between the pair in
Haskell and the pair in Accelerate DSL make the definition com-
plicated.

4.2 Performance
As shown in Table 2 in the previous section, the modified pro-

gram ran 15 times faster than the program in the previous work
and about 2 times slower than the CUDA program. The time
for GC became about 1/34, which is due to the smaller size of
the syntax tree. As shown in Table 3, the duration ratio of the
preprocessing to syntax trees (convertA), which was most of the
execution time, became very small. Although the ratio of func-
tion execA became larger, this was because the whole execution
time was reduced.

5. Discussion

5.1 Overhead and Improvement in Other Applications
We discuss the overhead and its improvement in this work,

which could be similar in other applications. In particular, we
discuss the following two issues: (1) similar overhead was ob-
served in applications that generate a large DSL syntax tree and
(2) rewriting with awhileworks well in those applications. Since
generalizing these two issues is beyond the scope of this work, we
only show some concrete examples.

Firstly, for (1), we expect that overhead is observed in wide-
ranging applications because the size of syntax trees is propor-
tional to the number of iterations in the applications that iterate
GPU kernels (for example, a numerical solution to differential
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equations). However, we cannot find a case that reports the over-
head as far as we have surveyed.

Although three programs were used in the evaluation by
Chakravarty et al. [1], none of them included a loop. Therefore,
we consider that a large DSL syntax tree was not generated.

Parallel and Concurrent Programming in Haskell (PCPH) [3],
(chapter 6) includes an example fwaccel that computes the
shortest distance between two points in a graph with an itera-
tive method. It generates a syntax tree whose size is proportional
to the number of iterations. However, it reports briefly about the
performance: the Accelerate program ran faster than the sequen-
tial program on a CPU. The fact that the overhead is related to the
size of the syntax tree is not mentioned.

We found a discussion about implementation of iterative com-
putation and its overhead in the Accelerate website *5, but we can-
not judge whether the issue in the discussion is similar to that in
this work.

Since we found no similar overhead, we did not address is-
sue (2). We rewrote the fwaccel program in PCPH above
with awhile and confirmed that the execution time reduced to
about 1/5. Therefore, we consider that similar overhead was in
fwaccel and the improvement in this work worked well too.

5.2 Reasons for Using Expression-composition Operator
In the previous work, the expression-composition operator >->

was used, and it generated a syntax tree of a size proportional
to the number of iterations. Although Accelerate provides the
awhile syntax used in the previous section, the authors in the
previous work made a program that generated a large syntax tree
for the following reasons.

Due to the hardware environment used in the previous work,
limited combinations of the software were available. The Accel-
erate used in the previous work (version 0.13.0.3, published in
May 11, 2013) did not provide the awhile syntax.

PCPH introduces an example with the expression-composition
operator for the consecutive execution of parallel primitives but
not the awhile syntax.

5.3 Possibility for Language Design Improvement
As we have seen in the previous sections, the problem is in the

iterations described in the Accelerate DSL. We discuss the de-
scriptions of those iterative computations with other possibilities.
• In the previous work, a syntax tree with N processes was

generated for N iterations. A problem occurred due to the
overhead being proportional to the size of the syntax tree in
Accelerate. Not only Accelerate but also embedded DSLs
generating and composing DSL syntax trees in the iteration
of the host language may lead to the same problem. If the
number of iterations depends on the result of computation,
we require another description.

• In this work, we described the iteration with the awhile
syntax in the Accelerate DSL. We reduced the overhead of
Accelerate with this description. However, if the original
program used a recursive function for the iteration, we need

*5 https://github.com/AccelerateHS/accelerate/issues/305

extra effort to rewrite it to an imperative control structure.
For instance, in the previous work, the authors developed a
super-resolution application with a sequential program and
then parallelized it. In the sequential program, the iteration
was defined with the following recursive function *6.
steps oImg k =

if k = 0 then oImg

else steps (step iImg oImg) (k-1)

It is not straightforward to rewrite this program with the
awhile syntax.

• Let us consider introducing a syntax for recursive function
as an improvement of DSL. For example, if we introduce the
afix syntax, we can define the steps function as follows
(acond is DSL syntax for conditional branch. We omit the
lift and unlift operations for input parameters.).
afix $ \steps (oImg, k) ->

acond (k = 0) oImg

steps (step iImg oImg, k-1)

We expect a similar amount of description would be needed
compared with that with awhile. However, in most cases of
parallel programming, we first develop a sequential program
and then selectively parallelize the loops in the program. A
description similar to sequential programs would simplify
parallelization by trial and error or understanding of paral-
lelized programs.

• We may consider, as a further improvement, automatic trans-
formation of a program that performs iteration by copying
syntax trees to another tree that uses awhile. This kind of
optimization is too specific to be implemented as a process
in the Haskell compiler. It is also nontrivial to implement
it as an optimization in Accelerate without introducing ex-
tra overhead because the optimization in Accelerate was the
reason for the overhead. Therefore, we consider that a prac-
tical programming style should provide hints by users with
awhile or afix proposed above.

6. Conclusion

In this work, we have investigated the overhead of the image
super-resolution application with Accelerate, which was devel-
oped by Matsumoto and Matsuzaki, and shown that the reason
for the overhead is the preprocess of syntax trees, which have a
size proportional to the number of iterations. We have also shown
that the rewriting of the target iteration with the awhile syntax in
DSL eliminates most of the overhead. As a result, Accelerate runs
with an overhead of a factor of about two compared with CUDA-
C even for practical applications like image super-resolution.
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