
Mind the Error Message: an InvertedQuiz Format
to Direct Learner’s Attention to Error Messages

Kazuhiro Tsunoda
k-tsunoda@prg.is.titech.ac.jp

School of Computing,
Tokyo Institute of Technology

Tokyo, Japan

Hidehiko Masuhara
masuhara@acm.org
School of Computing,

Tokyo Institute of Technology
Tokyo, Japan

Youyou Cong
cong@c.titech.ac.jp
School of Computing,

Tokyo Institute of Technology
Tokyo, Japan

ABSTRACT
Novice learners of programming tend to neglect error messages,
even though the messages have a lot of useful information for solv-
ing problems. While there exists research that aims to user-friendly
error messages by changing the wording and by adding visual as-
sistance, most of them do not focus on drawing learners’ attention
to error messages. We propose the enbugging quiz, a novel quiz
format that requests the learner to craft a program that produces a
specified error. This paper reports our design of enbugging quizzes
and reports the results of our initial experiment, where we observed
positive effects on the learners’ attitudes towards error messages.

CCS CONCEPTS
• Social and professional topics → Computing education.

KEYWORDS
programming education, novice programmers, produce errors,
language-agnostic exercise

ACM Reference Format:
Kazuhiro Tsunoda, Hidehiko Masuhara, and Youyou Cong. 2023. Mind the
Error Message: an Inverted Quiz Format to Direct Learner’s Attention to
Error Messages. In Proceedings of the 2023 Conference on Innovation and
Technology in Computer Science Education V. 1 (ITiCSE 2023), July 8–12, 2023,
Turku, Finland. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3587102.3588823

1 INTRODUCTION
Resolving errors is one of the tasks that novice programmers feel
difficult. For example, as reported by Lahtinen et al. [17], university
students who took one or two programming courses considered
finding bugs to be one of the three most difficult issues in program-
ming.

Understanding errormessages plays a key role in resolving errors.
This is because error messages contain the information about where
in the program the problem occurs (e.g., line and column numbers),
which elements in the program text are relevant (e.g., variables,

(a) debugging-style exercise (b) enbugging quiz

Figure 1: (a) Traditional debugging-style exercise and (b) proposed
enbugging quiz. Given the information in the dark shaded parts,
learners will fill the light shaded parts.

types and expressions), and why the error occurs (e.g., undefined
names and mismatching types).

However, it is not easy—especially for learners—to understand,
in other words, to read the above three types of information from
error messages.This is because error messages have a unique syntax
that is similar to but different from natural language sentences. First,
error messages are often abridged [9], as in “Found: Int, Required:
Double”. Understanding the meaning of such messages requires
translation into complete sentences, such as “There is an Int type
expression in a place where a Double type expression is required.”
Second, error messages quote tokens from code fragments, which
often confuses novices. When novices read an error message like
“You typed ‘,’ but that is not allowed”, they tend to skip the comma
(which is the cause of the error), because they think it is a simple
punctuation mark in a natural language sentence instead of an ele-
ment of their code [11]. We believe that, by reading error messages
carefully, learners would be able to familiarize themselves with
the syntax of error messages, just like learning the grammar of a
natural language.

However, novice programmers tend to resolve errors without
carefully reading error messages. This phenomenon has been re-
ported by Umezawa et al. [28] and Chen [6]. It is also observed in
the authors’ preliminary experiment that tested students on how
many phrases in an error message they remembered after they were
shown an erroneous code fragment and the error message for a
short period of time1.

From our experience, we hypothesize the following reasons for
not reading error messages:
1Details of the outcome can be found in the appendix, which is available at: https:
//prg.is.titech.ac.jp/projects/teaching-programming/enerror-generating-quiz/.

https://orcid.org/0009-0008-9702-2308
https://orcid.org/0000-0002-8837-5303
https://orcid.org/0000-0003-2315-6182
https://doi.org/10.1145/3587102.3588823
https://doi.org/10.1145/3587102.3588823
https://prg.is.titech.ac.jp/projects/teaching-programming/enerror-generating-quiz/
https://prg.is.titech.ac.jp/projects/teaching-programming/enerror-generating-quiz/
masuhara
タイプライターテキスト
to appear in Proc. of ITiCSE 2023



ITiCSE 2023, July 8–12, 2023, Turku, Finland Kazuhiro Tsunoda, Hidehiko Masuhara, & Youyou Cong

Figure 2: An example of enbugging quizzes. The learner is requested to produce the expected error message(s) by only changing
the text in one of the red boxes in (a) the correct code. The first answer (bottom-left) changes the second red box, which produced
an error message yet does not match the expected one. The second (bottom-right) changes the third red box, and produced the
expected one.

(1) Error messages are not novice-friendly.
(2) In the early stages of learning, learners often encounter triv-

ial errors that can be fixed without reading error messages.
(3) Not many instructors teach error messages explicitly.

Regarding the possible reason (3), we advocate that instructors
should give learners an opportunity to carefully read errormessages.
By doing so, we expect that the learners will acquire the habit of
reading error messages, which would help the learner understand
error messages.

As far as the authors know, there are the following approaches to
explicitly teach error messages: teaching by example and debugging-
style exercises. Teaching by example is a method to show concrete
pairs of erroneous code and an error message with explanations.
We believe this is commonly used in novice programming courses,
including the ones that the authors are teaching. Debugging-style
exercises [18] are exercises in which the learners fix a piece of
erroneous code (Figure 1(a)). Since the learners need to read error
messages to solve problems, they are expected to learn the syntax
(or format) of error messages and the terms used in them. Other
than debugging-style exercises, standard programming exercises
also provide opportunities to read error messages because they ask
the learners to write a piece of code and the learners will inevitably
make errors when writing the code.

We however see shortcomings. First, compared to learning to
write code, error-resolving is less productive (in the sense that it
does not create new code), and thus gives less motivation to learners.
Second, since some errors can be resolved without carefully reading
error messages (by trial and error, for example), debugging-style
exercises might not be helpful for cultivating the habit of reading
error messages. In fact, Lee et al. [19] point out that novices may

skip many general (mechanical) error messages in debugging-style
exercises.

We propose enbugging quizzes as a novel style of language-
agnostic exercise for giving learners an opportunity to carefully
read error messages. Enbugging quizzes ask, as shown in Figure 1(b),
the learner to create a piece of code that produces a requested er-
ror message. As far as the authors are aware, there have been no
prior exercises that let learners produce errors. We believe that this
style of quiz could be useful to cultivate the habit of reading error
messages since learners cannot answer this quiz without reading
the error message in it.

This paper describes the design, the implementation, and a pre-
liminary evaluation of enbugging quizzes. In the rest of the paper,
we discuss related work (Section 2) and detail the format of en-
bugging quizzes and the design decisions behind them (Section 3).
We then report our experimental use of enbugging quizzes in a
programming course (Section 4) and analyze the results and feed-
back from students (Section 5). After discussing our plans for future
extensions (Section 6), we conclude the paper (Section 7).

2 RELATED WORK
The existing studies on error messages fall into the three categories:
(1) improve presentations, (2) suggest error solutions, and (3) de-
velop exercises.

Improving presentations. As a visual improvement, Marceau et
al. [22] and Funabiki et al. [10] propose and implement the high-
lighting of error locations on source code within IDEs (DrRacket
and JPLAS). Barik [2] and Wrenn et al. [30] propose to visualize
the connection between the words in an error message and the
corresponding code fragments. Also, to improve the usefulness of



Mind the Error Message ITiCSE 2023, July 8–12, 2023, Turku, Finland

error messages, much research [4, 8, 26, 27, 31] implement tools
that provide more detailed causes of error information within er-
ror messages and conducted experiments with students. However,
some research [8, 25, 26, 31] could not confirm a positive effect of
enhancing error messages like the above. Interestingly, Zhou et
al. [31] noted the importance of productive failure from their exper-
imental results, which could be addressed by enbugging quizzes
because students intentionally make errors in the quizzes.

Suggesting error solutions. Barik et al. [3] propose to show the
simplest error resolution so that novice programmers can under-
stand the cause of the error. Hartman et al. [13] develop a technique
that suggests error solutions based on similar errors and their solu-
tions found in past editing data. Recent research by Ahmed et al. [1]
confirms the improvements in the accuracy of suggestions by using
neural networks. Compared to these methods, enbugging quizzes
are more focused on improving students’ own error-handling skills
instead of teaching immediate error correction methods.

Developing exercises. The most popular exercise is debugging-
style exercises, in which the learner corrects erroneous code [5,
7, 12, 18, 21]. Some research [15, 20, 24] give novices debugging-
style exercises in a game style. Recent research by Kiljunen [16]
suggests step-by-step debugging exercises as a form of tutorial.
Those exercises provide error messages along with erroneous code,
but do not require the learner to read.

3 ENBUGGING QUIZZES
In this section, we describe the design of enbugging quizzes.Through-
out the paper, we use programs in Scala and error messages pro-
duced by the Scala 3 compiler (ver 3.1.1). However, as we mentioned
before, enbugging quizzes can be created in other languages as well;
see Section 6 for a detailed discussion.

3.1 Overview
Figure 2 gives an overview of an enbugging quiz. A quiz consists of
(a) a code fragment that produces no error and has editable expres-
sions (surrounded by red boxes), and (b) an expected error message2
without location information (i.e., line and column numbers). A
correct answer to the quiz is an edit to one of the editable boxes that
make a code fragment produce the expected error message. After
finishing one question (either by correctly answering or by giving
up answers), the learner will see an explanation of the question. For
example, below is an explanation3 after the learner submits their
answer of the quiz in Figure 2.

Correct answer Change x in the 2nd line to true.
What does the message mean? There is an expression true

of type Boolean in a position where an Int expression is
required.

Why is it an error? Theoperator :: requires its left-hand side
to have the element type of its right-hand side, i.e., Int of
List[Int]. Changing x to true cause a type mismatch be-
tween Int and Boolean.

2In the context of enbugging quizzes, we use “error messages” to mean both error and
warning messages.
3We prepare only one explanation even if there are multiple hypothetical solutions
due to variable names, etc.

Listing 1: Example of tricky error messages
1 //correct code

2 def isEqual(x: Int , y: Int): Boolean = {

3 x == y
4 }
5
6 //expected error message
7 // identifier expected but ':' found.

3.2 Design of enbugging quizzes
A notable property of the enbugging quizzes, in comparison to
debugging-style exercises, is that the learners can hardly answer
questions without reading error messages. In other words, in en-
bugging quizzes, reading and understanding error messages plays
a key role in reducing the answer space of a problem. This can be
exemplified by tracing the following steps that correctly answer a
question.

(1) Interpret the expected error message. From the expected error
message (Found: (true: Boolean)/Required: Int), we
understand that the answer code contains a true expression
in a position where an Int expression is required.

(2) Deduce an answer. Such a case can be made by requiring an
existing true expression to have Int, or by replacing an Int
expression with true.

(3) Select a box. As there is no box with true, we look for boxes
of type Int. The third box is the one because x is an Int
variable.

(4) Edit and check. We edit the third box to true, and let the
quiz system check. The system marks the answer correct.

In the above steps, reading and understanding the error message (1)
is crucial to perform the following steps (2) and (3), which reduce
the number of possible edits to a reasonable size to consider one by
one. However, if we tried to answer by only superficially reading the
error message (for example, just recognizing Boolean and Int but
not considering the meaning of Found and Required), we would
need to consider many different edits.

3.3 Design parameters
Our current enbugging quiz introduced in Section 3.1 is just one

instance in the large design space. We discuss the reasons for each
choice along with other possibilities.

Edit one box at a time We restrict the learner to editing only
one of the boxes in order to reduce the number of possible
edits to consider. An alternative is to allow editing freely, or
to allow editing multiple boxes, which quickly enlarges the
number of possibilities too many to handle in a short time.

Number of boxes We limit the number of boxes to 3 to 7.
We think that the current limit leads to a reasonably large
answer space, preventing learners from answering quizzes
by randomly changing the code.

Size of code We limit the size of the code snippet to 3 to 9
lines so that each learner can quickly understand the code
yet have several possibilities to consider. An alternative is to
use code snippets in the real world as they are, which tend
to be too large to grasp in a short time.



ITiCSE 2023, July 8–12, 2023, Turku, Finland Kazuhiro Tsunoda, Hidehiko Masuhara, & Youyou Cong

Location of errors We remove the location information of
errors because it would often make the quiz too easy.

Kinds of error messages We have been avoiding tricky mes-
sages generated by syntax errors. Consider the quiz shown
in Listing 1. The correct answer to this quiz is to change the
comma in the box to a blank. However, the error message is
identifier expected but : found. To understand this
message, we need to know how the Scala compiler interprets
the code, which is clearly beyond the knowledge of novice
programmers.

Explanation We present an explanation after answering (or
giving up) each question so that the learner can confirm their
understanding of the error message. An alternative would
be not to give such an explanation and expect the learners
to acquire the meaning by answering many questions. We
do not yet have a strong rationale for our choice.

4 EXPERIMENTS
We have conducted several feasibility experiments at the authors’
institution. In this section, we describe the design and results of
each experiment. Data collection and usage in these experiments
have received prior consent from the students through explanation
forms and consent forms.

4.1 Purpose of the experiments
The main purpose of the experiments is to assess the feasibility of
the quiz format rather than its effect on learning. This is because
the enbugging quiz is an unprecedented and completely unknown
quiz format. The experiments investigate the following questions.

• Can students understand and work with enbugging quizzes
in a real class without confusion?

• Is it possible to adjust the difficulty of quizzes so that novice
students can solve them?

• Do students enjoy solving enbugging quizzes (or at least
without finding it a pain)?

4.2 Preliminary experiment
As a preliminary experiment, we solicited 3 undergraduate students
taking a programming course4 and asked them to solve 6 enbug-
ging quizzes. We observed the process of solving the quizzes in a
video conference session. We also conducted a post-interview while
providing explanations for quizzes that the participants failed to
solve. Below are the questions we asked during the interview and
the responses we received from the participants5.

• How did you solve the enbugging quizzes?
As expected, all participants went through the four steps
listed in Section 3.2, namely interpret the expected error
message, deduce an answer, select a box and edit and check.

• What would you like us to add to enbugging quizzes?
All participants would have liked to see an explanation of
the expected solutions to each enbugging quiz. In response

4This course was taught at the Department of Mathematical and Computing Science,
Tokyo Institute of Technology in Fall 2021.
5The interview was held in Japanese, and the responses are translated into English by
the authors when quoted in this paper. The same applies to the questionnaire in the
main experiment.

to this feedback, we included explanations discussed in Sec-
tion 3.3.

4.3 Main experiment
In the main experiment, we integrated enbugging quizzes into
an undergraduate course6 taught by the third author. The course
teaches functional programming in Scala, covering basic concepts
such as algebraic data types and recursion. This is the earliest class
in our major that teaches programming concepts in earnest. The
course had about 40 students majoring in computer science, and
most of them had prior experience in Python.

This time, we incorporated enbugging quizzes into the course
assignment during Week 3 to Week 6; note that there were two
classes per week. The students’ task in this experiment is to solve
a given enbugging quiz within 5 minutes7, using a web interface
built on top of Scastie. Students were allowed to try the quiz as
many times as they like before submitting their solution. When
the students submitted their solution, they could see the expected
solution and an explanation. We told the students that they receive
points by solving enbugging quizzes, regardless of whether the
solution is correct or not.

After the final exercise in Week 6, we conducted a questionnaire
to collect the students’ thoughts about the enbugging quiz. Below
are the questions and options that students were given;

Q1 : Do you think that you will read error messages more care-
fully after solving enbugging quizzes?

A1 : 1. Much more frequently, 2. A little more frequently, 3. Same
as before, 4. A little less frequently, 5. Much less frequently

Q2 : Do you want to use enbugging quizzes when learning a
new programming language?

A2 : 1. Strongly want to, 2. Relatively want to, 4. Do not want
to so much 5. Do not want to at all

Q3 : Did enbugging quizzes help you improve your error-solving
skills?

A3 : 1. They helped a lot, 2. They helped a little, 4. They did not
help much, 5. They did not help at all

Q4 : Do you think enbugging quizzes helped you learn program-
ming?

A4 : 1. They helped a lot, 2. They helped a little, 3. No strong
opinion, 4.They prevented learning a little, 5.They prevented
learning a lot

Q5 : Do you think you are able to guess the cause of errors more
frequently after solving enbugging quizzes?

A5 : 1. Quite increase, 2. A little increase, 3. Same as before, 5.
Rather decrease

Q6 : Do you understand more words in error messages?
A6 : 1. Quite increase, 2. A little increase, 3. Same as before, 4. A

little decrease, 5. Quite decrease
Q7 : Do you think you can understand more error messages by

solving enbugging quizzes?
A7 : 1. Strongly agree, 2. Agree, 4. Disagree, 5. Strongly disagree

6This course was taught at the Department of Mathematical and Computing Science,
Tokyo Institute of Technology in Spring 2022.
7We limited the duration to 5 minutes because we concluded from our observations
at the preliminary experiment that giving students more time would not affect their
performance.



Mind the Error Message ITiCSE 2023, July 8–12, 2023, Turku, Finland

Table 1: Numbers of participants and correct solutions of enbugging quizzes
day5 day6 day7 day8 day9 day10 day11 day12

Participants (people) 33 37 33 35 36 34 37 33
Correct answers (people) 24 18 26 27 14 20 20 20
Correct answer rate (%) 72.7 48.6 78.8 77.1 38.9 58.8 54.1 60.6

Q1 Q2 Q3 Q4 Q5 Q6 Q7
Question

0

2

4

6

8

10

12

14

16

18

An
sw

er
 (p

eo
pl

e)

Strongly positive
Positive
Neutral
Negative
Strongly negative

Figure 3: Results of multiple-choice questions (figure)

Table 2: Results of multiple-choice questions (table)
Q1 Q2 Q3 Q4 Q5 Q6 Q7

1.Strongly positive 9 8 6 4 4 3 1
2.Positive 7 10 9 12 10 13 15
3.Neutral 2 N/A N/A 2 4 2 N/A
4.Negative 0 0 3 0 N/A 0 0
5.Strongly negative 0 0 0 0 0 0 0

We also asked the students to share their experiences and sugges-
tions in text.

5 RESULTS AND DISCUSSION
5.1 Correct answer rate
Table 1 shows the number of participants and the number of cor-
rect answers for each quiz8. The correct answer rate of enbugging
quizzes differs depending on the difficulty of each quiz. In particular,
the correct answer rate for day 6 and day 9 is low. One possible
reason for the high difficulty is that the day 6 quiz requires solid
knowledge about pattern matching, which is beyond the scope of
the lecture. In the case of the day 9 quiz, students probably didn’t
understand the functional type that they had just learned.

5.2 Results of the questionnaire
We received 18 responses to the questionnaire. The results of the
selection formula are shown in Table 2 and Figure 3. The responses
to the seven multiple-choice questions were mostly positive. In
particular, no students thought enbugging quizzes would prevent
their learning. Belowwe detail the responses to individual questions.

8All quizzes used in the experiment are included in the appendix in footnote 1

Q1: Do you think that you will read error messages more carefully
after solving enbugging quizzes? Half of the responses were strongly
positive, and overall there were many positive opinions. This indi-
cates a good possibility that enbugging quizzes help cultivate the
habit of reading error messages.

Q2, Q4: Effect on learning programming and new programming
languages. Although the question was not directly related to error
resolution, there were many positive opinions. From this result, we
conjecture that enbugging quizzes may not only help students solve
errors, but also increase their understanding of the programming
language they are learning.

Also, in the free description about enbugging quizzes, one stu-
dent wrote “I think it would be good if the code discussed in the
class appeared in the problem of enbugging quizzes because it
would help us understand the content of the class.”

Q3: Did enbugging quizzes help you improve your error-solving
skills? Three students had weakly negative opinions, but many
students felt that their error-solving ability would improve. Also,
more than half of the reasons for wanting to use enbugging quizzes
when learning a new language were that it would help solve errors.
This result supports our conjecture that enbugging quizzes would
be helpful for error resolution.

Q5: Do you think you are able to guess the cause of errors more
frequently after solving enbugging quizzes? More than 75% of the
responses were positive. This suggests that enbugging quizzes are
also effective in understanding the cause of errors.

Q6, Q7: Effect on understanding error messages. Although there
are relatively few strongly positive responses, the overall percent-
age of positive responses is high.This result supports our conjecture
that reading error messages carefully helps to understand error mes-
sages as we mentioned in Section 1.



ITiCSE 2023, July 8–12, 2023, Turku, Finland Kazuhiro Tsunoda, Hidehiko Masuhara, & Youyou Cong

Experiences and suggestions. Five comments indicate that solving
enbugging quizzes was “fun” or “interesting” and there are no nega-
tive comments. This result suggests that students enjoyed working
on enbugging quizzes.

Two comments mentioned that the explanation helped them
understand problems that they could not solve. This shows the
importance of the explanation.

5.3 Discussion of purpose
Based on the results of the experiment, we answer the three ques-
tions raised in Section 4.1.

• Can students understand and work with enbugging quizzes in
a real class without confusion?
Yes. The questionnaire results were generally positive, in-
dicating that the students were able to work on enbugging
quizzes without confusion over multiple classes.

• Is it possible to adjust the difficulty of quizzes so that novice
students can solve them?
Yes. The average correct answer rate for all the quizzes was
about 61%, suggesting that we were able to adjust the diffi-
culty of enbugging quizzes for novices.

• Do students enjoy solving enbugging quizzes (or at least with-
out finding it a pain)?
Yes. This can be seen from the comments received via the
questionnaire.

6 FUTURE WORK
6.1 Assessment of enbugging quizzes
In the experiment we described above, we collected the partici-
pant’s subjective opinions on enbugging quizzes. In the future, we
would like to investigate the actual effects of enbugging quizzes
on students’ learning. One approach is to compare the understand-
ing of error messages between students who have and have not
solved enbugging quizzes. The other approach is to compare with
debugging-style exercises, which share the key elements (code with
and without errors) with enbugging quizzes. In addition to the dif-
ferences discussed in Sections 1 and 2, we expect different reactions
of learners when their edit does not solve the error or produce
the expected error message. In debugging quizzes, it is known that
novices tend to focus on eliminating the error [29], hence they may
ignore the error messages produced by their edit. On the other
hand, in enbugging quizzes, learners would need to read the error
messages to find a correct edit.

6.2 Support for more errors
The current format of enbugging quizzes may not be effective for
certain types of errors as mentioned in Section 3. On the other
hand, novice programmers frequently encounter syntax errors [23]
and tricky messages like the one in Listing 1. In future work, we
would like to find a way to incorporate syntax errors into enbugging
quizzes.

6.3 Automatic generation of quizzes
Currently, we create enbugging quizzes manually. To reduce the
cost of quiz creation, we aim to automate parts of the process
detailed below.

Listing 2: Indentation error in Python
1 def·equal(x,y):
2 · ·if·(x·==·y):
3 · · · · · ·return·True
4 · · ·else:
5 · · · · · ·return·False
6
7 #error·message
8 #· ·IndentationError:·unindent·does·not·match·any·outer·

indentation·level

The procedure for creating enbugging quizzes tailored to the
lecture can be roughly divided into 5 parts:

• Collect code with errors that can occur in course assignment
• Classify errors
• Create erroneous code
• Specify editable boxes
• Create explanation

We would like to (semi-)automate tasks 2-4 using existing tech-
niques. As an example, by applying the error-repair classification [1],
we would be able to classify errors by not only error messages but
also edits that fix errors. As a different example, by applying the
error minimization techniques [30], we can get small erroneous
codes from collected (maybe large) codes. Furthermore, by apply-
ing compiler fuzzing techniques and mutant generation [14], we
can check whether there are unexpected ways of generating the
expected error message for selecting editable boxes.

6.4 Support for more programming languages
To broaden the users of enbugging quizzes, it is important to

create quizzes in various programming languages. While the idea
of enbugging quizzes scales to any language that produces error
messages, their design needs to be adjusted to each language. As an
example, consider the Python program in Listing 2. The program
involves an indentation error, and in this case, it is not appropriate
to highlight editable boxes because generating this error requires
one to insert spaces. We expect that other languages may pose
different challenges.

7 CONCLUSION
In this paper, we proposed enbugging quizzes as an exercise for
cultivating the habit of reading error messages. As far as we know,
there are no prior exercises that let learners produce errors. In addi-
tion, we conducted an experiment in an undergraduate course and
received positive feedback from the participants. From this result,
we confirm that enbugging quizzes are feasible in programming
courses despite the unique exercise format. In future work, we plan
to evaluate effects of enbugging quizzes and develop a large set
of enbugging quizzes by automating the creation of quizzes. We
hope that enbugging quizzes would allow learners to have a better
debugging experience in everyday programming.

ACKNOWLEDGEMENTS
Thisworkwas supported by JSPS KAKENHI grant numbers 20K21790
and 23H03368. We thank the members of the Programming Re-
search Group for their trial uses of the enbugging quizzes before
we conducted the preliminary experiments.



Mind the Error Message ITiCSE 2023, July 8–12, 2023, Turku, Finland

REFERENCES
[1] Umair Z Ahmed, Renuka Sindhgatta, Nisheeth Srivastava, and Amey Karkare.

2019. Targeted example generation for compilation errors. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 327–338.

[2] Titus Barik. 2014. Improving error notification comprehension through visual
overlays in IDEs. In 2014 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE, 177–178.

[3] Titus Barik, Jim Witschey, Brittany Johnson, and Emerson Murphy-Hill. 2014.
Compiler error notifications revisited: an interaction-first approach for helping
developers more effectively comprehend and resolve error notifications. In Com-
panion Proceedings of the 36th International Conference on Software Engineering.
536–539.

[4] Brett A Becker. 2016. An effective approach to enhancing compiler error mes-
sages. In Proceedings of the 47th ACM Technical Symposium on Computing Science
Education. 126–131.

[5] Elizabeth Emily Carter. 2014. An intelligent debugging tutor for novice computer
science students. (2014).

[6] Der-Thanq Chen. 1997. Learning 10 computer programs in a month. (1997).
[7] Ryan Chmiel and Michael C Loui. 2004. Debugging: from novice to expert. Acm

Sigcse Bulletin 36, 1 (2004), 17–21.
[8] Paul Denny, Andrew Luxton-Reilly, and Dave Carpenter. 2014. Enhancing syn-

tax error messages appears ineffectual. In Proceedings of the 2014 conference on
Innovation & technology in computer science education. 273–278.

[9] Paul Denny, James Prather, Brett A Becker, Catherine Mooney, John Homer,
Zachary C Albrecht, and Garrett B Powell. 2021. On Designing Programming Er-
ror Messages for Novices: Readability and its Constituent Factors. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems. 1–15.

[10] Nobuo Funabiki, Yukiko Matsushima, Toru Nakanishi, Kan Watanabe, and Noriki
Amano. 2013. A Java programming learning assistant system using test-driven
development method. IAENG International Journal of Computer Science 40, 1
(2013), 38–46.

[11] Marleen Gilsing and Felienne Hermans. 2021. Gradual Programming in Hedy: A
First User Study. In 2021 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE, 1–9.

[12] Yoshinari Hachisu, Atsushi Yoshida, and Kiyoshi Agusa. 2017. A generator
for Exercises of Program Error Correction and Answer Checker Programs (in
japanese). IPSJ Transactions on Computers and Education (TCE) 3, 1 (2017), 64–78.

[13] Björn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R Klemmer. 2010.
What would other programmers do: suggesting solutions to error messages. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
1019–1028.

[14] Ryota Kamei, Masahiro Yosizuka, Isao Sasano, and Seiichi Komiya. 2021. Compre-
hension Check Problem Generation Method Using Perturbation to Compensate
for Shortcomings of Tracing Learning—Evaluation of Effectiveness Based on
Examples of Binary Operators(Syakyou gata gakusyu no kettenn wo oginau
setsudou wo motiita rikaido kakunin mondai seisei syuhou—nikou ennzannsi no
rei ni motoduku yuukousei no hyouka (in Japanese).). Computer software 38, 1
(2021), 1_111–1_139.

[15] Cagin Kazimoglu, Mary Kiernan, Liz Bacon, and Lachlan Mackinnon. 2012. A
serious game for developing computational thinking and learning introduc-
tory computer programming. Procedia-Social and Behavioral Sciences 47 (2012),

1991–1999.
[16] Olli Kiljunen. 2021. Teaching Students to Fix Programming Errors with Tutorials

Embedded in an IDE. In Proceedings of the 21st Koli Calling International Con-
ference on Computing Education Research (Joensuu, Finland) (Koli Calling ’21).
Association for Computing Machinery, New York, NY, USA, Article 32, 3 pages.
https://doi.org/10.1145/3488042.3489969

[17] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. 2005. A study of the
difficulties of novice programmers. Acm sigcse bulletin 37, 3 (2005), 14–18.

[18] Greg C Lee and Jackie C Wu. 1999. Debug It: A debugging practicing system.
Computers & Education 32, 2 (1999), 165–179.

[19] Michael J Lee and Amy J Ko. 2011. Personifying programming tool feedback im-
proves novice programmers’ learning. In Proceedings of the seventh international
workshop on Computing education research. 109–116.

[20] Zhongxiu Liu, Rui Zhi, Andrew Hicks, and Tiffany Barnes. 2017. Understanding
problem solving behavior of 6–8 graders in a debugging game. Computer Science
Education 27, 1 (2017), 1–29.

[21] Andrew Luxton-Reilly, Emma McMillan, Elizabeth Stevenson, Ewan Tempero,
and Paul Denny. 2018. Ladebug: An online tool to help novice programmers
improve their debugging skills. In Proceedings of the 23rd annual acm conference
on innovation and technology in computer science education. 159–164.

[22] Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011. Measuring
the effectiveness of error messages designed for novice programmers. In Pro-
ceedings of the 42nd ACM technical symposium on Computer science education.
499–504.

[23] Davin McCall and Michael Kölling. 2019. A new look at novice programmer
errors. ACM Transactions on Computing Education (TOCE) 19, 4 (2019), 1–30.

[24] Michael A Miljanovic and Jeremy S Bradbury. 2017. Robobug: a serious game
for learning debugging techniques. In Proceedings of the 2017 acm conference on
international computing education research. 93–100.

[25] Marie-Hélène Nienaltowski, Michela Pedroni, and Bertrand Meyer. 2008. Com-
piler error messages: What can help novices?. In Proceedings of the 39th SIGCSE
technical symposium on Computer science education. 168–172.

[26] Raymond S Pettit, John Homer, and Roger Gee. 2017. Do Enhanced Compiler
Error Messages Help Students? Results Inconclusive.. In Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science Education. 465–470.

[27] James Prather, Raymond Pettit, Kayla Holcomb McMurry, Alani Peters, John
Homer, Nevan Simone, and Maxine Cohen. 2017. On novices’ interaction with
compiler error messages: A human factors approach. In Proceedings of the 2017
ACM Conference on International Computing Education Research. 74–82.

[28] Katsuyuki Umezawa, Makoto Nakazawa, Masayuki Goto, and Shigeichi Hirasawa.
2019. Development of debugging exercise extraction system using learning
history. In 2019 IEEE Tenth International Conference on Technology for Education
(T4E). IEEE, 244–245.

[29] Iris Vessey. 1985. Expertise in debugging computer programs: A process analysis.
International Journal of Man-Machine Studies 23, 5 (1985), 459–494.

[30] John Wrenn and Shriram Krishnamurthi. 2017. Error messages are classifiers: a
process to design and evaluate error messages. In Proceedings of the 2017 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software. 134–147.

[31] Zihe Zhou, Shijuan Wang, and Yizhou Qian. 2021. Learning From Errors: Ex-
ploring the Effectiveness of Enhanced Error Messages in Learning to Program.
Frontiers in Psychology 12 (2021). https://doi.org/10.3389/fpsyg.2021.768962

https://doi.org/10.1145/3488042.3489969
https://doi.org/10.3389/fpsyg.2021.768962

	Abstract
	1 Introduction
	2 Related work
	3 Enbugging quizzes
	3.1 Overview
	3.2 Design of enbugging quizzes
	3.3 Design parameters

	4 Experiments
	4.1 Purpose of the experiments
	4.2 Preliminary experiment
	4.3 Main experiment

	5 Results and discussion
	5.1 Correct answer rate
	5.2 Results of the questionnaire
	5.3 Discussion of purpose

	6 Future work
	6.1 Assessment of enbugging quizzes
	6.2 Support for more errors
	6.3 Automatic generation of quizzes
	6.4 Support for more programming languages

	7 Conclusion
	Acknowledgements
	References



