
Dynamic Compilation of a Reflective Language
Using Run-Time Specialization

Hidehiko Masuhara Yuuya Sugita Akinori Yonezawa
Graduate School of Graduate School of Department of
Arts and Sciences Arts and Sciences Information Science

University of Tokyo University of Tokyo University of Tokyo
masu har a@ acm. org yonezawa@is . s.u- tokyo. ac . j p

Abstract

I n reflective languages, application programs can
customize a language system that executes the applica-
t ion programs. Our premise is that this customizability
of reflective languages can be a basic mechanisms of
software evolution. I n this paper, we present a simple
architecture of a reflective language that can dynami-
cally select meta-interpreters, and a dynamic compi-
lation scheme b y using run-time specialization (RTS)
techniques, which could also be useful to dynamically
optimize systems with mechanisms of dynamic software
evolution. Our prototype system showed that dynami-
cally compiled reflective programs run more than four
times faster than the interpreted ones, and that compi-
lation processes are fast enough to be invoked at run-
time. Compared to statically compiled programs, how-
ever, dynamically compiled ones yet have 20-30% over-
heads. W e also discuss this problem.

1. Introduction

In reflective languages, the semantics of a language
(i.e., how an application program is executed by the
language system) can be customized from t,he applica-
tion program[l4, 21, 231. Those languages expose their
implementations as meta-circular interpreters, which
can be considered as a basic mechanism of software
evolution[l, 171. We therefore believe that studies on
design and implementation of reflective languages are
also beneficial to systems with mechanisms of soft,ware
evolution.

Early reflective languages allow dynamic
customizations-meta-interpreters can be modi-
fied from running application programs. In other
words, these languages have mechanisms of dynamic

software evolution. Although most studies on software
evolution are aiming at static evolution, studies on
dynamic evolution should also be important for mod-
ern software systems that have dynamic nature, such
as mobile agents, software components, and global
computing.

Many practical reflective languages, however, omit
the ability of dynamic customization. This is because
the ability usually poses tremendous amount of over-
heads. In other words, existing implementation tech-
niques of reflective languages, such as compilation by
uszng partial evaluation[l5, 161 and compile-time re-
flection[3, 81 , only support static customizations.

In this paper, we propose an approach to support
dynamic customization in reflective languages by dy-
namically compiling reflective programs using run-time
specialization (RTS) techniques. The primary goal of
the paper is to present a basic design of the language
system, and t o reveal problems of the RTS techniques
by measuring the performance of the system. As we
will see in Section 5 , compiled programs in our proto-
type system have a certain amount of overheads. We
also discuss several approaches to reduce them.

The rest of the paper is organized as follows. Sec-
tion 2 introduces reflective languages and their com-
pilation techniques by using partial evaluation. Sec-
tion 3 introduces run-time specialization techniques.
Section 4 presents the design of our reflective language
and its implementation scheme by using run-time spe-
cialization techniques. Section 5 shows performance
of our prototype implementation. Section 6 discusses
performance problems in the compiled programs and
several approaches to improve the performance. Sec-
tion 7 concludes the paper.

128
0-7695-0906-1/01 $10.00 0 2001 IEEE

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on May 29,2020 at 03:57:52 UTC from IEEE Xplore. Restrictions apply.

monitoring- I Emodif icat ioFk

meta-level definition and states of
meta-interpreter

execution

application program

Figure 1. Accessing a Meta-circular Inter-
preter in a Reflective Language

2. Reflective Languages and Compilation
Techniques

2.1. Reflective Languages

In reflective languages, application programs can
customize an implementation of the language. The
customization is achieved by modifying or extending
a meta-circular interpreter, which is an abstracted im-
plementation of the language.

In order to access a meta-circular interpreter from
application prograrns, reflective languages usually pro-
vide several special operators. In reflective lan-
guage Black[2]. for example, when an expression
(eval-at-meta E) is evaluated in an application pro-
gram, E is actually evaluated at the meta-level, where
the meta-circular interpreter is running (Figure 1).
The expression E can monitor internal states of the
system by calling predefined functions or reading global
variables defined at the meta-level. It can also modify
the definition of the meta-circular interpreter by re-
placing (a part of) the definition of the interpreter.

Thus far, reflection have been stud-
ied in a number of programming lan-
guages including functional[21, 221, object-
oriented[3, 11, 141, concurrent object-
oriented[8, 20, 231, and logic programming languages.

2.2. Implementation Techniques of Reflective Lan-
guages: Compiling by Using Partial Evalua-
tion

2.2.1 Interpretive Execution

One of the major challenges in reflective languages is
efficient execution because those languages fundamen-
tally rely on interpreters to extend or modify the lan-
guage. Because the semantics of the language can be
changed by customizing meta-interpreters, it is diffi-
cult to compile application programs. Early reflective
languages are implemented by actually running inter-
preters. As a result, programs run tremendously (by
the orders of magnitude) slower than the compiled pro-
grams in non-reflective languages.

One of the approaches to reduce the overheads is to
compile reflective programs by using.partial evaluation.
Below, we first introduce partial evaluation, and then
shows how reflective programs are compiled by using
partial evaluation.

2.2.2 Partial Evaluation

Partial evaluation is a technique that automatically
specializes a program with respect to some of inputs
to the program[6, 91. Let p(x ,y) be a program that
takes two parameters IC and y. Partial evaluation of p
takes a value (e.g., U) to part of its parameters (e.g.,
x), performs all the computation that depends on the
value of x, and leaves a specialized program that con-
tains computations depending on values other than x.
We will denote the process as:

where S and p , are the partial evaluator and the
specialized program. The specialized program, which
takes the rest of the parameters, performs remaining
computation and returns a result that would have been
returned by the original program:

By removing computations that depend on x in p , the
execution of pv(w) is usually faster than that ofp(v, P O) .

For example, let p (x , y) be a function that computes
z’th power of y. Assume we found that the parame-
ter 5 is usually 3 in a program. In this case, we can
specialize p with respect to x with 3 by using a partial
evaluator, and obtain and a function ps(y) that com-
putes the third power of y. In this function, there are
no computation depending on x; p3 is thus faster than
P.

129

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on May 29,2020 at 03:57:52 UTC from IEEE Xplore. Restrictions apply.

2.2.3 The First Futamura Projection

Futamura showed that partial evaluation of an inter-
preter can compile programs written in the language
whose semantics is defined by the interpreter. This
compilation process is called the first Futamura projec-
t ion[6].

Let i L be an interpreter of language I written in
language L , and p' be a program written in I . An
interpretive execution of the program is to apply p and
p 's input x to i , which is written as iL (p ' , x).

Partial evaluation of i with respect to p generates
specialized version of i:

(3)

Since i i is a specialized version of i, ii is a program
written in L. This means that a program written in I
is compiled into L. By using a compiler CL+" (where
the superscript denotes that it compiles from a lan-
guage L into a machine language M) , the interpreted
program can be eventually compiled into a machine
language:

(S (i L , p ')) = ii' . (4)
cL+A,I

2.2.4 Compilation in Reflective Languages

There are several reflective language systems that suc-
cessfully compile programs by applying the first Fu-
tamura projection[2, 15, 161. One of the most crucial
premises in their compilation scheme is that customiza-
tion of a meta-interpreter and execution of a body of
an application program are interleaved. This is because
they compile the body part by partially evaluating the
customized interpreter with respect to the body part.

In order to make the above premise true, those re-
flective language systems restrict the ability of dynamic
customization. For example, ABCL/R3[15, 161, which
can compile programs by using partial evaluation, re-
quires that both base- and meta-level programs are
known before compilation.

3. Run-t ime Specialization
Techniques

As mentioned above, compilation using partial eval-
uation makes reflective languages difficult to support
dynamic customization. In other words, if the compi-
lation were fast enough, dynamic customization could
be efficiently supported by dynamically compiling pro-
grams after customization.

3.1. Basic Framework

Recently, run-time specialization (RTS) techniques,
which efficiently perform partial evaluation, have been
widely studied[4, 5 , 7, 121.

The basic idea of RTS is to construct a native-
code level generating extension for a given program at
compile-time. Let RL+" be an RTS system from a
language L to a machine language M , and p L be a
program being specialized. A generating extension G,,
which is constructed by R at compile-time, is a pro-
gram that takes static parameters of p and generates
specialized version of p in M at run-time:

(5)
RL+AI (p L) = G, (compile-time)

G p (4 = P, '' . (run-time)

Note that G, generates specialized program p:' in
the machine language M , whereas traditional partial
evaluation techniques generate in the same language
as that the source program is written in. This is done
by building fragments of compiled code of p (so called
templates) at compile time, and by generating special-
ized programs by merely copying the templates at run-
time. As a result, the latter process in RTS systems
is highly efficient-it is reported that G, merely exe-
cutes a small number of instructions (from a few to a
few tens, depending on systems) on average to generate
one instruction of p,"'.

3.2. An Example

Let us see how an RTS system works by taking a
simple function pow, which computes n'th power of x
in Scheme, as an input to RL+"':

(def ine (pow n x>
(if (= n 0)

1
(* (pow (- n 1) X I > > >

When we specify that the above function will be spe-
cialized with respect to the first argument n, the system
first determines which expressions can be computed at
partial evaluation time (so called static expressions) ,
and which expressions shall be inserted in the special-
ized program (so called dynamic expressions). This
information is represented as the following annotated
program:

130

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on May 29,2020 at 03:57:52 UTC from IEEE Xplore. Restrictions apply.

Generating Extension:

(define (pow-gen n)
(load-t emplat e t 0)
(if (= n 0)

(load-template ti)
(begin (load-template t2)

(pow-gen (- n 1))
(load-template t3))))

Templates:

label instructions comments
tO push %ebp // prologue

movl Xesp, Xebp
tl movl $1, $eax // return 1

l eave I I eDiloeue
t 2 push -8(%ebp) // parameter passing
t 3 addl $4, %esp

imull -8(%ebp), %eax / / x*pow(x-1)
l eave // epilogue

Figure 2. Generating extension and templates
for pow. For readability, instructions in the
templates are written in the Intel x86 assem-
bly language. The instructions follow the
standard calling convention; a function caller
sets its arguments on the stack (accessed via
%esp in the callee), and receives a return value
in %eax.

where the underlines and @-marks are annotation,s. An
underlined expression is a dynamic expression. An
expression without underlines is a static expressions,
whose value can be computed at specialization-time.
An @-mark specifies how a function application is pro-
cessed at partial evaluation. When an @-mark does not
have under- or over-lines, the application is executed at
partial evaluation time. When it has an underline (i.e.,
- a), the function application form is inserted in the spe-
cialized program. When it has an over-line (i .e. , 8),
the body of the function is specialized and then inlined
at the position.

From the annotated definition, the system creates a
generating extension and templates (Figure 2) . Basi-
cally, the generating extension is created by replacing
each dynamic expression with a form that stores an ap-
propriate template into memory (i .e. , (load-template
tn) in the figure). Templates are created by compiling
dynamic expressions in the annotated definition. In
addition, a prologue and an epilogue instructions are

push %ebp // (pow-gen 3) : tO
movl %esp,%ebp
push -8(%ebp) // (pow-gen 3):t2
push %ebp // (pow-gen 2) : t o
movl %esp,%ebp
push -8(%ebp) // (pow-gen 2):t2
push %ebp // (pow-gen 1):tO
movl %esp,%ebp
push -8(%ebp> // (pow-gen 1) :t2
push Xebp // (pow-gen 0):tO
movl %esp,%ebp
movl $l,%eax // (pow-gen 0):ti
leave
addl $4,%esp // (pow-gen 1):t3
imull -8(%ebp),%eax
leave
addl $4,%esp // (pow-gen 2):t3
imull -8(%ebp),%eax
1 e ave
addl $4,%esp / / (pow-gen 3):t3
imull -8(%ebp) ,%eax
leave

Figure 3. Specialized version of pow. A com-
ment like (pow-gen 3) :tO shows the begin-
ning of a template (to), which is written dur-
ing an execution of a generating extension
((pow-gen 3)).

attached to the first and the last templates, respec-
tively, so that parameters can be passed among inlined
templates. The detailed discussion on the creation of
generating extensions and templates can be found in
the studies on Tempo[4].

When 3 is applied to pow-gen, for example, it gener-
ates a function that has the instruction sequence shown
in Figure 3 , which has essentially the same computa-
tion to the compiled code of the following Scheme func-
tion:

(define (pow-3 x) (* x (* x (* x 1)))).

3.3. Run-time Specialization as Dynamic Compila-
tion

By using a run-time specializer in place of a partial
evaluator in the first Futamura projection (introduced
in Section 2.2.3), we can basically compile an inter-
preted programs at run-time.

Let iL be an interpreter program written in L , and
let p' be an interpreted program written in I . The

13 1

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on May 29,2020 at 03:57:52 UTC from IEEE Xplore. Restrictions apply.

program p' may be constructed at run-time. A dy-
namic compilation scheme by using an RTS system is
described as follows. At compile-time, we create a gen-
erating extension for i by using the RTS system:

(6)
R L + M L (i) = G,.

At run-time, when p' is to be interpreted by i, we can
compile p' by applying it t o Gi and obtain a:, which
is a machine language (Le . , compiled) program of p':

(7)

As we are using RTS, iF1 would be obtained with a
sufficiently small amount of overheads.

3.4. Technical Problems

In order to design and implement the above com-
pilation scheme in a reflective language, the following
problems should be addressed.

0 A meta-level architecture that is appro-
priate to the above compilation scheme
should be designed. In order t o dy-
namically compile programs in the above
scheme, we have to create a generating extension
for each meta-interpreter at compile-time. This
means that the system requires definitions of
meta-interpreters before executing a base-level
program. (On the contrary, base-level programs
can be dynamically modified or constructed,
as the system can dynamically compile them.)
Therefore, the meta-level architecture, which
allows customization of interpreters from applica-
tion programs, should have mechanisms (in other
words, restrictions) that make definitions of meta-
interpreters known at compile-time.

0 The performance of the system including efficiency
of compilation process and efficiency of compiled
programs should be examined. As for the effi-
ciency of compiled programs, compile-time (or tra-
ditional) partial evaluation and run-time special-
izations basically generate specialized programs in
the same quality, because both can remove the
same expressions (i. e., static expressions) from
the original programs. RTS-specialized programs,
however, have a certain amount of overheads. For
example, the specialized program in the previous
section (Figure 3) has a considerable amount of
overheads in passing parameters among inlined
templates. Noel et al. showed that there are 10-
30% overheads in RTS generated programs[l9]. In

addition, the overheads in compiled reflective lan-
guages are not known. Specialization speed (i.e.,
compilation speed) should also be examined.

Our approach to these problems is t o implement a
prototype system, and examine the expressiveness and
performance of the system. In the following sections,
we first present our simple reflective language, which
is implemented by using our RTS system, and we then
show performance of the system.

4. A Simple Reflective Language

4.1. Reflective Architecture

Our reflective architecture consists of the base-level
and the meta-level (i.e., no infinite tower of meta-
levels). A user-program separately defines meta-level
functions and base-level functions.

The meta-level part of a program has more than
one meta-interpreters, each of which is defined by the
following form:

(def ine-eval (name e T k s > b o d y) ,

where the name is the name of the interpreter, and e,
r, k and s are current expression, environment, contin-
uation and store of an executing program, respectively.
The semantics of the form is not different from that of
the standard d e f i n e form except for the name is regis-
tered in a table so that it can be used by the base-level
program.

The base-level part of a program can use two special
constructs in addition to a functional part of constructs
in Scheme. The construct (get-eval name) looks up
a meta-interpreter that is defined by the given name,
and returns a reference to the meta-interpreter. The
construct (eval-with i n t exp) evaluates an expres-
sion exp by using a meta-interpreter int. The parame-
ter int must be a reference to a meta-interpreter.

In a sample program shown in Figure 4, two meta-
interpreters verbose and d e f a u l t are defined at the
meta-level. At the base-level, the d e f a u l t inter-
preter is selected t o evaluate programs by default.
In function sum-of-numbers, one of the two meta-
interpreters is selected according to a dynamic condi-
tion, and an expression is evaluated under the selected
meta-interpreter. Note that the second parameter to
eval-with is quoted. This is because the form can
evaluate expressions that are constructed at run-time.

4.2. Implementation Sketch

Under the compilation scheme introduced in Sec-
tion 3.3, we use an RTS system to dynamically compile

132

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on May 29,2020 at 03:57:52 UTC from IEEE Xplore. Restrictions apply.

;;; meta-level d e f i n i t i o n
(meta
;; a verbose i n t e r p r e t e r t h a t p r i n t s each
;; expression being eva lua ted , and t h e
;; r e s u l t of t h e eva lua t ion .
(define-eval (verbose e r k s)

(d isp lay e) (newline)
(l e t ((k* (lambda (a) (d isp lay " r e s u l t = ")

(d isp lay a> (newline)
(k a > > >)

(cond ((c o n s t a n t ? e) (k* e))
((v a r i a b l e ? e) (k* (s (r e))))
. . . I > >

;; a s tandard i n t e r p r e t e r
(def ine-eval (d e f a u l t e r k s)

(cond ((cons tan t? e) (k e))
((v a r i a b l e ? e) (k (s (r e))))
1 . . > > I

;;; base- level d e f i n i t i o n
(base ' d e f a u l t ; s p e c i f y d e f a u l t i n t e r p r e t e r

(def ine (sum-of-numbers verbose? n)
(eval-with ; ; s e l e c t i o n of a

;; meta- in te rpre te r
(i f verbose?

(get-eval 'verbose)
(get-eval ' d e f a u l t))

;; t h e fol lowing expression i s executed
;; by t h e s e l e c t e d i n t e r p r e t e r
' (l e t r e c ((sum

(lambda (n)
(i f (zero? n)

0
(+ n (sum (- n 1)))))))

(sum n > > > > >

Figure 4. A Sample Program that Dynamically
Selects a Meta-Interpreter.

;; evalua t ion of (eval-with i n t exp)
(def ine (eval-eval-with e r k SO)

(eva l (cadr e) r ; e v a l u a t e i n t

(eva l (caddr e) r ; evalua te exp
(lambda (i n t sl)

(lambda (exp s2)

sl))

;; body of eval-with
(def ine (eval-with-body i n t exp r k s)

(eval-with-body i n t exp r k s2))

SO) 1

(l e t * ((cache (get-cache i n t))
(key (l ist exp r))
;; lookup precompiled code
(code (lookup cache key)))

;; execute precompiled code
(apply k (code SI)
(l e t ((code* ; compile exp

(i f code

((g e t - s p e c i a l i z e r i n t) exp r
(lambda (x s*)

(list x s*)))))
;; r e g i s t e r t h e compiled code
(set-hash! cache key code*)
(apply k (code* s) > >) > > ; exec.

Figure 5. Implementation of eval-with.

base-level programs that are executed by customized
interpreters. Basic strategy is to construct a gener-
ating extension for each meta-interpreter definition at
compile-time, and when an eval-with form is executed
at run-time, apply an expression in the form to the gen-
erating extension.

For each meta-interpreter definition (def ine-eval
(name e T k s) b o d y) , the system constructs a pair
of a generating extension of the function and a hash
table that records compiled code. The generating ex-
tension assumes that the parameters e, r, and k are
static.

When a (eval-with zn t e z p) form is evaluated,
it first evaluates sub-expressions znt and exp under the
current interpreter. It then looks up the value of exp
in the hash table of ant. If there is a code in the table,
it simply executes the code. Otherwise, it creates a
compiled code by invoking the generating extension of
znt, then put the compiled code in the hash table, and
finally executes the code with dynamic parameter s.
The behavior of eval-with is presented in Figure 5 .

Our current implementation uses our own RTS sys-
tem, which applies Tempo's template mechanismsI41
to Scheme. To build templates of Scheme expressions,

133

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on May 29,2020 at 03:57:52 UTC from IEEE Xplore. Restrictions apply.

application l l matrix I deriv
zation

run-time
compile-

specialization 11 time speedup I time speedup
none 11 22.5 (1.0) I 8.06 (1.0)

time BEP time BEP
5.0 0.28 6.0 0.92

10.5 x lo3 594 14.7 x lo3 2254 4.81 4.68 run-t ime 11 1 t::: ‘5.23 compile-time 4.00 5.63 6.69
overhead 20.2% 27.9%
(RT/CT)

e
speedup
(CT/RT)

Table 1. Performance of compiled programs.
(Execution times are displayed in millisec-
onds.)

2.1 x los 2.5 x 10’

we customized DEC Scheme-to-C compiler and lcc, a
portable C compiler. Current system targets the Intel
x86 architecture.

5. Performance Measurements

We measured performance of our prototype system
with simple meta- and base-level programs. We wrote
an interpreter of a small subset of Scheme as a meta-
level program, and two functions (matrix multiplica-
tion ‘matrix’ and differentiation of symbolic expression
‘deriv’) as base-level programs. The interpreter was
executed in the following ways:

none: The interpreter was simply compiled and exe-
cuted (i .e . , interpreted) the base-level programs.

run-time: The interpreter was specialized for each
base-level program by using our run-time special-
ization system, and the generated (i .e . , dynanii-
cally compiled) code was executed.

compile-time: -The interpreter was specialized by
using Similix, a Scheme partial evaluator, and the
specialized (i .e . , statically compiled) code was ex-
ecuted after compiling by using Scheme-to-C com-
piler.

The programs were executed on a PC-compatible with
15OMHz Pentium processor and 48MB memory.

Criteria of the measurement are (1) overheads in
compiled code, and (2) speed of compilation.

5.1. Overheads in Compiled Code

Table 1 shows the execution times and speed-up ra-
tios to the interpreted executions. The ‘time’ columns
show execution times of base-level programs (exclud-
ing times spent for compilation, even in run-time spe-
cialized executions). The ‘speedup’ columns show the

application
speciali- deriv

Table 2. Compilation times and their break-
even points. (Compilation times are dis-
played in milliseconds.)

factors of reduced execution times of specialized (or
compiled) executions from the interpreted executions.
The bottom row shows the overheads in executions of
dynamically specialized programs, compared to execu-
tions of statically specialized programs.

The results showed that our RTS system generates
efficient specialized meta-interpreters, namely more
than four times faster than the interpreted executions.
Note that dynamically compiled programs yet have a
certain amount of overheads (20-30%), compared to
statically compiled executions. This will be discussed
in Section 6.

5.2. Compilation Speed

Table 2 shows times spend for compiling base-level
programs by using run-time and compile-time spe-
cialization techniques. The ‘time’ columns show the
elapsed times for obtaining executable native programs
for each base-level program. In the compile-time spe-
cialization, the figures include the times for compiling
specialized source programs into native programs al-
though the specialization times were dominant in our
experiments (we specialized and compiled using Similix
and Scheme-to-C, respectively). Thanks to our RTS
system, the times for compilation processes are reduced
by three orders of magnitude.

The ‘BEP’ columns show the break-even points of
specialized programs. A break-even point of a spe-
cialization process is the number of runs of specialized
program that amortizes the time of the specialization
process, which can be computed by the following for-
mula:

P l (0 - SI,

where p , o and s are the time for specializing the orig-
inal program, the time for executing the original pro-
gram and the time for executing the specialized pro-
gram, respectively. In the cases of RTS, the break-even
points are less than one because the reduced execution

134

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on May 29,2020 at 03:57:52 UTC from IEEE Xplore. Restrictions apply.

times by the specialization are greater than the times
of the specialization (compilation)’.

6. Approaches to Reduce
Overheads

As we have seen, dynamically compiled base-level
programs still have a certain amount of overheads. Be-
low, we discuss the sources of the overheads, and our
approaches to reduce them.

6.1. Sources of Overheads

In terms of the performance of specialized programs,
one of the crucial differences between run-time and
compile-time specialization techniques exists in func-
tion inlining. Although the run-time specialization
techniques can perform function inlining during spe-
cialization, their specialized code has a certain amount
of overheads in between inlined functions. The reasons
can be explained as follows. As we have introduced
in Section 3, an RTS system basically creates tem-
plates (fragments of native machine instructions) by
compiling dynamic expressions in an original program.
When a function invocation is inlined during specializa-
tion, the caller’s and the callee’s templates are consec-
utively copied into the memory. Those templates are
created and compiled per-function basis; a template is
created without knowing what function will be inlined
together. Consequently, the specialized program have
to save and restore registers between inlined templates
so that caller’s registers are preserved after the execu-
tion of callee’s templates. This operation costs roughly
the same execution time to a function invocation. In
addition, peephole optimizations, such as instruction
scheduling, can not be performed across those inline
templates.

In meta-interpreters, the amount of overheads in-
serted in between inlined templates become relatively
larger than typical benchmark programs of RTS, be-
cause of templates of meta-interpreters, which corre-
spond to each expression type in base-level programs,
tend to be small. Let us see this problem by an exam-
ple. Assume that a meta-interpreter shown in Figure 6
evaluates an expression (eq? x 1) in a base-level pro-
gram. When an RTS system specializes the interpreter
with respect to (eq? x 11, it copies three templates,

‘In most RTS studies, the BEPs in their benchmark programs
are more than one because they usually measure the execution
time of a small fragment of computation (so called kernels). In
our programs, a loop in a base-level program repetitively exe-
cutes a fragment of a specialized code, the specialization time
for the loop is relatively smaller.

(def ine (eva l exp env s t o r e)

((and (a p a i r ? exp)
(cond . . .

(a eq? (a c a r exp) ’eq?))

(8 e v a l (a caddr exp) env s t o r e)))
(g eq? (8 e v a l (Q cadr exp) env s t o r e)

. . . I >

Figure 6. Semantics (eq? e l e z) in an Anno-
tated Interpreter Definition. In the definition,
continuations are made implicit for readabil-
ity.

namely variable reference (by inlining the first recursive
invocation of eva l) , constant value (by inlining the sec-
ond), and equality test (the intrinsic template for eq?).
This means that the base-level programs compiled by
using an RTS system have ‘function-invocation’ over-
heads for each sub-expression, even for a constant value
or a variable reference!

6.2. Speculative Function Inlining

One of our approaches to alleviating this problem
is to statically inline recursive invocations of meta-
interpreters so that it reduces the number of dynami-
cally inlined invocations. For example, if we statically
inlined the code for variable reference, we could have a
meta-interpreter definition shown in Figure 7. Variable
references in the dynamically specialized version of this
interpreter can be achieved without paying ‘function-
invocation’ overheads between inlined templates.

For the time being, we are examining the ways to
appropriately inline such recursive invocations. Of
course, inlining techniques could easily result in code
explosion. Our approach would therefore inline pro-
grams only for specific patterns of base-level expres-
sions.

6.3. Optimizations after Specialization

Another approach to reduce the overheads between
inlined templates is to perform optimization after spe-
cialization: Since most of existing RTS systems gen-
erate specialized programs by merely copying pre-
compiled native machine instructions into memory,
there are no chance to optimize among inlined tem-
plates.

From the above observation, we are currently study-
ing an RTS system that generates specialized programs
in an intermediate language, and then quickly com-

135

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on May 29,2020 at 03:57:52 UTC from IEEE Xplore. Restrictions apply.

(def ine (eval exp env s t o r e)

((and (0 p a i r ? exp)
(cond ...

(0 eq? (@ c a r exp) ’eq?))
(4 eq?

(l e t ((exp (a cadr exp)))
(i f (0 v a r i a b l e - r e f ? exp)

do v a r i a b l e reference
(3 e v a l exp env s t o r e)))

. (l e t ((exp (0 caddr exp)))
(i f (@ var i ab le - r e f? exp)

do v a r i a b l e reference
(65 e v a l exp env s t o r e))))

. . . 1)

Figure 7. Speculatively lnlined Variable Refer-
ences in an Interpreter.

piles them into a native machine language. By per-
forming fast yet effective optimization techniques in
the latter process, we could obtain efficient specialized
programs. Our experimental system generates special-
ized programs in the Java virtual machine language,
thus enables to use sophisticated just-in-time compil-
ers. Thus far, dynamically specialized programs gen-
erated by our experimental system showed closer per-
formance to the statically specialized counterparts[l8].
Our future plan is to fully implement our RTS system,
and apply the system to meta-interpreters.

7. Conclusion

In this paper, we presented dynamic compilation
techniques of reflective languages. Since reflective lan-
guages can be regarded as the system with mechanisms
for dynamic software evolution, we believe that studies
on implementation techniques of reflective languages
would also be applicable to other systems with mecha-
nisms for dynamic software evolution in principle.

As a ‘proof-of-concept’ of our approach, we pre-
sented a simple reflective architecture that allow appli-
cation programs to statically define customized meta-
interpreters, t o dynamically construct base-level pro-
grams, and to dynamically select meta-interpreters.
We also showed an dynamic compilation scheme by us-
ing a run-time specialization technique.

We implemented an experimental system based on
the above architecture and compilation scheme, and
measured basic performance of the system. Our bench-
mark programs showed that (1) dynamically compiled
base-level programs run more than four times faster

than the interpreted ones, (2) they yet have 20-30%
overheads over statically compiled programs, and (3)
dynamic compilation process is so efficient that the cost
can be easily amortized in a few runs of compiled pro-
grams. This paper also discussed sources of overheads
in dynamically compiled base-level programs, and dis-
cussed several approaches to reduce them.

References

N. Amano and T. Watanabe. A procedural model of
dynamic adaptability and its description language. In
Katayama [lo], pages 103-107.
K. Asai, S. Matsuoka, and A. Yonezawa. Duplication
and partial evaluation -for a better understanding of
reflective languages-. Lisp and Symbolic Computa-
tion, 9:203-241, 1996.
S. Chiba. A metaobject protocol for C++. In Loomis
[13], pages 285-299.
C. Consel and F. Noel. A general approach for run-
time specialization and its application to C. In Confer-
ence Record of Symposium on Principles of Program-
ming Lan,guages (POPL96), pages 145-170, St. Pe-
tersburg Beach, Florida, Jan. 1996. ACM SIGPLAN-
SIGACT.
N. Fujinami. Automatic and efficient run-time code
generation using object-oriented languages. Computer
Software, 15(5):25-37, Sept. 1998. (In Japanese).
Y . Futamura. Partial evaluation of computation
process-an approach to a compiler-compiler. Sys-
tems, Computers, Controls, 2(5):45-50, 1971.
B. Grant, M. Mock, M. Philipose, C. Chambers, and
S. J. Eggers. Annotation-directed run-time specializa-
tion in C. In Proceedings of Partial Evaluation and
Semantics-Based Program Manipulation (PEPM’97),
volume 32(12) of ACM SIGPLAN, pages 163-178,
Amsterdam, June 1997. ACM.
Y . Ishikawa, A. Hori, M. Sato, M. Matsuda, J. Nolte,
H. Tezuka, H. Konaka, M. Maeda, and K. Kubota.
Design and implementation of metalevel architec-
ture in C++: MPC++ approach. In G. Kiczales,
editor, Reflection’96, pages 153-166, San Francisco,
California, Apr. 1996. Proceedings are available at
http://jerry.cs.uiuc.edu/reflection/reflection96/index.html.
N. D. Jones, C. K. Gomard, and P. Sestoft. Partial
Evaluation and Automatic Program Generation. Pren-
tice Hall, 1993.
T. Katayama, editor. International Workshop on
Priciples of Software Evolution (IWPSE’98), Kyoto,
Japan, Apr. 1998.
G. Kiczales, J. des Rivihres, and D. G. Bobrow. The
Art of the Metaobject Protocol. MIT Press, Cam-
bridge, MA, 1991.
M. Leone and P. Lee. Lightweight run-time code gen-
eration. In Partial Evaluation and Semantics-Based
Program Manipulation, pages 97-106, Orlando, FL,
June 1994. ACM SIGPLAN. published as Technical

136

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on May 29,2020 at 03:57:52 UTC from IEEE Xplore. Restrictions apply.

http://jerry.cs.uiuc.edu/reflection/reflection96/index.html

Report 94/9, Department of Computer Science, The
University of Melbourne.

[13] M. E. S. Loomis, editor. Proceedings of Object-
Oriented Programming Systems, -Languages and Ap-
plications, volume 30(10) of ACM SIGPLA N Notices,
Austin, TX: Oct. 1995. ACM.

[14) P. Maes. Concepts and experiments in computa-
tional reflection. In N. Meyrowitz, editor, Proceed-
ings of Object-Oriented Programming Systems, Lan-
guages, and Applications, volume 22(12) of ACM SIG-
PLAN Notices, pages 147-155, Orlando, FL, Oct.
1987. ACM, ACM.

(151 H. Masuhara, S. Matsuoka, K. Asai, and A. Yonezawa.
Compiling away the meta-level in object-oriented con-
current reflective languages using partial evaluation.
In Loomis (131, pages 300-315.

Design and partial
evaluation of meta-objects for a concurrent reflective
language. In E. Jul, editor, European Conference on
Object- Oriented Programming (ECOOP’98), volume
1445 of Lecture Notes in Computer Science, pages 418-
439, Brussels, Belgium, July 1998. Springer-Verlag.

[17] H. Masuhara and A. Yonezawa. A reflective approach
to support software evolution. In Katayama [lo] , pages

I181 H. Masuhara and A. Yonezawa. Generating optimized.
residual code in run-time specialization. In Proceedings
of International Colloquium on Partial Evaluation and
Program Transformation, pages 83-102, Waseda Uni-
versity, Tokyo, Japan, Nov. 1999.

119J F. Noel, L. Hornof, C. Consel, and J. L. Lawall. Au-
tomatic, template-based run-time specialization: Im-
plementation and experimental study. In IEEE Inter-
national Conference on Computer Languages (ICCL
’98), pages 123-142, Chicago, Illinois, USA, May 1998.

[20] H. Okamura and Y. Ishikawa. Object location con-
trol using meta-level programming. In M. Tokoro and
R. Pareschi, editors, Proceedings of European Confer-
ence on Object-Oriented Programming (ECOOP), vol-
ume 821 of Lecture Notes zn Computer Science, pages
299-319. Springer-Verlag, July 1994.

[21] B. C. Smith. Reflection and semantics in Lisp. In
Conference record of Symposium on Principles of Pro-
gramming Languages, pages 23-35, 1984.

[22] M. Wand and D. P. Friedman. The mystery of the
tower revealed: A non-reflective description of the re-
flective tower. In P. Maes and D. Nardi, editors, Meta-
Level Architecture and Reflection, pages 11 1-134. El-
scvier Science, North-Holland. 1988.

Reflection in an
object-oriented concurrent language. In Proceedings
of OOPSLA’88 (SIGPLAN Notices Vol.23, N o . l l) ,
pages 306-315, San Diego, CA, Sept. 1988. ACM. (re-
vised version in (241).

[24] A. Yonezawa, editor. ABCL: A n Object-Oriented Con-
current System. h4IT Press, Cambridge, MA, 1990.

[16] H. Masuhara and A. Yonezawa.

135-139.

(231 T. Watanabe and A. Yonezawa.

137

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on May 29,2020 at 03:57:52 UTC from IEEE Xplore. Restrictions apply.

