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Abstract 

I n  reflective languages, application programs can 
customize a language system that executes the applica- 
t ion programs. Our premise is  that this customizability 
of reflective languages can be a basic mechanisms of 
software evolution. I n  this paper, we present a simple 
architecture of a reflective language that can dynami- 
cally select meta-interpreters, and a dynamic compi- 
lation scheme b y  using run-time specialization (RTS) 
techniques, which could also be useful to dynamically 
optimize systems with mechanisms of dynamic software 
evolution. Our prototype system showed that dynami- 
cally compiled reflective programs run  more than four  
times faster than the interpreted ones, and that compi- 
lation processes are fast enough to be invoked at run- 
time. Compared to statically compiled programs, how- 
ever, dynamically compiled ones yet have 20-30% over- 
heads. W e  also discuss this problem. 

1. Introduction 

In reflective languages, the semantics of a language 
(i.e.,  how an application program is executed by the 
language system) can be customized from t,he applica- 
tion program[l4, 21, 231. Those languages expose their 
implementations as meta-circular interpreters, which 
can be considered as a basic mechanism of software 
evolution[l, 171. We therefore believe that studies on 
design and implementation of reflective languages are 
also beneficial to  systems with mechanisms of soft,ware 
evolution. 

Early reflective languages allow dynamic 
customizations-meta-interpreters can be modi- 
fied from running application programs. In other 
words, these languages have mechanisms of dynamic 

software evolution. Although most studies on software 
evolution are aiming at static evolution, studies on 
dynamic evolution should also be important for mod- 
ern software systems that have dynamic nature, such 
as mobile agents, software components, and global 
computing. 

Many practical reflective languages, however, omit 
the ability of dynamic customization. This is because 
the ability usually poses tremendous amount of over- 
heads. In other words, existing implementation tech- 
niques of reflective languages, such as compilation by 
uszng partial evaluation[l5,  161 and compile-time re- 
flection[3, 81 , only support static customizations. 

In this paper, we propose an approach to support 
dynamic customization in reflective languages by dy- 
namically compiling reflective programs using run-time 
specialization (RTS) techniques. The primary goal of 
the paper is to  present a basic design of the language 
system, and t o  reveal problems of the RTS techniques 
by measuring the performance of the system. As we 
will see in Section 5 ,  compiled programs in our proto- 
type system have a certain amount of overheads. We 
also discuss several approaches to  reduce them. 

The rest of the paper is organized as follows. Sec- 
tion 2 introduces reflective languages and their com- 
pilation techniques by using partial evaluation. Sec- 
tion 3 introduces run-time specialization techniques. 
Section 4 presents the design of our reflective language 
and its implementation scheme by using run-time spe- 
cialization techniques. Section 5 shows performance 
of our prototype implementation. Section 6 discusses 
performance problems in the compiled programs and 
several approaches to  improve the performance. Sec- 
tion 7 concludes the paper. 
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Figure 1. Accessing a Meta-circular Inter- 
preter in a Reflective Language 

2. Reflective Languages and Compilation 
Techniques 

2.1. Reflective Languages 

In reflective languages, application programs can 
customize an implementation of the language. The 
customization is achieved by modifying or extending 
a meta-circular interpreter, which is an abstracted im- 
plementation of the language. 

In order to  access a meta-circular interpreter from 
application prograrns, reflective languages usually pro- 
vide several special operators. In reflective lan- 
guage Black[2]. for example, when an expression 
(eval-at-meta E )  is evaluated in an application pro- 
gram, E is actually evaluated at the meta-level, where 
the meta-circular interpreter is running (Figure 1). 
The expression E can monitor internal states of the 
system by calling predefined functions or reading global 
variables defined at the meta-level. It can also modify 
the definition of the meta-circular interpreter by re- 
placing (a part of) the definition of the interpreter. 

Thus far, reflection have been stud- 
ied in a number of programming lan- 
guages including functional[21, 221, object- 
oriented[3, 11, 141, concurrent object- 
oriented[8, 20, 231, and logic programming languages. 

2.2. Implementation Techniques of Reflective Lan- 
guages: Compiling by Using Partial Evalua- 
tion 

2.2.1 Interpretive Execution 

One of the major challenges in reflective languages is 
efficient execution because those languages fundamen- 
tally rely on interpreters to extend or modify the lan- 
guage. Because the semantics of the language can be 
changed by customizing meta-interpreters, it is diffi- 
cult to compile application programs. Early reflective 
languages are implemented by actually running inter- 
preters. As a result, programs run tremendously (by 
the orders of magnitude) slower than the compiled pro- 
grams in non-reflective languages. 

One of the approaches to  reduce the overheads is to 
compile reflective programs by using.partial evaluation. 
Below, we first introduce partial evaluation, and then 
shows how reflective programs are compiled by using 
partial evaluation. 

2.2.2 Partial Evaluation 

Partial evaluation is a technique that automatically 
specializes a program with respect to some of inputs 
to  the program[6, 91. Let p(x ,y)  be a program that 
takes two parameters IC and y. Partial evaluation of p 
takes a value (e.g., U )  to  part of its parameters (e.g., 
x), performs all the computation that depends on the 
value of x, and leaves a specialized program that con- 
tains computations depending on values other than x. 
We will denote the process as: 

where S and p ,  are the partial evaluator and the 
specialized program. The specialized program, which 
takes the rest of the parameters, performs remaining 
computation and returns a result that  would have been 
returned by the original program: 

By removing computations that depend on x in p ,  the 
execution of pv(w)  is usually faster than that ofp(v, P O ) .  

For example, let p ( x ,  y) be a function that computes 
z’th power of y. Assume we found that the parame- 
ter 5 is usually 3 in a program. In this case, we can 
specialize p with respect to x with 3 by using a partial 
evaluator, and obtain and a function ps(y) that com- 
putes the third power of y. In this function, there are 
no computation depending on x; p3  is thus faster than 
P. 
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2.2.3 The First Futamura Projection 

Futamura showed that partial evaluation of an inter- 
preter can compile programs written in the language 
whose semantics is defined by the interpreter. This 
compilation process is called the first Futamura projec- 
t ion[6].  

Let i L  be an interpreter of language I written in 
language L ,  and p' be a program written in I .  An 
interpretive execution of the program is to  apply p and 
p 's  input x to  i ,  which is written as iL (p ' ,  x). 

Partial evaluation of i with respect to  p generates 
specialized version of i: 

( 3 )  

Since i i  is a specialized version of i, ii is a program 
written in L. This means that a program written in I 
is compiled into L.  By using a compiler CL+" (where 
the superscript denotes that it compiles from a lan- 
guage L into a machine language M ) ,  the interpreted 
program can be eventually compiled into a machine 
language: 

( S ( i L , p ' ) )  = ii' . (4) 
cL+A,I  

2.2.4 Compilation in Reflective Languages 

There are several reflective language systems that suc- 
cessfully compile programs by applying the first Fu- 
tamura projection[2, 15, 161. One of the most crucial 
premises in their compilation scheme is that  customiza- 
tion of a meta-interpreter and execution of a body of 
an application program are interleaved. This is because 
they compile the body part by partially evaluating the 
customized interpreter with respect to the body part. 

In order to  make the above premise true, those re- 
flective language systems restrict the ability of dynamic 
customization. For example, ABCL/R3[15, 161, which 
can compile programs by using partial evaluation, re- 
quires that  both base- and meta-level programs are 
known before compilation. 

3. Run-t ime Specialization 
Techniques 

As mentioned above, compilation using partial eval- 
uation makes reflective languages difficult to  support 
dynamic customization. In other words, if the compi- 
lation were fast enough, dynamic customization could 
be efficiently supported by dynamically compiling pro- 
grams after customization. 

3.1. Basic Framework 

Recently, run-time specialization (RTS) techniques, 
which efficiently perform partial evaluation, have been 
widely studied[4, 5 ,  7, 121. 

The basic idea of RTS is to  construct a native- 
code level generating extension for a given program at 
compile-time. Let RL+" be an RTS system from a 
language L to  a machine language M ,  and p L  be a 
program being specialized. A generating extension G,, 
which is constructed by R at compile-time, is a pro- 
gram that takes static parameters of p and generates 
specialized version of p in M at run-time: 

( 5 )  
RL+AI ( p L )  = G, (compile-time) 

G p ( 4  = P,  '' . (run-time) 

Note that G, generates specialized program p:' in 
the machine language M ,  whereas traditional partial 
evaluation techniques generate in the same language 
as that the source program is written in. This is done 
by building fragments of compiled code of p (so called 
templates) at  compile time, and by generating special- 
ized programs by merely copying the templates at run- 
time. As a result, the latter process in RTS systems 
is highly efficient-it is reported that G, merely exe- 
cutes a small number of instructions (from a few to a 
few tens, depending on systems) on average to generate 
one instruction of p,"'. 

3.2. An Example 

Let us see how an RTS system works by taking a 
simple function pow, which computes n'th power of x 
in Scheme, as an input to  RL+"': 

(def ine  (pow n x> 
(if (= n 0 )  

1 
(* (pow (- n 1) X I > > >  

When we specify that the above function will be spe- 
cialized with respect to  the first argument n, the system 
first determines which expressions can be computed at 
partial evaluation time (so called static expressions) , 
and which expressions shall be inserted in the special- 
ized program (so called dynamic expressions). This 
information is represented as the following annotated 
program: 
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Generating Extension: 

(define (pow-gen n) 
(load-t emplat e t 0 )  
(if (= n 0 )  

(load-template ti) 
(begin (load-template t2) 

(pow-gen (- n 1)) 
(load-template t3)))) 

Templates: 

label instructions comments 
tO push %ebp // prologue 

movl Xesp, Xebp 
tl movl $1, $eax // return 1 

l eave  I I eDiloeue 
t 2  push -8(%ebp) // parameter passing 
t 3  addl $4,  %esp 

imull -8(%ebp), %eax / /  x*pow(x-1) 
l eave  // epilogue 

Figure 2. Generating extension and templates 
for pow. For readability, instructions in the 
templates are written in the Intel x86 assem- 
bly language. The instructions follow the 
standard calling convention; a function caller 
sets its arguments on the stack (accessed via 
%esp in the callee), and receives a return value 
in %eax. 

where the underlines and @-marks are annotation,s. An 
underlined expression is a dynamic expression. An 
expression without underlines is a static expressions, 
whose value can be computed at  specialization-time. 
An @-mark specifies how a function application is pro- 
cessed at partial evaluation. When an @-mark does not 
have under- or over-lines, the application is executed at  
partial evaluation time. When it has an underline (i.e., 
- a), the function application form is inserted in the spe- 
cialized program. When it has an over-line (i .e. ,  8), 
the body of the function is specialized and then inlined 
at the position. 

From the annotated definition, the system creates a 
generating extension and templates (Figure 2 ) .  Basi- 
cally, the generating extension is created by replacing 
each dynamic expression with a form that stores an ap- 
propriate template into memory (i .e. ,  (load-template 
tn) in the figure). Templates are created by compiling 
dynamic expressions in the annotated definition. In 
addition, a prologue and an epilogue instructions are 

push %ebp // (pow-gen 3) : tO 
movl %esp,%ebp 
push -8(%ebp) // (pow-gen 3):t2 
push %ebp // (pow-gen 2) : t o  
movl %esp,%ebp 
push -8(%ebp) // (pow-gen 2):t2 
push %ebp // (pow-gen 1):tO 
movl %esp,%ebp 
push -8(%ebp> // (pow-gen 1) :t2 
push Xebp // (pow-gen 0):tO 
movl %esp,%ebp 
movl $l,%eax // (pow-gen 0):ti 
leave 
addl $4,%esp // (pow-gen 1):t3 
imull -8(%ebp),%eax 
leave 
addl $4,%esp // (pow-gen 2):t3 
imull -8(%ebp),%eax 
1 e ave 
addl $4,%esp / /  (pow-gen 3):t3 
imull -8(%ebp) ,%eax 
leave 

Figure 3. Specialized version of pow. A com- 
ment like (pow-gen 3) :tO shows the begin- 
ning of a template (to), which is written dur- 
ing an execution of a generating extension 
((pow-gen 3)). 

attached to  the first and the last templates, respec- 
tively, so that parameters can be passed among inlined 
templates. The detailed discussion on the creation of 
generating extensions and templates can be found in 
the studies on Tempo[4]. 

When 3 is applied to  pow-gen, for example, it gener- 
ates a function that has the instruction sequence shown 
in Figure 3 ,  which has essentially the same computa- 
tion to the compiled code of the following Scheme func- 
tion: 

(define (pow-3 x) (* x (* x (* x 1)))). 

3.3. Run-time Specialization as Dynamic Compila- 
tion 

By using a run-time specializer in place of a partial 
evaluator in the first Futamura projection (introduced 
in Section 2.2.3),  we can basically compile an inter- 
preted programs at  run-time. 

Let iL be an interpreter program written in L ,  and 
let p' be an interpreted program written in I .  The 
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program p' may be constructed at run-time. A dy- 
namic compilation scheme by using an RTS system is 
described as follows. At compile-time, we create a gen- 
erating extension for i by using the RTS system: 

(6)  
R L + M  L (i ) = G,. 

At run-time, when p' is to  be interpreted by i, we can 
compile p' by applying it t o  Gi and obtain a:, which 
is a machine language (Le . ,  compiled) program of p':  

(7) 

As we are using RTS, iF1 would be obtained with a 
sufficiently small amount of overheads. 

3.4. Technical Problems 

In order to  design and implement the above com- 
pilation scheme in a reflective language, the following 
problems should be addressed. 

0 A meta-level architecture that is appro- 
priate to  the above compilation scheme 
should be designed. In order t o  dy- 
namically compile programs in the above 
scheme, we have to  create a generating extension 
for each meta-interpreter at compile-time. This 
means that the system requires definitions of 
meta-interpreters before executing a base-level 
program. (On the contrary, base-level programs 
can be dynamically modified or constructed, 
as the system can dynamically compile them.) 
Therefore, the meta-level architecture, which 
allows customization of interpreters from applica- 
tion programs, should have mechanisms (in other 
words, restrictions) that  make definitions of meta- 
interpreters known at compile-time. 

0 The performance of the system including efficiency 
of compilation process and efficiency of compiled 
programs should be examined. As for the effi- 
ciency of compiled programs, compile-time (or tra- 
ditional) partial evaluation and run-time special- 
izations basically generate specialized programs in 
the same quality, because both can remove the 
same expressions (i. e., static expressions) from 
the original programs. RTS-specialized programs, 
however, have a certain amount of overheads. For 
example, the specialized program in the previous 
section (Figure 3 )  has a considerable amount of 
overheads in passing parameters among inlined 
templates. Noel et al. showed that there are 10- 
30% overheads in RTS generated programs[l9]. In 

addition, the overheads in compiled reflective lan- 
guages are not known. Specialization speed (i.e., 
compilation speed) should also be examined. 

Our approach to  these problems is t o  implement a 
prototype system, and examine the expressiveness and 
performance of the system. In the following sections, 
we first present our simple reflective language, which 
is implemented by using our RTS system, and we then 
show performance of the system. 

4. A Simple Reflective Language 

4.1. Reflective Architecture 

Our reflective architecture consists of the base-level 
and the meta-level (i.e., no infinite tower of meta- 
levels). A user-program separately defines meta-level 
functions and base-level functions. 

The meta-level part of a program has more than 
one meta-interpreters, each of which is defined by the 
following form: 

(def ine-eval  (name e T k s >  b o d y ) ,  

where the name  is the name of the interpreter, and e, 
r, k and s are current expression, environment, contin- 
uation and store of an executing program, respectively. 
The semantics of the form is not different from that of 
the standard d e f i n e  form except for the name  is regis- 
tered in a table so that it can be used by the base-level 
program. 

The base-level part of a program can use two special 
constructs in addition to  a functional part of constructs 
in Scheme. The construct (get-eval  name) looks up 
a meta-interpreter that  is defined by the given name,  
and returns a reference to  the meta-interpreter. The 
construct (eval-with i n t  exp ) evaluates an expres- 
sion exp by using a meta-interpreter int. The parame- 
ter int must be a reference to  a meta-interpreter. 

In a sample program shown in Figure 4, two meta- 
interpreters verbose and d e f a u l t  are defined at the 
meta-level. At the base-level, the d e f a u l t  inter- 
preter is selected t o  evaluate programs by default. 
In function sum-of-numbers, one of the two meta- 
interpreters is selected according to  a dynamic condi- 
tion, and an expression is evaluated under the selected 
meta-interpreter. Note that the second parameter to  
eval-with is quoted. This is because the form can 
evaluate expressions that are constructed at run-time. 

4.2. Implementation Sketch 

Under the compilation scheme introduced in Sec- 
tion 3.3,  we use an RTS system to dynamically compile 
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;;; meta-level d e f i n i t i o n  
(meta 
;; a verbose i n t e r p r e t e r  t h a t  p r i n t s  each 
;; expression being eva lua ted ,  and t h e  
;; r e s u l t  of t h e  eva lua t ion .  
(define-eval (verbose e r k s) 

(d isp lay  e )  (newline) 
( l e t  ( (k* (lambda (a) (d isp lay  " r e s u l t = " )  

(d isp lay  a> (newline) 
(k a > > > )  

(cond ( ( c o n s t a n t ?  e )  (k* e ) )  
( ( v a r i a b l e ?  e )  (k* (s  (r e ) ) ) )  
. . . I > >  

;; a s tandard i n t e r p r e t e r  
(def ine-eval  ( d e f a u l t  e r k s) 

(cond ( (cons tan t?  e )  (k e ) )  
( ( v a r i a b l e ?  e )  (k (s (r e ) ) ) )  
1 . .  > > I  

;;; base- level  d e f i n i t i o n  
(base ' d e f a u l t  ; s p e c i f y  d e f a u l t  i n t e r p r e t e r  

(def ine (sum-of-numbers verbose? n) 
(eval-with ; ;  s e l e c t i o n  of a 

;; meta- in te rpre te r  
( i f  verbose? 

(get-eval  'verbose) 
(get-eval  ' d e f a u l t ) )  

;; t h e  fol lowing expression i s  executed 
;; by t h e  s e l e c t e d  i n t e r p r e t e r  
' ( l e t r e c  ((sum 

(lambda (n) 
( i f  (zero? n) 

0 
(+ n (sum (- n 1))))))) 

(sum n > > > > >  

Figure 4. A Sample Program that Dynamically 
Selects a Meta-Interpreter. 

;; evalua t ion  of (eval-with i n t  exp) 
(def ine  (eval-eval-with e r k SO) 

(eva l  (cadr  e )  r ; e v a l u a t e  i n t  

(eva l  (caddr e )  r ; evalua te  exp 
(lambda ( i n t  sl) 

(lambda (exp s2) 

sl)) 

;; body of eval-with 
(def ine  (eval-with-body i n t  exp r k s)  

(eval-with-body i n t  exp r k s2)) 

SO) 1 

( l e t *  ( (cache (get-cache i n t ) )  
(key ( l ist  exp r ) )  
;; lookup precompiled code 
(code (lookup cache key)))  

;; execute  precompiled code 
(apply k (code SI) 
( l e t  ((code* ; compile exp 

( i f  code 

( ( g e t - s p e c i a l i z e r  i n t )  exp r 
(lambda (x s*) 

(list x s* ) ) ) ) )  
;; r e g i s t e r  t h e  compiled code 
(set-hash!  cache key code*) 
(apply k (code* s ) > > ) > >  ; exec. 

Figure 5. Implementation of eval-with. 

base-level programs that are executed by customized 
interpreters. Basic strategy is to  construct a gener- 
ating extension for each meta-interpreter definition at  
compile-time, and when an eval-with form is executed 
at run-time, apply an expression in the form to the gen- 
erating extension. 

For each meta-interpreter definition (def ine-eval  
(name e T k s ) b o d y ) ,  the system constructs a pair 
of a generating extension of the function and a hash 
table that records compiled code. The generating ex- 
tension assumes that the parameters e, r, and k are 
static. 

When a (eval-with zn t  e z p )  form is evaluated, 
it first evaluates sub-expressions znt and exp under the 
current interpreter. It then looks up the value of exp 
in the hash table of ant. If there is a code in the table, 
it simply executes the code. Otherwise, it creates a 
compiled code by invoking the generating extension of 
znt, then put the compiled code in the hash table, and 
finally executes the code with dynamic parameter s. 
The behavior of eval-with is presented in Figure 5 .  

Our current implementation uses our own RTS sys- 
tem, which applies Tempo's template mechanismsI41 
to  Scheme. To build templates of Scheme expressions, 
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application l l  matrix I deriv 
zation 

run-time 
compile- 

specialization 11 time speedup I time speedup 
none 11 22.5 (1.0) I 8.06 (1.0) 

time BEP time BEP 
5.0 0.28 6.0 0.92 

10.5 x lo3 594 14.7 x lo3 2254 4.81 4.68 run-t ime 11 1 t::: ‘5.23 compile-time 4.00 5.63 6.69 
overhead 20.2% 27.9% 
(RT/CT) 

e 
speedup 
(CT/RT) 

Table 1. Performance of compiled programs. 
(Execution times are displayed in millisec- 
onds.) 

2.1 x los 2.5 x 10’ 

we customized DEC Scheme-to-C compiler and lcc, a 
portable C compiler. Current system targets the Intel 
x86 architecture. 

5. Performance Measurements 

We measured performance of our prototype system 
with simple meta- and base-level programs. We wrote 
an interpreter of a small subset of Scheme as a meta- 
level program, and two functions (matrix multiplica- 
tion ‘matrix’ and differentiation of symbolic expression 
‘deriv’) as base-level programs. The interpreter was 
executed in the following ways: 

none: The interpreter was simply compiled and exe- 
cuted ( i .e . ,  interpreted) the base-level programs. 

run-time: The interpreter was specialized for each 
base-level program by using our run-time special- 
ization system, and the generated ( i .e . ,  dynanii- 
cally compiled) code was executed. 

compile-time: -The interpreter was specialized by 
using Similix, a Scheme partial evaluator, and the 
specialized ( i .e . ,  statically compiled) code was ex- 
ecuted after compiling by using Scheme-to-C com- 
piler. 

The programs were executed on a PC-compatible with 
15OMHz Pentium processor and 48MB memory. 

Criteria of the measurement are (1) overheads in 
compiled code, and (2) speed of compilation. 

5.1. Overheads in Compiled Code 

Table 1 shows the execution times and speed-up ra- 
tios to  the interpreted executions. The ‘time’ columns 
show execution times of base-level programs (exclud- 
ing times spent for compilation, even in run-time spe- 
cialized executions). The ‘speedup’ columns show the 

application 
speciali- deriv 

Table 2. Compilation times and their break- 
even points. (Compilation times are dis- 
played in milliseconds.) 

factors of reduced execution times of specialized (or 
compiled) executions from the interpreted executions. 
The bottom row shows the overheads in executions of 
dynamically specialized programs, compared to  execu- 
tions of statically specialized programs. 

The results showed that our RTS system generates 
efficient specialized meta-interpreters, namely more 
than four times faster than the interpreted executions. 
Note that dynamically compiled programs yet have a 
certain amount of overheads (20-30%), compared to  
statically compiled executions. This will be discussed 
in Section 6. 

5.2. Compilation Speed 

Table 2 shows times spend for compiling base-level 
programs by using run-time and compile-time spe- 
cialization techniques. The ‘time’ columns show the 
elapsed times for obtaining executable native programs 
for each base-level program. In the compile-time spe- 
cialization, the figures include the times for compiling 
specialized source programs into native programs al- 
though the specialization times were dominant in our 
experiments (we specialized and compiled using Similix 
and Scheme-to-C, respectively). Thanks to  our RTS 
system, the times for compilation processes are reduced 
by three orders of magnitude. 

The ‘BEP’ columns show the break-even points of 
specialized programs. A break-even point of a spe- 
cialization process is the number of runs of specialized 
program that amortizes the time of the specialization 
process, which can be computed by the following for- 
mula: 

P l ( 0  - SI,  

where p ,  o and s are the time for specializing the orig- 
inal program, the time for executing the original pro- 
gram and the time for executing the specialized pro- 
gram, respectively. In the cases of RTS, the break-even 
points are less than one because the reduced execution 
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times by the specialization are greater than the times 
of the specialization (compilation)’. 

6. Approaches to Reduce 
Overheads 

As we have seen, dynamically compiled base-level 
programs still have a certain amount of overheads. Be- 
low, we discuss the sources of the overheads, and our 
approaches to reduce them. 

6.1. Sources of Overheads 

In terms of the performance of specialized programs, 
one of the crucial differences between run-time and 
compile-time specialization techniques exists in func- 
tion inlining. Although the run-time specialization 
techniques can perform function inlining during spe- 
cialization, their specialized code has a certain amount 
of overheads in between inlined functions. The reasons 
can be explained as follows. As we have introduced 
in Section 3, an RTS system basically creates tem- 
plates (fragments of native machine instructions) by 
compiling dynamic expressions in an original program. 
When a function invocation is inlined during specializa- 
tion, the caller’s and the callee’s templates are consec- 
utively copied into the memory. Those templates are 
created and compiled per-function basis; a template is 
created without knowing what function will be inlined 
together. Consequently, the specialized program have 
to  save and restore registers between inlined templates 
so that caller’s registers are preserved after the execu- 
tion of callee’s templates. This operation costs roughly 
the same execution time to a function invocation. In 
addition, peephole optimizations, such as instruction 
scheduling, can not be performed across those inline 
templates. 

In meta-interpreters, the amount of overheads in- 
serted in between inlined templates become relatively 
larger than typical benchmark programs of RTS, be- 
cause of templates of meta-interpreters, which corre- 
spond to each expression type in base-level programs, 
tend to be small. Let us see this problem by an exam- 
ple. Assume that a meta-interpreter shown in Figure 6 
evaluates an expression (eq? x 1) in a base-level pro- 
gram. When an RTS system specializes the interpreter 
with respect to  (eq? x 11, it copies three templates, 

‘In most RTS studies, the BEPs in their benchmark programs 
are more than one because they usually measure the execution 
time of a small fragment of computation (so called kernels). In 
our programs, a loop in a base-level program repetitively exe- 
cutes a fragment of a specialized code, the specialization time 
for the loop is relatively smaller. 

(def ine  (eva l  exp env s t o r e )  

((and (a p a i r ?  exp) 
(cond . .  . 

( a  eq? (a c a r  exp) ’eq?))  

(8 e v a l  (a caddr exp) env s t o r e ) ) )  
( g  eq? (8 e v a l  (Q cadr  exp) env s t o r e )  

. . . I >  

Figure 6. Semantics (eq? e l  e z )  in an Anno- 
tated Interpreter Definition. In the definition, 
continuations are made implicit for readabil- 
ity. 

namely variable reference (by inlining the first recursive 
invocation of eva l ) ,  constant value (by inlining the sec- 
ond), and equality test (the intrinsic template for eq?).  
This means that the base-level programs compiled by 
using an RTS system have ‘function-invocation’ over- 
heads for each sub-expression, even for a constant value 
or a variable reference! 

6.2. Speculative Function Inlining 

One of our approaches to alleviating this problem 
is to  statically inline recursive invocations of meta- 
interpreters so that it reduces the number of dynami- 
cally inlined invocations. For example, if we statically 
inlined the code for variable reference, we could have a 
meta-interpreter definition shown in Figure 7. Variable 
references in the dynamically specialized version of this 
interpreter can be achieved without paying ‘function- 
invocation’ overheads between inlined templates. 

For the time being, we are examining the ways to 
appropriately inline such recursive invocations. Of 
course, inlining techniques could easily result in code 
explosion. Our approach would therefore inline pro- 
grams only for specific patterns of base-level expres- 
sions. 

6.3. Optimizations after Specialization 

Another approach to  reduce the overheads between 
inlined templates is to  perform optimization after spe- 
cialization: Since most of existing RTS systems gen- 
erate specialized programs by merely copying pre- 
compiled native machine instructions into memory, 
there are no chance to optimize among inlined tem- 
plates. 

From the above observation, we are currently study- 
ing an RTS system that generates specialized programs 
in an intermediate language, and then quickly com- 
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(def ine (eval  exp env s t o r e )  

((and (0 p a i r ?  exp) 
(cond ... 

(0 eq? (@ c a r  exp) ’eq?))  
(4 eq? 

( l e t  ( (exp (a cadr  exp) ) )  
( i f  (0 v a r i a b l e - r e f ?  exp) 

do v a r i a b l e  reference 
(3  e v a l  exp env s t o r e ) ) )  

. ( l e t  ( (exp (0 caddr exp) ) )  
( i f  (@ var i ab le - r e f?  exp) 

do v a r i a b l e  reference 
(65 e v a l  exp env s t o r e ) ) ) )  

. . .  1) 

Figure 7. Speculatively lnlined Variable Refer- 
ences in an Interpreter. 

piles them into a native machine language. By per- 
forming fast yet effective optimization techniques in 
the latter process, we could obtain efficient specialized 
programs. Our experimental system generates special- 
ized programs in the Java virtual machine language, 
thus enables to  use sophisticated just-in-time compil- 
ers. Thus far, dynamically specialized programs gen- 
erated by our experimental system showed closer per- 
formance to the statically specialized counterparts[l8]. 
Our future plan is to fully implement our RTS system, 
and apply the system to  meta-interpreters. 

7. Conclusion 

In this paper, we presented dynamic compilation 
techniques of reflective languages. Since reflective lan- 
guages can be regarded as the system with mechanisms 
for dynamic software evolution, we believe that studies 
on implementation techniques of reflective languages 
would also be applicable to  other systems with mecha- 
nisms for dynamic software evolution in principle. 

As a ‘proof-of-concept’ of our approach, we pre- 
sented a simple reflective architecture that allow appli- 
cation programs to  statically define customized meta- 
interpreters, t o  dynamically construct base-level pro- 
grams, and to  dynamically select meta-interpreters. 
We also showed an dynamic compilation scheme by us- 
ing a run-time specialization technique. 

We implemented an  experimental system based on 
the above architecture and compilation scheme, and 
measured basic performance of the system. Our bench- 
mark programs showed that (1) dynamically compiled 
base-level programs run more than four times faster 

than the interpreted ones, (2) they yet have 20-30% 
overheads over statically compiled programs, and (3) 
dynamic compilation process is so efficient that the cost 
can be easily amortized in a few runs of compiled pro- 
grams. This paper also discussed sources of overheads 
in dynamically compiled base-level programs, and dis- 
cussed several approaches to  reduce them. 
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