
Massively Parallel GPU Memory Compaction

Matthias Springer
Tokyo Institute of Technology, Japan

matthias.springer@acm.org

Hidehiko Masuhara
Tokyo Institute of Technology, Japan

masuhara@acm.org

Abstract

Memory fragmentation is a widely studied problem of dy-
namic memory allocators. It is well known that fragmenta-
tion can lead to premature out-of-memory errors and poor
cache performance.

With the recent emergence of dynamic memory allocators
for SIMD accelerators, memory fragmentation is becoming
an increasingly important problem on such architectures.
Nevertheless, it has received little attention so far. Memory-
bound applications on SIMD architectures such as GPUs
can experience an additional slowdown due to less efficient
vector load/store instructions.

We propose CompactGpu, an incremental, fully-parallel,
in-place memory defragmentation system for GPUs. Com-
pactGpu is an extension to the DynaSOAr dynamic memory
allocator and defragments the heap in a fully parallel fashion
by merging partly occupied memory blocks. We developed
several implementation techniques for memory defragmen-
tation that are efficient on SIMD/GPU architectures, such as
finding defragmentation block candidates and fast pointer
rewriting based on bitmaps.

Benchmarks indicate that our implementation is very fast
with typically higher performance gains than compaction
overheads. It can also decrease the overall memory usage.

CCS Concepts • Software and its engineering → Al-

location / deallocation strategies; • Computer systems

organization → Single instruction, multiple data.

Keywords GPUs, dynamic allocation, fragmentation

ACM Reference Format:

Matthias Springer and Hidehiko Masuhara. 2019. Massively Parallel
GPUMemory Compaction. In Proceedings of the 2019 ACM SIGPLAN
International Symposium on Memory Management (ISMM ’19), June
23, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3315573.3329979

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ISMM ’19, June 23, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6722-6/19/06. . . $15.00
https://doi.org/10.1145/3315573.3329979

1 Introduction

Memory fragmentation is a challenging problem of dynamic
memory allocators and has been widely studied on single-
core and multi-core CPU systems (MIMD architectures). On
such systems, dynamic memory allocators can achieve low
memory fragmentation with good allocation policies [12]
and compacting garbage collectors.
However, despite the recent popularity of massively par-

allel single-instruction multiple-data (SIMD) architectures,
the memory fragmentation problem has not been studied
thoroughly on such architectures.
This is because dynamic memory allocators for SIMD

architectures such as GPUs have just been developed re-
cently [7, 10, 22, 23] and not been around long enough yet.
We believe that our research will enable more programmers
to utilize dynamic memory allocation in their applications.

We need to study memory (de)fragmentation on massively
parallel SIMD architectures because allocations follow differ-
ent patterns on such architectures. Most allocations are small
in size1 and due to mostly regular control flow, many alloca-
tions have the same byte size. Such patterns are reflected in
the design of state-of-the-art GPU allocators. For example,
Halloc [2], one of the fastest GPU allocators can allocate
only a few dozen predetermined byte sizes between 16 bytes
and 3 KB. Such specialties must be exploited by memory
defragmentation systems to achieve good performance.

1.1 SIMD-Specific Performance Characteristics

Before introducing the design of our system, we review im-
portant performance characteristics of SIMD architectures.

Effects of Fragmentation Fragmentation measures the
degree of scattering of allocations across the heap and is
caused by unfortunate allocate-deallocate patterns. High
fragmentation leads to three main disadvantages.
• Premature Out-of-Memory: Large allocations can-
not be accommodated even if there is enough free
memory overall (external fragmentation).
• Low Cache Hit Rate: Poor data locality causes poor
cache performance [8].
• LowVector Load/Store Efficiency: SIMDvector load/
store instructions are less efficient.

While the first two points are well-established and apply to
most architectures, the specific effects on SIMD architectures
have received little attention.
1If thousands of threads were to request large allocations, a GPU would run
out of memory immediately.

14

https://doi.org/10.1145/3315573.3329979
https://doi.org/10.1145/3315573.3329979

ISMM ’19, June 23, 2019, Phoenix, AZ, USA Matthias Springer and Hidehiko Masuhara

pos_x : int [1000]

0.75789

pos_y : int [1000] vel_x : int [1000]

t0: move(0)

thread __device__ void move(int id) {
 pos_x[id] += 0.5 * vel_x[id];

t1: move(2)
t2: move(3)
t3: move(4)

t4: move(7)

SIMD: All threads (in a warp) perform this load
in parallel. The GPU coalesces these loads into
as few 128-byte vector loads as possible.
If data is fragmented, more loads are required.

Ve
cto

r lo
ad

 of
 ve

l_x
[0]

thr
ou

gh
 ve

l_x
[31

]
co

nta
ins

 un
us

ed
 sl

ots

0.15112
0.98811
0.39125

0.40110

0.10018

0.76547
0.49134
0.30871

0.32749

-0.76619

-1.54793
4.54351
0.31131

-2.12779

0.12213

-0.31214
-0.12435
1.86671

3.12121

vel_y : int [1000]

 pos_y[id] += 0.5 * vel_y[id];
}

Figure 1. Example: N-body Simulation in SOA.
Objects are stored in SOA arrays. Due to frag-
mentation, gray slots are unused. If all used
cells were arranged in one consecutive chunk,
data would not be fragmented. If data is frag-
mented, vector loads are less efficient because
they include unused (gray) slots.

Effect of Fragmentation on Vectorized Access SIMD ar-
chitectures achieve parallelism by executing instructions on
a vector register. However, vector load/store operations are
less efficient with higher fragmentation. When threads in
a GPU application simultaneously access different memory
addresses, the GPU coalesces accesses from the same SIMD
work group (warp in CUDA, every 32 consec. threads) into
one physical memory transaction if the addresses are on the
same 128-byte cache line [11]. More fragmentation leads to
more scattered memory addresses, resulting in poorer per-
formance due to a higher number of memory transactions.
Memory fragmentation can greatly affect vectorized ac-

cess, even if data is stored in a Structure of Arrays (SOA)
data layout [24]. SOA is a best practice for more efficient
vector access on SIMD architectures. In SOA, all values of a
field are stored together. Previous work has demonstrated
speedups of several factors when changing from a traditional
AOS object layout to an SOA layout [9, 17].
Figure 1 shows a simplified data structure of an n-body

simulation in SOA layout. Recent NVIDIA architectures co-
alesce simultaneous accesses of consecutive memory ad-
dresses into 128-byte vector transactions. Accessing frag-
mented data (vel_x values in the example) requires more
vector transactions than accessing the same amount of dense
data. This reduces the overall performance of memory-bound
applications because memory bandwidth is limited [16].

1.2 Memory Defragmentation

In essence, every memory defragmentation system has to
solve four basic problems.

1. Determine which parts of the heap are fragmented.
2. Based on that information, decide which objects2 to

move (relocate) and where to move them.
3. Physically relocate objects in memory.
4. Find and rewrite pointers to relocated objects. (Alterna-

tive: Ensure that objects can still be accessed through
their old pointers.)

Most memory defragmentation systems are part of a garbage
collector (GC). Since GCs have to scan large parts of the heap
anyway, they can gather additional metainformation almost
for free. This information can be used to select memory areas
for compaction [13, 19] or to determine which parts of the
heap contains pointers that must be rewritten [25].
2We use the term object instead of allocation throughout this paper because
we are focusing on object-oriented systems in this work.

Background We present CompactGpu, an incremental,
fully parallel, in-place memory defragmentation system for
GPUs. GPUs/SIMD architectures are predominantly pro-
grammed in a C++ dialect (e.g., CUDA, OpenCL, ispc [20],
Sierra [15]), so we extended an existing CUDA dynamicmem-
ory allocator. Memory management in C++ is manual, so we
cannot rely on a GC to collect metainformation for us.

Our work builds on top of DynaSOAr [22], a C++/CUDA
dynamic memory allocator for GPUs. DynaSOAr was de-
signed for Single-Method Multiple-Object (SMMO) applica-
tions that express parallelism by running a method on all
objects of a type. It stores objects in SOA, which allows for
efficient vectorized access of allocated memory.

1.3 Contributions and Outline

CompactGpu is an efficient GPU memory defrag. system
that is optimized for GPU-specific allocation patterns. It is
fully parallel and in many cases the performance gain of
defrag. is much larger than the defrag. overhead. This is due
to careful design and engineering efforts: CompactGpu is
based on parallel block merging, utilizes bitmaps to speed
up pointer rewriting, exhibits mostly uniform control flow
and requires no synchronization between GPU threads.

We evaluated CompactGpu with synthetic and real bench-
marks. CompactGpu can improve application performance
by up to 16% and reduce the overall memory consumption of
an application, while incurring minimal runtime overheads.
This paper is organized as follows. Sec. 2 gives a brief

overview of DynaSOAr. Sec. 3 describes the design and im-
plementation of CompactGpu. Sec. 4 evaluates Compact-
Gpu with synthetic and real benchmarks. Sec. 5 describes
related work. Finally, Sec. 6 concludes the paper.

2 Heap Layout and Data Structures

A variety of dynamic memory allocators for GPUs have been
developed in recent years. CompactGpu is implemented
in DynaSOAr, but its basic ideas can be adapted to other
dynamic memory allocators as long as they follow a few
basic design requirements.
• The heap is divided into fixed-size memory blocks.
• A block contains only objects of the same size. This
requirement is crucial. Same-size objects can be com-
pacted much more easily than objects of different size.
• Blocks of the same object size have the same capacity.
• The allocator maintains fill levels for each block.

15

Massively Parallel GPU Memory Compaction ISMM ’19, June 23, 2019, Phoenix, AZ, USA

Fish Shark Cell (free) (free) Shark...

heap: array of M blocks

...

Cell* Agent::position[64]
Cell* Agent::new_position[64]
int Agent::random_state[64]
int Agent::age[64]
float Fish::spawn_probability[64]

object allocation bitmap

data segment
(SOA arrays)
incl. inherited fields

all blocks have same size (bytes)

bit for object slot

Shark (free)

Cell* Agent::position[56]
Cell* Agent::new_position[56]
int Agent::random_state[56]
int Agent::age[56]
int Shark::egg_timer[56]
int Shark::energy[56]

always 64-bit bitmaps ...

... but lower capacity
(smaller SOA arrays)

...

...
free

...
allocated [Cell]

...
active [Cell]

...
defrag [Cell]

...
allocated [Fish]

...
active [Fish]

...
defrag [Fish]

...
allocated [Shark]

...
active [Shark]

...
defrag [Shark]

block (multi)state bitmaps:
(10 bitmaps, M bits per bitmap)

(no bitmaps for
abstract classes)

defragmentation candidate bitmap

This block is active
(and may be a
defrag. candidate).

This block is full, i.e.,
• not active
• not a defrag. candidate

same type ⇒ same capacity (56)

Figure 2. Example: Heap layout for Wa-Tor. The heap consists of equally sized blocks. Up to 64 objects can be stored in a block, as indicated
by the object allocation bitmap. A block can be in one or multiple of 10 possible states, as indicated by the state bits shown for every block.
There are allocated, active and defrag states for the three classes Fish, Shark and Cell, but not for class Agent because it is an abstract class.

allocated [T]
∧ active [T]
∧ defrag [T]

free

allocated [T]

dealloc,
now empty

init block

dealloc
alloc,

now full

allocated [T]
∧ active [T]

alloc, now
> n/(n+1) full

dealloc, now
≤ n/(n+1) full

deallocalloc

deallocalloc
in

cr
ea

si
ng

 fi
ll

le
ve

l

(initial state)

0%

1% - 50%

51% - 99%

100%

fill levels (n = 1)

0%

1% - 66%

67% - 99%

100%

fill levels (n = 2)

T: C++ class/
struct type

Figure 3. Block States. Initially, every block is free. New objects are
allocated in active blocks of the corresponding type. We introduced
a new state defrag to indicate defragmentation candidates. Only
objects from such blocks are relocated during defragmentation.

DynaSOAr [22], Halloc [2] and UAlloc [7] are three ex-
amples of such allocators. We implemented CompactGpu
in DynaSOAr because it is the only one with an SOA data
layout, which allows for efficient vectorized memory access
of allocated memory. While all allocators would benefit from
better cache performance and more space-efficient memory
usage, memory defragmentation in DynaSOAr additionally
leads to more efficient vectorized memory accesses and thus
better memory bandwidth utilization.

2.1 Running Example

We use a simple fish-and-sharks simulation (“Wa-Tor”) as a
running example to describe the data structures of Compact-
Gpu. This application has four classes: Cell, Agent, Fish
and Shark. The last two classes are subclasses of the abstract
class Agent. Fish and sharks inhabit a 2D grid of cells in a
predator-prey relationship.
This application exhibits a large number of allocations

and deallocations, which lead to memory fragmentation.

2.2 Overview of the DynaSOAr Allocator

DynaSOAr is a slab allocator [4]. It divides the heap into
M blocks of equal byte size, each of which can contain up
to 64 objects (capacity) of the same C++ class/struct type,

depending on the size of the type (Figure 2). A position
where an object can be stored is called an object slot. A 64-bit
object allocation bitmap keeps track of allocations. Objects
are stored in the data segment in an SOA data layout: one
SOA array per field.
A block can be in one or more multistates. There are 3 ×

#types + 1 possible states: one global free state and three
states for each type T in the system (Figure 3).
• free: The block is empty and does not contain any
objects. No type is specified for this block.
• allocated[T]: The block may contain objects only of
type T . No other objects can be stored in the block.
• active[T]: The block contains objects of type T . It is
not full yet, i.e., it has space for at least one more object.
active[T]⇒ allocated[T].
• defrag[T]: The block is considered for defragmenta-
tion. We call such a block a defragmentation candidate.
We introduced this state to support defragmentation
in DynaSOAr and will describe its purpose in the next
section. defrag[T]⇒ allocated[T] ∧ active[T].

Allocation, deallocation and defragmentation routines fre-
quently lookup blocks by state. For that reason, block states
are indexed by bitmaps of sizeM ; one bitmap per state.

Fragmentation Our definition of fragmentation F differs
from other systems. We define it as the fraction of allocated
but unused memory. If a block is in an allocated state, we
consider all of its object slots as allocated. However, only
object slots that actually contain an object, as indicated by the
object allocation bitmap, are used. Fragmentation is defined
as the average free level among all allocated blocks.

F =
1

#blocks

∑
b ∈Blocks

#free slots(b)
#slots(b)

Our goal is reduce F as much as possible. Zero fragmenta-
tion means that all blocks are 100% full and vectorized mem-
ory access is most efficient. Conversely, a vector load on a
block that is 60% full will on average read 40% garbage. More-
over, unused memory in an allocated block is not available
for objects of other types. This leads to less space-efficient
memory usage.

16

ISMM ’19, June 23, 2019, Phoenix, AZ, USA Matthias Springer and Hidehiko Masuhara

The blocks themselves may be widely scattered in the heap.
For example, in Figure 2, three allocated blocks are stored at
the beginning of the heap and two are stored towards the end.
This does not affect cache utilization or vector load/store
efficiency, because with up to 64 objects per blocks, most
SOA arrays are much larger than a cache line or the size of a
vector load/store (128 bytes on NVIDIA GPUs). Neither can it
lead to external fragmentation or premature out-of-memory
errors, because all blocks have the same size.

Object Allocation To reduce fragmentation, even without
active memory defragmentation, DynaSOAr allocates new
objects of typeT always in active[T] blocks. These are blocks
that have space for at least one more object. Only if no active
block could be found, DynaSOAr locates a free block and
turns it into an allocated[T] and active[T] block (slow path).
DynaSOAr then reserves an object slot inside the block

by atomically flipping a bit in the object allocation bitmap
from 0 to 1. If this operation was successful, the block state
may have to be updated in the block state bitmaps.
If the number of objects of a type drops, fragmentation

can increase, because a block is deallocated only if all of its
objects are deallocated. This kind of fragmentation can be
eliminated with CompactGpu.

Programming Interface DynaSOAr provides an embed-
ded C++ DSL for defining classes/fields. Through this DSL,
CompactGpu can programmatically reflect on the classes/
fields that are defined in an application, somewhat similar
to the Java Reflection API or metaobject protocols [5]. This
functionality is used in the pointer rewriting step to restrict
heap scans to a smaller part of the heap (Sec. 3.4).

3 Defragmentation with CompactGpu

CompactGpu is amemory defragmentation system for GPUs,
implemented as a DynaSOAr extension. CompactGpu is:
• Configurable: The desired target fragmentation rate
can be tuned with parameters.
• In-place: No auxiliary storage is necessary and the
entire heap remains usable.
• Incremental: A single defragmentation pass is very
fast and compacts only a fraction of the heap. Com-
pacting the entire heap requires multiple passes.
• Astop-the-world approach:Adefragmentation pass
can run only when no other GPU code is running3.
• Fully parallel: Every step is implemented as a per-
fectly parallel CUDAkernel. No synchronization among
threads is necessary for defragmentation.
• Not order preserving: After defragmentation, ob-
jects are likely arranged in a different order.

3This is because, in current GPU architectures, there is no efficient way of
interrupting a kernel to run a defrag. pass, should the allocator run out of
memory during the kernel. Many GPU programs are a sequence of GPU
kernels [21], so there are plenty of opportunities to run a pass in-between.

Programmers initiate defragmentation manually and spec-
ify the type that should be defragmented. CompactGpu is
based on three fundamental ideas.

Block Merging The heap is defragmented by moving
objects from source blocks to target blocks.

Forwarding Pointers Pointers to the new object loca-
tions are placed in source blocks.

Bitmaps To speed up pointer rewriting, bitmaps are uti-
lized to quickly filter out unaffected pointers.

We considered various alternative designs (Sec. 3.8), but
the combination of forwarding pointers with bitmaps proved
to be most performant on GPUs.

Block Merging We compact the heap by merging blocks.
Blocks of the same type have the same capacity, so a source
block can be merged into a target block if both blocks have the
same type and both blocks are no more than 50% full.
A source block can be merged into two target blocks if

none of the three blocks is more than 66% full. Or in general:
A source block can be merged into n target blocks if none
of the n + 1 blocks is more than n

n+1 full. In each case, the
number of allocated blocks is reduced by one.

Defragmentation Factor We call n the defragmentation
factor. This value is problem-specific and must be chosen by
the programmer at compile time. Blocks that are no more
than n

n+1 full are defragmentation candidates. Only those
blocks are considered during defragmentation.
During defragmentation, all objects from a source block

are moved to target blocks and the source block is deleted.
Target blocks lose their defragmentation candidate state if
they are now more than n

n+1 full. They also lose their active
state if they are now entirely full.

Given a defragmentation factor of n, CompactGpu is guar-
anteed to bring down fragmentation to 1 − n

n+1 =
1

n+1 , if all
defragmentation candidates are eliminated. This may require
multiple defragmentation passes, as will be described later.
For example, for n = 2, all blocks with less or equal to 66%
fill level are gone after defragmentation4. Only blocks with
a higher fill level are left over. Consequently, the fragmenta-
tion level is guaranteed to be less than 1 − 66% = 33%.

Finding Defragmentation Candidates A defragmenta-
tion pass must be able to quickly find all defragmentation
candidates in order to choose source and target blocks. Com-
pactGpu extends object allocation and deallocation routines
of DynaSOAr to keep track of defragmentation candidates.

CompactGpu maintains a bitmap defrag[T] (one per type)
in which a bit is set if the corresponding block is a defragmen-
tation candidate. This bitmap is updated based on block fill
levels. An alternative implementation could scan the header
of every block and generate the bitmap on demand.

4Since every source block must be matched with n = 2 target blocks, up to
two defragmentation candidates may be left over.

17

Massively Parallel GPU Memory Compaction ISMM ’19, June 23, 2019, Phoenix, AZ, USA

...0 n/
a

n/
a

n/
a 4 5 n/
a 7 n/
a

n/
a

n/
a

n/
a 12 n/
a 14 n/
a

n/
a

n/
a

defragmentation candidate bitmap (M bits)

indices : int [M]

0 4 5 7 12 14
order-preserving
stream compaction

...

17 18 19 20

17 18 19 20

R : int [r]

Figure 4. Example: Compacting a bitmap of defragmentation can-
didates. (There is such a bitmap for every type/allocation size.)

0 4 5 7 1
2

1
4R : int [10] 1
7

1
8

1
9

2
0

source
blocks

target (1)
blocks

target (2)
blocks

t0
t63

...

t64

t127

...

t128

t191

...

thread assignment:

leftover block
(if #blocks is not

divisible by n)

#source blocks B =
10
3 = 3

Figure 5. Example: Assigning source and target blocks (n = 2). E.g.,
objects from source block 5 are moved into blocks 14 and 19.

3.1 Defragmentation Pass

A defragmentation pass consists of four main steps. Every
step is implemented as a CUDA kernel and runs in parallel.

1. Copy objects from source to target locations.
2. Store forwarding pointers.
3. Scan the heap and rewrite pointers to source locations.
4. Update block states.

3.2 Copying Objects

CompactGpu copies objects from source to target blocks.
Those blocks must be defrag. candidates, to ensure that all
objects of a source block fit into the corresponding target
blocks.

Choosing Source/Target Blocks Weutilize the defragmen-
tation candidate bitmap to quickly find and assign target
blocks to source blocks (Figure 4). We first generate an in-
dices array of sizeM that contains i at position i if the i-th
bit is set. Otherwise, we store an invalid marker. Now we fil-
ter/compact the array to retain only valid values, resulting in
array R of size r . This stream compaction [3] is implemented
with a parallel prefix sum operation (CUB library [18]).

Based on array R, each GPU thread can later by itself
(without synchronization) efficiently determine its assigned
source block and corresponding target blocks (Figure 5).
Given a defragmentation factor n, the B =

⌊
r

n+1

⌋
blocks

with indices R[0] through R[B − 1] are source blocks. Given
a source block R[s_rid], its corresponding target blocks are:

{
R[s_rid + i · B] ��� i ∈ 1...n

}

Copying Objects Objects are copied in parallel. We assign
64 consecutive threads to every source block (Figure 5) and
every thread copies at most one object. Some threads will

have no work to do, because not all (up to) 64 object slots in
a source block are occupied.
Alg. 1 describes how objects are copied (Figure 6). There

are 64 threads for every source block. A thread ttid copies the
(s_loc = tid % 64)th object of the source block (ID s_bid). Let
s_oid be the slot ID of this object. The target slot is the s_locth
free slot among all target blocks. Let t_oid and t_bid be the
slot ID and block ID of that slot. To determine the target
slot, we may have to examine the object allocation bitmap
of multiple or all n target blocks (Line 7). This causes some
thread divergence because the number of for-loop iterations
differs among threads, but n is usually small. Furthermore,
note that no synchronization is required among threads.
On GPUs, memory accesses have a much higher latency

than arithmetic instructions [26]. Therefore, we have to keep
the number of extra accesses in addition to the field copies
(i.e., the overhead of CompactGpu) low. Since all threads
in a warp copy from/to the same blocks, we require at most
1+n read transactions from the array R and the same number
read transactions of object allocation bitmaps per warp5.

Better Source/Target Choices? The number of object copies
(and pointer rewritings) could be reduced by selecting less
full defragmentation candidates as source blocks. Such an
optimization does not pay off for three reasons.

First, selecting source blocks becomes much more difficult.
How would a GPU thread know which block is less full?
We would either have to sort the array R with a compara-
tor function that counts the set bits in each block’s object
allocation bitmap (a random memory access!). Or we would
have to maintain additional defrag[T] bitmaps for various
fill levels. Both variants would greatly reduce performance.

Second, since memory is accessed in 128-byte vector trans-
actions, reading/writing a slightly lower number of scalar
values (that are likely scattered within an SOA array) is un-
likely to reduce the number of memory transactions.
And third, there would be more threads without work,

but since every warp must execute the same instructions
(SIMD model), these threads have to nevertheless wait for
the copying threads in the warp (warp divergence).

3.3 Storing Forwarding Pointers

After copying objects, pointers to the old memory location
must be updated (rewritten). Many memory defragmentation
systems do this with forwarding pointers: A pointer to the
object’s new memory location is stored at its old location.
We extended DynaSOAr to store forwarding pointers in-

side blocks. Every block may contain either a data segment
or forwarding pointers. Listing 1 shows the data structure
of a block of type Fish (also see lower left part of Figure 2).
Alg. 2 shows how the forwarding pointers array is popu-

lated. This algorithm is identical to Alg. 1, except for Line 20.
5If multiple threads of a warp access the same memory address, only one
memory transaction is required (a special case of memory coalescing).

18

ISMM ’19, June 23, 2019, Phoenix, AZ, USA Matthias Springer and Hidehiko Masuhara

t_bitmap (i = 1)

24 / 32
(75%)

s_bitmap

18 / 32
(56%)

fill level

t_bitmap (i = 2): loop breaks before i = 2

20 / 32
(63%)

t_bitmap (i = 0)

source object
allocation bitmap

target (1) object
allocation bitmap

target (2) object
allocation bitmap

defrag

t 0 ...ex. thr. assignment t 1 t 2 t 3 t 4 t 5

(a) before relocation

t_bitmap (i = 0)

32 / 32
(100%)

t_bitmap (i = 1)

30 / 32
(94%)

0 / 32
(0%)

fill level

t_bitmap (i = 2): loop breaks before i = 2

s_bitmap

(b) after relocation

Figure 6. Example: Relocating
objects (n = 3). Assuming
block size 32 instead of 64. All
18 objects fit into the first two
selected target blocks, so no
third block is needed. The first
12 objects fit into the first tar-
get block. The remaining 6 ob-
jects fit into the second one.

Algorithm 1: move_objects<T>() : void

1 for tid ← 0 to 64 · B in parallel do ▷ CUDA kernel
2 s_rid← tid / 64; s_bid← R[s_rid]; ▷ Source block ID
3 s_loc← tid % 64; ▷ This thr. copies s_locth obj.
4 s_bitmap ← get_block(s_bid).bitmap;
5 if s_loc < count_set_bits(s_bitmap) then
6 t_loc ← s_loc; ▷ This thr. copies to t_locth free slot
7 for i ← 0 to n do ▷ Thr. divergence increases with n
8 t_rid ← s_rid + i · B ;
9 t_bid ← R [t_r id]; ▷ Target block ID

10 t_bitmap ← ∼get_block(t_bid).bitmap;
11 t_slots ← count_set_bits(t_bitmap);
12 if t_loc < t_slots then
13 break; ▷ Target block t_bid determined
14 else

15 t_loc ← t_loc − t_slots;

16 s_oid ← nth_set_bit(s_bitmap, s_loc);
17 t_oid ← nth_set_bit(t_bitmap, t_loc);
18 s_ptr ← make_pointer(s_bid, s_oid);
19 t_ptr ← make_pointer(t_bid, t_oid);
20 *t_ptr ← *s_ptr; ▷ Copy all fields
21 end ▷ else: No work for this thread

Algorithm 2: place_forwarding_ptrs<T>() : void

1 for t id ← 0 to 64 · B in parallel do ▷ CUDA kernel
(same as in move_objects<T>(), lines 2–19)

20 | get_block(s_bid).data.forwarding_ptr[s_oid]← t_ptr;
21 end ▷ else: No work for this thread

The algorithms cannot run in one kernel because a forward-
ing pointer would then overwrite parts of the data segment6.

3.4 Rewriting Pointers

The heap is now scanned for pointers that must be rewritten.
If a pointer points to a location with a forwarding pointer,
it is replaced with the forwarding pointer. We utilize the
6If the size of the first field is 8 bytes (same as a pointer), as in this example,
this is harmless. Otherwise, a thread would store a forwarding pointer into
a memory location that may be copied by another thread (race condition).

Algorithm 3: rewrite_pointer<T>(T* ptr) : T* GPU

1 s_bid ← extract_block_id(ptr);
2 if s_bid < R [B] ∧ defrag_bitmap[T][s_bid] then
3 s_oid ← extract_object_id(ptr);
4 return get_block(s_bid).data.forwarding_ptr[s_oid];
5 else

6 return n/a;

template <> struct Block <Fish > {

uint64_t bitmap;

union {

struct {

Cell* position [64]; Cell* new_position [64]; int age [64];

int random_state [64]; float spawn_probability [64];

} data_segment; /* SOA arrays */

Fish* forwarding_ptr [64];

} data;

};

Listing 1. Example: Block structure for class Fish

defragmentation candidate bitmap to quickly decide if a
pointer must be rewritten, without reading the memory at
the pointer location. We read that location only if we are sure
that it contains a forwarding pointer. This is a key difference
compared to other defragmentation systems.

Given a pointer ptr, Alg. 3 returns the corresponding for-
warding pointer or n/a if no forwarding pointer exists for
ptr. We first extract the block ID s_bid of the object that ptr
points to. This block is a source block if it is a defragmenta-
tion candidate (i.e., bit set in the defragmentation candidate
bitmap) and if the block ID is smaller than R[B] (Line 2).
Recall that the blocks with IDs R[i] with i ∈ [0;B − 1] are
source blocks and R is sorted (Figure 5). Large parts of the
defrag[T] bitmap will likely be cached by the L1/L2 caches,
so we expected these bitmap lookups to be fast.
If the block is a source block, we extract the object ID

s_oid from ptr and return the corresponding forwarding
pointer. It is crucial that Alg. 3 is efficient because it is exe-
cuted for every pointer that is found during a heap scan.

Limiting Heap Scans Recent GPUs have up to 32 GB of
memory, so scanning all allocated memory for pointers to
rewrite is expensive. However, since classes and fields of

19

Massively Parallel GPU Memory Compaction ISMM ’19, June 23, 2019, Phoenix, AZ, USA

application code are defined with DynaSOAr’s DSL, Com-
pactGpu can reflect on application classes and determine
which parts of the heap may contain pointers that must be
rewritten. As such, only a small part of the heap is scanned.
For example, when defragmenting Fish objects, we can

avoid looking into blocks of type Fish or Shark, because
those classes do not have fields of type “pointer to Fish”
or “pointer to a superclass of Fish”. Only class Cell has a
field of type Agent*, so we only scan the corresponding SOA
arrays in the data segment of allocated blocks of type Cell.
These are the pointers that are rewritten according to Alg. 3.

In general, when defragmenting objects of typeT , we first
determine all classes U that have at least one field of type
pointer to S, where S :> T is a supertype of T or equal to T 7.
For every such typeU , we scan allocated blocks of typeU .
For every allocated block, we scan the SOA arrays of fields of
type pointer to S. Only these pointers are scanned and rewrit-
ten. This can exclude more than 95% of the heap. Moreover,
reading the values from an SOA array is fast because those
field reads are coalesced by the GPU.

Most other allocators have limited information about the
structure of their allocations. As such, they cannot restrict
the search space as described here. Previous work describes
alternative techniques for limiting the search space based on
intermediate results from a garbage collector [25].

3.5 Updating Block States

Finally, the state of source and target blocks must be updated
in the corresponding block bitmaps. Source blocks lose their
active, allocated and defrag states and become free. Target
blocks may lose their active and/or defrag states depending
on their new fill level.

3.6 Multiple Passes

A single defragmentation pass is guaranteed to delete all
source blocks, i.e., 1

n+1 of all defragmentation candidates. In
addition, some target blocks may lose their candidate state.
However, a fragmentation level of 1

n+1 can be achieved only
if all candidates were eliminated (Sec. 3). This may require
multiple passes.
The efficiency of passes decreases with decreasing num-

bers of candidates. For example, for n = 1, a single pass is
guaranteed to eliminate 500 out of 1,000 total candidates.
However, the next pass is only guaranteed to eliminate 250
out of 500 remaining candidates. Moreover, too much de-
fragmentation can make allocations more expensive because
the allocator has to (re)initialize new blocks if there are not
enough active blocks. To reduce runtime overheads, defrag-
mentation should stop before eliminating all candidates.
CompactGpu runs multiple passes until all but k1 candi-

dates were eliminated. The value of k1 can be configured.

7We also consider fields of type array of pointer to S etc. For simplicity, we
mention only simple pointer types here.

Since passes are very fast, the value of k1 matters only in
cases with a large number passes or massive allocations.

Worst-case Analysis Let d be the number of defragmenta-
tion candidates. A single pass reduces d at least by a fraction
of 1

n+1 , so no more than n
n+1 of candidates are left over. We

can bound the number of passes that are necessary in the
worst case to eliminate all candidates by:

log n+1
n
d

If all but k1 ≥ 1 candidates should be eliminated, we can
bound the number of passes by:

log n+1
n
d − log n+1

n
k1 = log n+1

n

d

k1
We experimentally analyze the actual number of passes

in the benchmarks section.

3.7 Defragmentation Frequency

Memory defragmentation must be initiated by the program-
mer explicitly. Once initiated, CompactGpu may run mul-
tiple passes depending on n, k1 and the number of defrag-
mentation candidates. We suggest one of the two following
defragmentation policies for initiating defragmentation.

Everym Iterations Many GPU programs run a num-
ber of CUDA kernels iteratively in a loop. This policy
initiates defragmentation everym iterations.

After Massive Deallocations Initiate defragmentation
if there are at least k2 many defragmentation candi-
dates8, where k2 should be a large enough value. Com-
pactGpu provides a helper method that lets program-
mers specify this threshold as an absolute number or as
a percentage of the heap size and then initiates defrag-
mentation if necessary. Internally, CompactGpu scales
k2 by n

n+1 to account for the fact that a larger value of
n usually leads to more defragmentation candidates.

As a rule of thumb, we use the first policy for applications
that experience a speedup from defragmentation, because
even small compactions can lead to a performance gain. The
second policy is useful for applications that mainly benefit
from better space efficiency or see a slowdown from defrag-
mentation. Future work will investigate how to automate
defragmentation (choosing policies, parameters, etc.).

3.8 Pointer Rewriting Alternatives

Pointer rewriting is the most time-consuming step in applica-
tions with a large object set. In Alg. 3, reading the forwarding
pointer in Line 4 is a random memory access that cannot be
coalesced and thus the most expensive operation of the algo-
rithm. To get rid of this memory access, we implemented two
alternatives that recompute forwarding pointers on-the-fly.

8There is no global object counter. The number of defragmentation candi-
dates approximates the number of allocated but unused object slots.

20

ISMM ’19, June 23, 2019, Phoenix, AZ, USA Matthias Springer and Hidehiko Masuhara

src. obj. bitmap target obj. bitmapsrc. block ID target block ID

n times (n block IDs and n bitmaps)

5681110592

1224577

977612

...

...

...

...

...

...

...

...97761135171

index

0

1

2

3

int [12288] uint64_t [12288] uint64_t [12288]int [12288]

...

12287

src. block ID
% 12888 = index
e.g.: 24577
 % 12888 = 1

defragmentation
record

Figure 7. Example: Defragmentation records. Stored in SOA layout.

Recompute-Global: Recompute Forwarding Pointers

Instead of storing forwarding pointers in objects, we main-
tain defragmentation records (Figure 7). A record is a tuple of
source block ID, source object bitmap (i.e., object allocation
bitmap), target block IDs and target object bitmaps. Based
on a record, all forwarding pointers for objects from the re-
spective source block can be recomputed (similar to Alg. 1).
Records are stored in SOA layout (4 arrays for n = 1).
Source block IDs are stored in shared memory9 and the

remaining 3 arrays are stored in global memory. Current
NVIDIA GPUs have 48 KB of shared memory, so we can
have at most 48 KB / sizeof(int) = 12288 records per pass.
During source/target block selection, we hash as many

records to array slots as possible and proceed with object
copying. The records structure is effectively a fixed-size hash
table with the source block ID as key.
We do not store forwarding pointers in objects. During

pointer rewriting (Alg. 3), we check in shared memory if
there is a record for the block of ptr by hashing the block ID
and using it as an array index into the source block ID array;
instead of checking a bit in the defrag. candidate bitmap. We
traded a (maybe cached) global memory access for a (guar-
anteed) fast shared memory access. However, this approach
limits the number of source blocks per pass and potentially
increases the number of required passes. Furthermore, we
now have to recompute the forwarding pointer, which still
requires a global memory accesses for reading the remaining
record values in case ptr must be rewritten.

Recompute-Shared: Entire Records in SharedMemory

To further reduce the number of global memory accesses,
we modified Recompute-Global to store the entire records
structure in shared memory. The size of a record is 12 · (n+1)
bytes (4 byte block IDs and 8 byte bitmaps), so the shared
memory can hold only 2048 records in shared memory for
n = 1 (and even less for larger n). This further increases the
number of required passes, but also reduces the number of
global memory accesses during pointer rewriting.

4 Evaluation

We evaluated CompactGpu with an NVIDIA TITAN Xp GPU
(12 GB devicememory).We compiled the programswith nvcc
(-O3) from the CUDA Toolkit 10.1 on Ubuntu 16.04.4.
9Shared memory is an explicitly programmable part of the L1 cache.

4.1 Defragmentation Quality

We first investigate how much fragmentation CompactGpu
can eliminate. As described in Sec. 3, given a defragmenta-
tion factor n, the fragmentation level is guaranteed to be
less than 1

n+1 after defragmentation. However, in reality the
fragmentation level is even lower.
We ran a synthetic benchmark that first allocates a very

large number of objects and then randomly deallocates some
objects. CompactGpu then defragments the heapwithk1 = 0.
We measured the fragmentation level after defragmentation
for different values of n. In Figure 9, the x-axis denotes the
initial heap fragmentation level (i.e., the percentage of deal-
located objects) and the y-axis denotes the fragmentation
level after defragmentation.

CompactGpu achieves its worst defragmentation quality
at an initial fragmentation level that is slightly smaller than
n

n+1 (e.g, 45% for n = 1). In this case, many blocks are at the
border of becoming defragmentation candidates. There are
a few more points with bad defragmentation quality. For
example, around 70% for n = 1. In this case, a number of
defragmentation candidates were eliminated in the first pass,
but the resulting blocks have unfortunate fill levels at the
border of becoming a defragmentation candidate.

4.2 Number of Defragmentation Passes

We now investigate the number of defragmentation passes
that are necessary to reach good fragmentation levels. The
number of passes is bounded by log n+1

n
d , but in reality fewer

passes are needed because some target blocks lose their state
as defragmentation candidates.

We ran the same synthetic benchmark, but fixed the initial
fragmentation level at 60%. Figure 8 shows the number of
defragmentation candidates and the fragmentation level after
every defragmentation pass. Only a few passes bring down
fragmentation to very low levels. Moreover, the number of
required passes to eliminate all candidates is significantly
lower than the theoretical upper bound.

Figure 10 shows the total number of object relocations for
the synthetic benchmark (60% frag. level) at various defrag-
mentation factors. CompactGpu runs multiple defragmenta-
tion passes, so some objects may be relocated multiple times.
This overhead is indicated by the stacked bars above “1”.

E.g., for n = 5, in 30.0% of all object relocations, an object
was copied already for the second time or even more often.
Even though 31 passes are required for n = 5, no object was
relocated more than 5 times.

4.3 Benchmark Applications

We evaluated CompactGpuwith four applications (withk1 =
16). Since dynamic memory allocation is not widely used on
GPUs yet, there are no suitable standard benchmark suites.
Our benchmarks are taken from the DynaSOAr examples
and exhibit varying allocation patterns.

21

Massively Parallel GPU Memory Compaction ISMM ’19, June 23, 2019, Phoenix, AZ, USA

fragment.
level

n = 1 n = 2 n = 3 n = 4 n = 5
2

 p
as

se
s

1
1

 p
as

se
s

1
8

 p
as

se
s

2
4

 p
as

se
s 31 passes

defragmentation passes

Figure 8. Number of defrag. passes required to eliminate all defrag. candidates (length of the x-axis) for various defrag. factors n. The y-axis
shows the number of remaining defrag. candidates and the fragmentation level (grey area). The initial fragmentation level is 60%.

worst case vs. actual
achieved fragmentation level

in
iti

al
 fr

ag
. l

vl
.

frag. lvl. after defrag.

Figure 9. Fragmentation level after memory defragmentation by
defragmentation factor n and initial fragmentation level. Lower is
better. The dotted lines indicate worst-case fragmentation levels
after defragmentation (fragmentation level 1

n+1).

n

30
%

 ov
er

he
ad

Figure 10. Number of object relocations. The x-axis denotes the
defragmentation factor. The stacked bars classify relocations by the
number of times an object is relocated (e.g., 0 = object not relocated,
1 = object relocated for the first time, etc.).

We measured the defragmentation quality and running
time with different defragmentation factors. The defragmen-
tation factor must be smaller than the capacity of a block,
so every problem has a different maximum defragmentation
factor. The dashed red lines in the running time graphs are
baseline running times without defragmentation.

For every application, we also show a memory profile. The
shaded area indicates the number of allocated objects (used
object slots). Different colors indicate different C++ classes in
the application. The lines indicate the actual memory usage
(allocated object slots). The gap between the shaded area and
a line is memory that is wasted due to fragmentation.
All but one application experience a speedup. One appli-

cation experiences a slowdown, but space savings.

Collisions This is an n-body simulation with collisions
(Figure 11). A large number of body objects is allocated at the
beginning. No other objects are allocated. When two body
objects collide, they are merged and one object is deallocated.
The fragmentation level increases gradually with every deal-
located body. The worst fragmentation is reached around
iteration 5,000, when most objects were already deallocated
but most blocks are still allocated due to a few remaining
objects in each block.

We initiated defragmentation every 50 iterations. Defrag-
mentation had a very small overhead and led to a perfor-
mance improvement of 12.2% for n = 36. This is because
of more efficient vector load/store instructions (more coa-
lescing) and due to better cache utilization. Towards the end
of the simulation, only few objects remain, and if they are
stored in a dense way they fit into GPU caches.

Structure This is a simulation of a fracture in a composite
material (Figure 12), modeled as a mesh of finite elements.
The simulation exerts a force on some elements and connec-
tions between two elements break if the force between them
exceeds a certain threshold. A BFS pass identifies elements
that are disconnected from the remaining simulation and
deallocates them.
Similar to collisions, this simulation exhibits only deal-

locations. However, this simulation has four classes. Even
though many objects are already deallocated at the end of
the simulation, most blocks are still allocated and overall
memory consumption has barely decreased.

We initiated defragmentation every 50 iterations. Defrag-
mentation achieved a peak speedup of 16.3% for n = 18.

Generational CA This is an adaptation of Game of Life
(Figure 13). After a cell dies, it stays around for a few more
iterations and blocks the cell. This implementation simulates
only alive cells by allocating objects for alive cells and cells
that may become alive in the next iteration.

This simulation contains both allocation and deallocation
of objects. After iteration 2000, most cells are dead and the
simulation converges into a mostly static pattern.
We initiated defragmentation every 50 iterations for a

speedup of 6.3% (n = 2). Higher defragmentation factors led
to overfitting: E.g., the line for n = 5 follows the number of
allocated objects very closely, even into small local minima.
This does not give any additional performance benefit.

22

ISMM ’19, June 23, 2019, Phoenix, AZ, USA Matthias Springer and Hidehiko Masuhara

iterations

#o
bj

ec
ts

se
co

nd
s

defragmentation factor (n)

Figure 11.N-body simulationwith collisions. Upon collision, two bodies aremerged and the smaller object is deleted, leading to fragmentation.

iterations
(app. runs for 5000 it.)

#o
bj

ec
ts

defragmentation factor (n)

se
co

nd
s

Figure 12. Structure: Simulation of a fracture in a composite material (FEM). Disconnected elements are removed from the simulation.

defrag new
alloc.

iterations
(app. runs for 25000 it.)

#o
bj

ec
ts

defragmentation factor (n)

se
co

nd
s

Figure 13. Generational Cellular Automaton. This benchmark is an adaption of Game of Life (rule 0235678/3468/255, similar to “Burst” [27]).

iterations
(runs for 500 it.)

iterations
(runs for 500 it.)

iterations
(runs for 500 it.)

Figure 14.Wa-Tor: An agent-based fish-and-sharks simulation. Simulates population dynamics of agents in a predator-prey relationship.
The dotted lines indicate maximum memory usage throughout the simulation. Circles indicate defragmentation runs.

Table 1. Benchmark characteristics and running time (right side; milliseconds) for selected defragmentation factors. If #Passes < #Defrag,
the programmer initiated defragmentation but there were not enough defragmentation candidates to start a pass.

Benchmark

Alloc.

Size

#Rewr.

Fields

n #Defrag #Passes

Total

Runtime

Defrag Scan Copy Rewrite

Synthetic (60% frag.) 2,097.2 MB 1 3 1 18 n/a 44.4 4.0 6.7 33.3
Collisions 5.7 MB 1 10 200 186 3,698,945 36 17 7 8
Generational CA 57.4 MB 1 2 500 537 56,830 191 80 17 85
Structure 58.9 MB 3 10 100 368 305,846 140 54 16 65
Wa-Tor 1,107.6 MB 1 9 38 43 7,729 49 7 14 20

23

Massively Parallel GPU Memory Compaction ISMM ’19, June 23, 2019, Phoenix, AZ, USA

defragmentation factor (n)

se
co

nd
s

defragmentation factor (n)

de

fra
g.

 p
as

se
s

Figure 15. Running time and number of defragmentation passes for fish-and-sharks simulation.

We chose k1 = 16, i.e., 16 defragmentation candidates are
excluded from defragmentation. It is important to retain a
few fragmented (non-full) blocks because DynaSOAr (and
other allocators) first look for active (non-full) blocks dur-
ing allocations (fast path) and have to initialize a new block
if none were found (slow path). Too small values of k1 led
to overcompaction: Consider the enlarged part of the mem-
ory profile in Figure 13. At first, defragmentation lowers
the overall memory usage. However, allocations in the next
few iterations immediately increase the fragmentation level
again due to new block initializations, bringing it almost back
to the initial fragmentation level. A higher value of k1 would
likely speed up allocations and increase the performance of
the overall application a little bit.

Wa-Tor This is the fish-and-sharks running example. Fish
and sharks appear inwaves until an equilibrium is reached [6].

This simulation experiences a slowdown from defragmen-
tation (Figure 15). Atn = 10, the slowdown is 8.1%. This slow-
down is not due to defragmentation runtime overhead. The
main reason is that CompactGpu is not order-preserving:
Objects from a source block are scattered into multiple target
blocks. This leads to less coalesced memory accesses when
certain fields are accessed. Similar slowdowns have been
reported on certain benchmarks in CPU systems [1]. We will
further investigate this effect in future work.

The benefit of defragmentation in Wa-Tor is a lower mem-
ory footprint (Figure 14). For n = 10, the overall memory
consumption is reduced by 14%, so that programmers can
run larger problem sizes on the same hardware.
We use the After Massive Deallocations heuristic to initi-

ate defragmentation. Initiating defragmentation every few
iterations would incur a higher slowdown. To save memory,
defragmentation is most important around iteration 50. At
that time, many fish objects (red area) are deallocated and a
large number of shark objects are allocated. New shark ob-
jects can reuse deallocated memory locations of fish objects
as soon as the corresponding blocks are deallocated. Defrag-
mentation eliminates many fish blocks by compaction.

Pointer Rewriting Alternatives CompactGpu is faster
than Recompute variants in most cases. The high number
of bitwise operations for recomputing a memory pointer

(similar to Alg. 1), combined with divergent execution (some
pointer are rewritten, some are not) led to a high slowdown
compared to our forwarding pointer method.
Furthermore, with increasing n, Recompute-Shared re-

quires a larger number of passes (Figure 15) because the
shared memory is very small, limiting the number of defrag-
mentation candidates per pass.

For n-body and structure, this slowdown is negible because
very little time is spent on defragmentation overall, but we
can see clear difference for generation and wa-tor.

4.4 Runtime Overhead

To evaluate the efficiency of our implementation, we mea-
sured the runtime overhead of CompactGpu. There are two
kind of overheads.
First, CompactGpu extends (de)allocation procedures to

maintain defrag[T] bitmaps. To measure this overhead, we
compare the running time without defragmentation (red
dashed line) and no defrag values in the running time graphs.
In no defrag, wemaintain a defragmentation candidate bitmap
but never initiate defragmentation. There is almost no mea-
surable overhead for maintaining these bitmaps.
Second, CompactGpu has three potentially expensive

steps: (a) Generating/compacting an indices array R from a
defragmentation candidate bitmap (scan), (b) copying objects
and placing forwarding pointers (copy) and (c) scanning the
heap and rewriting pointers (rewrite). We measure the time
spent in each step, as well as the overall time spent on de-
fragmentation (defrag), which includes additional overheads
such as block state updates (Table 1).
In every benchmark, defragmentation takes only a very

small fraction of the overall application running time. Wa-
Tor has the largest overhead: The application spends 0.6% of
its running time in defragmentation.
The synthetic benchmark isolates the runtime overhead

for one defragmentation. We added a second class to the
benchmark and made objects of both classes point to each
other randomly. There are initially 32,768,000 objects of each
class (object size 32 bytes). The benchmark deletes 60% of
the objects of one class and initiates defragmentation.
The performance of the scan phases mainly depends on

the efficiency of the prefix sum operations (CUB library).

24

ISMM ’19, June 23, 2019, Phoenix, AZ, USA Matthias Springer and Hidehiko Masuhara

The copy phases copy (read+write) 282.1 MB of object data
and write 70.5 MB of forwarding pointers in 6.7 milliseconds
(94.7 GB/s). This is 17.3% of the global memory bandwidth.

The rewrite step is most time consuming: CompactGpu
has to check 32,768,000 pointers (262.1 MB) per pass (18 ×
262.1 MB = 4,717.2 MB in total). Out of these pointers, Com-
pactGpu rewrites only a small part (read+write 70.3 MB
of forwarding pointers) because many objects were deleted.
CompactGpu finishes the rewrite step in 33.3 milliseconds,
resulting in a memory transfer rate of 145.9 GB/s (not tak-
ing into account other memory accesses). This is 26.6% of
the global memory bandwidth of our TITAN Xp GPU. The
Nvidia Profiler shows that 32% of all global memory accesses
in this step hit the L1 cache (64 KB) and 63% hit the L2
cache (3,072 KB), indicating that defragmentation candidate
bitmaps are largely cached.

CompactGpu achieves a high performance because most
memory reads/writes have good coalescing. Overall, our
benchmark results show that CompactGpu is highly opti-
mized with little room for improvement.

5 Related Work

A vast number of memory defragmentation systems have
been developed for CPU systems in the past. A main differ-
ence on GPU architectures is that it is easier to decide where
to relocate objects to, because there are only a small number
of object sizes. This pattern is reflected in the design of many
GPU dynamic memory allocators: Many allocators maintain
containers for objects of the same size [2, 7, 22]. On CPU
systems, there are typically many different allocation sizes.

The only existing GPU memory defragmentation system
was developed by Veldema and Philippsen [25]. Their work
consists of an allocator and a defragmentation system10. To
compact the memory, their defragmentation system selects
10% of all memory regions that are less than 75% full as
source regions. They use their memory allocator to allo-
cate a target location in another region. This is problematic
because allocation is expensive and requires some sort of syn-
chronization between threads. Runtime overheads of their
defragmentation system range from 0.5% to 33%.

Veldema and Philippsen also propose a technique for lim-
iting the search space during pointer rewriting based on
additional data collected by a GC. This technique could be
used in CompactGpu instead of relying on class structure
metainformation of DynaSOAr.
To the best of our knowledge, there are no other defrag-

mentation systems for GPUs. We believe that this is because
of limited support for dynamic memory allocation. The de-
fault CUDA dynamic memory allocator is known to be slow
and unreliable [23], so most programmers avoid dynamic
memory management entirely. It is still a common practice

10The source code of this system is not available, so we could not compare
it with CompactGpu.

to allocate a large chunk of memory statically and manage
it manually. Out of the few custom memory allocators that
exist, many (e.g., ScatterAlloc [23], Halloc [2]) use a hashing
approach to scatter allocations in the heap almost randomly,
in order to avoid collisions among allocating threads. Not
only do they miss important opportunities for vectorization
(e.g., SOA layout), but they are also known to incur the neg-
ative effects of high fragmentation [2].
Many efficient CPU memory defragmentation systems

divide the heap into two areas: Objects are copied from a
from-space to a to-space [13, 14]. Both spaces are swapped be-
fore every defragmentation pass. In such an approach, only
half of the memory space is usable by the allocator. This
is acceptable on virtual memory architectures because the
virtual memory space is much larger than the physical mem-
ory space. Current GPU architectures do not have virtual
memory and even the amount of physical memory is much
smaller than on CPU systems. Cutting the available memory
by half would be unacceptable on GPUs.

Pointer Rewriting without Forwarding Pointers Some
memory defragmentation systems use data structures dif-
ferent from forwarding pointers [1, 13]. For example, the
Compressor uses a markbit vector to recompute forwarding
pointers on-the-fly during pointer rewriting [13]. A markbit
vector is a bit vector where bits for the first and last heap
word of an allocated object are set. Since forwarding pointers
are not read from memory, only two accesses (read pointer,
replace with new pointer) are required to rewrite a pointer,
assuming the markbit vector is cached. We experimented
with similar techniques, but they did not lead to a perfor-
mance improvement (Sec. 3.8).

6 Conclusion

We presented CompactGpu, a memory defragmentation sys-
tem for GPUs. CompactGpu is able to (a) speed up applica-
tions through better cache utilization and vector load/store
efficiency on allocated memory and (b) lower the overall
memory consumption of an application.
CompactGpu achieves low runtime overheads through

careful SIMD-friendly design considerations and implemen-
tation efforts: CompactGpu utilizes bitmaps to select source/
target blocks and to quickly decide if a pointer must be
rewritten. Furthermore, CompactGpu exhibits mostly reg-
ular control flow, accesses memory in coalescing-friendly
patterns and requires no synchronization between threads.

Our main takeaways are that (a) memory defragmentation
onGPUs is feasible and able to deliver speedups, (b) toomuch
defragmentation (overfitting and overcompaction) does not
pay off and can even be detrimental to performance due to
less efficient allocations, and (c) careful design considerations
are necessary to achieve good performance on GPUs; many
good CPU designs, such as recomputing forwarding pointers
on-the-fly, are not efficient on GPUs.

25

Massively Parallel GPU Memory Compaction ISMM ’19, June 23, 2019, Phoenix, AZ, USA

Acknowledgments

This work was supported by a JSPS Research Fellowship for
Young Scientists and JSPS KAKENHI Grant Number 18J14726.
We gratefully acknowledge the support of NVIDIA Corpora-
tion with the donation of the TITAN Xp GPU used for this
research.

References

[1] Diab Abuaiadh, Yoav Ossia, Erez Petrank, and Uri Silbershtein. 2004.
An Efficient Parallel Heap Compaction Algorithm (OOPSLA ’04). ACM,
New York, NY, USA, 224–236.

[2] Andrew V. Adinetz and Dirk Pleiter. 2014. Halloc: A High-Throughput
Dynamic Memory Allocator for GPGPU Architectures. https://github.
com/canonizer/halloc. In GPU Technology Conference 2014.

[3] Darius Bakunas-Milanowski, Vernon Rego, Janche Sang, and Chansu
Yu. 2017. Efficient Algorithms for Stream Compaction on GPUs. Inter-
national Journal of Networking and Computing 7, 2 (2017), 208–226.

[4] Jeff Bonwick. 1994. The Slab Allocator: An Object-caching Kernel
Memory Allocator (USTC ’94). USENIX Association, Berkeley, CA,
USA, 12.

[5] Shigeru Chiba. 1995. A Metaobject Protocol for C++ (OOPSLA ’95).
ACM, New York, NY, USA, 285–299.

[6] Alexander K. Dewdney. 1984. Computer Creations: Sharks and fish
wage an ecological war on the toroidal planet Wa-Tor. Scientific Amer-
ican 251, 6 (Dec. 1984), 14–26.

[7] Isaac Gelado and Michael Garland. 2019. Throughput-oriented GPU
Memory Allocation (PPoPP ’19). ACM, New York, NY, USA, 27–37.

[8] Dirk Grunwald, Benjamin Zorn, and Robert Henderson. 1993. Improv-
ing the Cache Locality of Memory Allocation (PLDI ’93). ACM, New
York, NY, USA, 177–186.

[9] Holger Homann and Francois Laenen. 2018. SoAx: A generic C++
Structure of Arrays for handling particles in HPC codes. Computer
Physics Communications 224 (2018), 325–332.

[10] Xiaohuang Huang, Christopher I. Rodrigues, Stephen Jones, Ian Buck,
and Wen-Mei Hwu. 2010. XMalloc: A Scalable Lock-free Dynamic
Memory Allocator for Many-core Machines (CIT ’10). 1134–1139.

[11] Byunghyun Jang, Dana Schaa, Perhaad Mistry, and David Kaeli. 2011.
Exploiting Memory Access Patterns to Improve Memory Performance
in Data-Parallel Architectures. IEEE Transactions on Parallel and Dis-
tributed Systems 22, 1 (Jan. 2011), 105–118.

[12] Mark S. Johnstone and Paul R. Wilson. 1998. The Memory Fragmenta-
tion Problem: Solved? (ISMM ’98). 26–36.

[13] Haim Kermany and Erez Petrank. 2006. The Compressor: Concurrent,
Incremental, and Parallel Compaction (PLDI ’06). ACM, New York, NY,

USA, 354–363.
[14] Bernard Lang and Francis Dupont. 1987. Incremental Incrementally

Compacting Garbage Collection. In Papers of the Symposium on In-
terpreters and Interpretive Techniques (SIGPLAN ’87). ACM, New York,
NY, USA, 253–263.

[15] Roland Leißa, Immanuel Haffner, and Sebastian Hack. 2014. Sierra:
A SIMD Extension for C++ (WPMVP ’14). ACM, New York, NY, USA,
17–24.

[16] Justin Luitjens. 2011. Global Memory Usage and Strategy.
https://developer.download.nvidia.com/CUDA/training/cuda_
webinars_GlobalMemory.pdf. (July 2011). GPU Computing Webinar
7/12/2011, Accessed: 2019-02-28.

[17] Toni Mattis, Johannes Henning, Patrick Rein, Robert Hirschfeld, and
Malte Appeltauer. 2015. Columnar Objects: Improving the Perfor-
mance of Analytical Applications (Onward! 2015). ACM, New York,
NY, USA, 197–210.

[18] Duane Merrill and Michael Garland. 2016. Single-pass Parallel Pre-
fix Scan with Decoupled Look-back. Technical Report NVR-2016-002.
NVIDIA Corporation.

[19] Yoav Ossia, Ori Ben-Yitzhak, and Marc Segal. 2004. Mostly Concurrent
Compaction for Mark-sweep GC (ISMM ’04). ACM, New York, NY,
USA, 25–36.

[20] Matt Pharr and William R. Mark. 2012. ispc: A SPMD compiler for
High-Performance CPU Programming (InPar 2012). IEEE Computer
Society, 1–13.

[21] Jie Shen, Ana Lucia Varbanescu, Xavier Martorell, and Henk Sips. 2015.
A Study of Application Kernel Structure for Data Parallel Applications.
Technical Report PDS-2015-001. Delft University of Technology.

[22] Matthias Springer and Hidehiko Masuhara. 2019. DynaSOAr: A Paral-
lel Memory Allocator for Object-oriented Programming on GPUs with
Efficient Memory Access (ECOOP 2019). Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany.

[23] Markus Steinberger, Michael Kenzel, Bernhard Kainz, and Dieter
Schmalstieg. 2012. ScatterAlloc: Massively Parallel Dynamic Memory
Allocation for the GPU (InPar 2012). IEEE Computer Society, 1–10.

[24] Robert Strzodka. 2012. Chapter 31 - Abstraction for AoS and SoA Lay-
out in C++. In GPU Computing Gems Jade Edition. Morgan Kaufmann,
Boston, 429–441.

[25] Ronald Veldema and Michael Philippsen. 2012. Parallel Memory De-
fragmentation on a GPU (MSPC ’12). ACM, New York, NY, USA, 38–47.

[26] Vasily Volkov. 2016. Understanding Latency Hiding on GPUs. Ph.D. Dis-
sertation. EECS Department, University of California, Berkeley. http://
www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-143.html

[27] MirekWójtowicz. 2002. Mirek’s Cellebration: Cellular Automata Rules
Lexicon. http://psoup.math.wisc.edu/mcell/rullex_gene.html. (2002).
Accessed: 2019-02-22.

26

https://github.com/canonizer/halloc
https://github.com/canonizer/halloc
https://developer.download.nvidia.com/CUDA/training/cuda_webinars_GlobalMemory.pdf
https://developer.download.nvidia.com/CUDA/training/cuda_webinars_GlobalMemory.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-143.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-143.html
http://psoup.math.wisc.edu/mcell/rullex_gene.html

	Abstract
	1 Introduction
	1.1 SIMD-Specific Performance Characteristics
	1.2 Memory Defragmentation
	1.3 Contributions and Outline

	2 Heap Layout and Data Structures
	2.1 Running Example
	2.2 Overview of the DynaSOAr Allocator

	3 Defragmentation with CompactGpu
	3.1 Defragmentation Pass
	3.2 Copying Objects
	3.3 Storing Forwarding Pointers
	3.4 Rewriting Pointers
	3.5 Updating Block States
	3.6 Multiple Passes
	3.7 Defragmentation Frequency
	3.8 Pointer Rewriting Alternatives

	4 Evaluation
	4.1 Defragmentation Quality
	4.2 Number of Defragmentation Passes
	4.3 Benchmark Applications
	4.4 Runtime Overhead

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

