
Journal of Information Processing Vol.30 451–463 (June 2022)

[DOI: 10.2197/ipsjjip.30.451]

Regular Paper

An Approach to Collecting Object Graphs
for Data-structure Live Programming

Based on a Language Implementation Framework

Shusuke Takahashi1,a) Yusuke Izawa1,b) HidehikoMasuhara1,c) Youyou Cong1,d)

Received: August 31, 2021, Accepted: January 11, 2022

Abstract: Data-structure live programming environments execute programs, collect object graphs (objects and their
mutual references) created and modified during the execution, and visualize the graphs as a node-link diagram. Ex-
isting implementations collect object graphs by instrumenting checkpoints, at which the system traverses reachable
objects, at every necessary point in the program. Since the cost of each checkpoint is proportional to the number
of existing objects, the overhead of running checkpoints can be huge. This paper proposes (1) a technique to col-
lect object graphs by recording object creation and modification events into an efficient data structure, and (2) an
implementation design for the object graph collection mechanism by extending a language implemented on top of a
language implementation framework. As a result, the overhead of object graph collection is almost proportional to the
number of object creation/modification operations in total. We implemented the proposed mechanism for the Kanon
data-structure live programming environment by extending GraalJS, a JavaScript implementation on the Graal/Truffle
language implementation framework. We compared our new implementation against the original Kanon, which is
based on checkpointing, and confirmed that our implementation improves program execution (and data collection)
speed, and has sufficiently small overheads to reconstruct object graphs.

Keywords: live programming environment, meta-language implementation framework, Graal, Truffle, object graph

1. Introduction

A live programming environment is a piece of software that re-
runs a program as soon as the user edits it, and displays the con-
tent of the execution. This feature allows the user to see imme-
diately the effect of a minute edit on the program [1]. Examples
of existing live programming environments include Scratch [2];
Dejavu [3], which supports interactive development using camera
input; programming environments for music [4]; and Kanon [5],
which is specialized in visualizing data structures.

Kanon (Fig. 1) is a live programming environment for visual-
izing data structures as a graph automatically and immediately
while editing the program. When the user writes a program that
handles data structures with complex reference relations, Kanon
helps the user by correcting instructions as the user writes them
to update each element of the data structures. We assume that
the data to be visualized are usually small when creating a pro-
gram. However, in practical software development, there is the
possibility of hundreds of objects being handled.

To perform visualization, a data structure live programming
environment such as Kanon must collect the objects that exist at
each point of the program execution and assess the relations that
references bear. There are two methods for performing those fea-

1 Tokyo Institute of Technology, Meguro, Tokyo 152–8552, Japan
a) takahashi@prg.is.titech.ac.jp
b) izawa@prg.is.titech.ac.jp
c) masuhara@acm.org
d) cong@c.titech.ac.jp

Fig. 1 Screenshot of Kanon. On the left is the editor. On the upper-right
is the node-link diagram based on an object graph. On the bottom-
right is a tree representing function calls and iterative structures at
runtime.

tures: one is the snapshot technique, which makes a copy of the
reference relations between the objects that exist at each point
in time, and the other is the operation history technique, which
records instantiations or modifications of an object whenever they
are performed by the program, and it restores the reference rela-
tions between the objects at a certain point in time from the record
when the relations are needed.

Kanon implements the snapshot technique with source code
conversion. During conversion, it inserts checkpoints before and
after each statement in the given source code. After that, it exe-
cutes the converted program. When the checkpoint is executed,
Kanon records all the reachable objects in the scope of the check-
point using the objects that the variables refer to and their ref-
erence relations. This method can be implemented without any

c© 2022 Information Processing Society of Japan 451

Journal of Information Processing Vol.30 451–463 (June 2022)

specialized language processing system. On the other hand, the
time taken by the checkpointing process is proportional to the
size of the reachable object graph. As mentioned above, we as-
sume that Kanon visualizes hundreds of objects, so this overhead
should not be ignored.

In this paper, we propose an efficient implementation of the ob-
ject operation history technique. In a naı̈ve technique, the size of
the information recorded at the time of object instantiations and
modifications is of constant order. However, it takes time pro-
portional to the number of creations and modifications to recover
the reference relations of objects from the records. We propose a
method to record the instantiations and modifications of objects
as intermediate representations (IR) and recover object reference
relations efficiently at arbitrary points in time from these IR.

To collect the history of operating objects, it is necessary ei-
ther to perform program conversion or create an original lan-
guage processing system. In this study, we propose using a meta-
language implementation framework to create an original lan-
guage processing system.

The proposed method, which uses the meta-language imple-
mentation framework, has the following advantages. First, the
program conversion method has the problem that it is impossible
to record object operations occured in programs that do not have
source code, such as libraries. In contrast, the proposed method
can solve this problem. Secondly, it is possible to implement an
original language processor with only minor changes by modify-
ing an existing language processor in a language implementation
framework. Finally, most of the mechanisms for collecting op-
eration history, which we plan to propose in the future, can be
implemented in a common way for multiple languages. This is
because object operations are often defined as a method shared
among multiple languages in language implementation frame-
works where multiple languages are available.

In this paper, we experimentally implement an object
graph generation system based on the proposed method using
Graal/Truffle [6], [7], a language implementation framework, and
GraalJS, a JavaScript interpreter implemented with the frame-
work. The application with multiple languages is beyond the
scope of this paper because we implement the system on the as-
sumption of using GraalJS.

This paper is structured as follows. In Section 2, we describe
Kanon, a live programming environment, and Graal/Truffle, a lan-
guage implementation framework. In Section 3, we present our
method of collecting object operation histories using a language
implementation framework, a transformation from operation his-
tories into IR, as well as a concrete implementation for generat-
ing object graphs using the IR. In addition, we discuss in Sec-
tion 4 what is unique to our experimental implementation using
Graal/Truffle and GraalJS. In Section 5, we compare the perfor-
mance of object graph collection with that of the original Kanon.
We list related work in Section 6, and Section 7 concludes this
paper and discusses future prospects.

2. Background

As previously mentioned, this paper presents an improved ver-
sion of the object graph collection mechanism in Kanon. This
approach is realized by extending the GraalJS interpreter, which
is implemented using the language implementation framework
Graal/Truffle. This section provides an overview of the imple-
mentation of Kanon, introduces the fundamental mechanism, and
briefly describes the architecture of Graal/Truffle and GraalJS.

2.1 Kanon
Kanon is a live programming environment specialized in visu-

alizing data structures. It re-runs a program in the editor (the left
side of Fig. 1) each time the user edits it, and displays the object
graph (upper-right of Fig. 1) built when the program is executed
up to the cursor position in the editor. Kanon allows the user to
develop a program based on the displayed diagrams and ensure it
is implemented as intended.

In addition, Kanon not only shows the reference relations of
objects but also allows the user to zoom in and out of the diagram
and change the position of the nodes. Furthermore, when Kanon
redraws the diagram due to changes in the source code, it tries to
maintain the last drawn layout.
2.1.1 Execution Process of Kanon

Figure 1 shows the execution flow of Kanon—from the input of
the program in the editor to the drawing of the node-link diagram.
(1) First, Kanon converts the given program to catch run-time

information. Specifically, it parses the entire program and
inserts checkpoints before and after every statement in the
program.

(2) It then executes the converted program with the eval func-
tion. When the inserted checkpoint is executed, it collects
the information explained in Section 2.1.2 by the following
procedure.
(i) Reference relations of objects: Kanon records all of

the reference relations of objects. Specifically, it obtains
all local and global variables, and transitively records all
objects that exist at that time.

(ii) Location in the source code corresponding to an ob-
ject instantiation and modificiation: Kanon records
the location of the checkpoint in the source code.

(iii) Call stack when the object is generated: First,
Kanon obtains the call stack when the checkpoint is ex-
ecuted. Then, it links the newly created object to the
call stack by taking the difference with the object refer-
ences obtained in (i).

(3) Kanon gets the cursor position and selects the information
obtained at the nearest checkpoint.

(4) Kanon generates a node-link diagram based on the selected
information and displays it.

When the user moves the cursor in the Kanon editor, steps (3)
and (4) are performed again (corresponding to the dashed line
in Fig. 2). In this case, Kanon reuses the information obtained
from the latest edited program. When the user edits the program,
Kanon executes steps (1) and (2) again (corresponding to the
solid line in Fig. 2), followed by steps (3) and (4).

c© 2022 Information Processing Society of Japan 452

Journal of Information Processing Vol.30 451–463 (June 2022)

Fig. 2 Execution flow of Kanon.

2.1.2 Information Collected by Kanon during Program Ex-
ecution

To generate an object graph, Kanon records run-time informa-
tion during program execution. It requires the following three
kinds of information for object graph generation, as explained in
Section 2.1.1: (i) reference relations of objects, (ii) location in the
source code corresponding to object instantiation and modifica-
tion and (iii) call stack when the object is created. The following
paragraphs describe each of these three kinds of information.
(i) Reference Relations of Objects

Kanon defines the reference relation of each object as the rela-
tion by which objects refer to each other. This object relationship
of every object at some point can generate the following three
kinds of value during program execution:
• value of local variables,
• value of global variables,
• value of objects and arrays.
We take the example shown in Fig. 3 to explain how referenc-

ing relations are generated. Here, we denote the object initialized
by the right side of the second line as A. In this case, the value of
the local variable object is A, the value of the global variable x
is the number 1, and object A has the number 1 in the field f.
(ii) Location in the Source Code Corresponding to Object In-
stantiation and Modificiation

Kanon records the expressions or statements in the source code
that perform object instantiation and manipulation. When the
user places a cursor at a specific source code position, Kanon
visualizes the object graph up to that position.
(iii) Call Stack when the Object is Generated

Kanon has a mental-map preserving [5] mechanism. A mental
map is a representation constructed in a programmer’s brain when
they see visual information such as graphs and pictures. Mental
map preservation [8] is a function to keep the original form as
much as possible so as not to redraw the produced visual images
from the beginning. By minimizing the graph layout changes,
Kanon makes it easier for a programmer to grasp the differences
before and after program modifications.

Kanon stores the following information to realize mental map
preservation: (1) node positions in a last displayed graph and
(2) the nodes that should be associated. The former is beyond
the scope of this paper, but we describe the latter here. To map

Fig. 3 Example of JavaScript program with variables and objects.

Fig. 4 Example of JavaScript program showing the difference of call stacks
when objects are generated.

Fig. 5 Call stacks for each function call in Fig. 4.

objects, Kanon not only records the location in the source code
where the object is generated but also assigns a unique ID to each
function call. By recording both the generated object and the pair
of a source code position and a function call ID (which is called
the context of function call here) in the call stack, it is possible
to determine which function call generates an object. This tech-
nique also enables objects to be drawn separately even if the same
function is called in a different context. Furthermore, after pro-
gram modification happens, it allows the previous node’s position
to be maintained by resuming the function call history based on a
recorded call stack, rather than rebuilding it from the beginning.

Figure 4 describes what the call stack is *1. The values of
global variables x and y are both objects � created when the state-
ment in Line 2 is executed. When x is instantiated, the call stack
records the information that function example is called at Line 5
(�: (L5, example1)). Furthermore, when y is instantiated, the
call stack records the information that function example is called
at Line 6 (�: (L2, example2)). When Line 6 is executed, the
call stack ends up as in the right-hand side of Fig. 5. Through

*1 As this paper focuses on recording the context of a function call as a
call stack, we omit the description of the mapping between the call stack
before and after editing.

c© 2022 Information Processing Society of Japan 453

Journal of Information Processing Vol.30 451–463 (June 2022)

the operation of a call stack, Kanon can distinguish the object
generated by each function call with the call stack.

2.2 Graal/Truffle
A language implementation framework [6], [9] is a toolchain

that generates virtual machines with an efficient memory model, a
high-performance garbage collector, and a fast JIT compiler. It is
used to implement PyPy [9] and TruffleRuby [10], both of which
show higher performance than CPython and CRuby, respectively.

When language developers use a language implementation
framework, they need to define the interpreter of the language
they are going to implement (guest language) in the framework
language (host language). The framework takes this interpreter
as input and generates a high-performance virtual machine with
a dedicated garbage collector, JIT compiler, etc.

In particular, Graal/Truffle partially optimizes a given guest
language interpreter, using a technique called self-optimizing in-

terpreter, to run guest language programs faster on a virtual ma-
chine called GraalVM.
2.2.1 GraalJS

GraalJS is a JavaScript interpreter, written in Graal/Truffle, that
runs on GraalVM. This section describes how GraalJS is imple-
mented with Graal/Truffle.

In general, Graal/Truffle requires language developers to write
abstract syntax tree (AST) interpreters. The same goes for
GraalJS. Each AST node in GraalJS is defined as a class inher-
iting the Node class provided by Graal/Truffle. The Node class
has an abstract method execute that is called when executing a
node, and language implementors should implement the method
execute in each node class.

All nodes in GraalJS are defined by inheriting the class
JavaScriptNode, which inherits the Node class. For example,
a binary operator + for integer values in GraalJS is implemented
as shown in Fig. 6. This node has members representing the left-
hand side and the right-hand side. The method execute first
evaluates each sides and returns the sum. Here, the argument
frame in the execute method represents the stack frame when
this node is executed.

The class Node also has a method getSourceSection, which
returns the description corresponding to the node in the source
code.
2.2.2 Objects in Graal/Truffle

In Graal/Truffle, objects in a guest language are represented
using the following three classes: DymanicObject, Shape, and
Property [11], as shown in Fig. 7.

A subclass of DynamicObject, which is an abstract class pro-
vided by Graal/Truffle, holds all values in an object. For imple-
mentation, a developer usually implements the subclass in the
following ways: (1) holding the value of an object directly as
a member variable, or (2) referencing to some data structure such
as an array including values.

The class Property represents a pair of field identifiers and
their corresponding values in DynamicObject. It is possible to
update a value by passing an instance of DynamicObject to op-
erate with the class Property.

The class Shape has as many instances of Property as fields

Fig. 6 Example class of a subclass of JavaScriptNode.

Fig. 7 Class diagram showing the replationship between DynamicObject,
Shape, and Property.

in the object as its member variables.
2.2.3 Implementing Tools with Instrumentation API

Instrumentation API in Graal/Truffle is a set of features for de-
veloping tools running on GraalVM. Thanks to it, when an in-
terpreter executes a program, it enables getting the node that is
currently running and inserting another process, which is defined
by a tool developer, before and after the execution of the node.

Among the things that a tool developer can do with Instru-
mentation API is to put another process between guest lan-
guage’s node executions. As an implementation in a tool, a
tool developer specifies a node that the process targets and when
to execute. Specifically, a tool developer defines a class that
inherits the class ExecutionEventNode and a class inherit-
ing the interface ExecutionEventNodeFactory. A child of
ExecutionEventNode defines a process inserted between the
executions of nodes and how to handle an exception. A class im-
plementing ExecutionEventNodeFactory specifies an assign-
ment of ExecutionEventNode to a node. A tool developer can
use the following properties for specification: file name, source
code position, and tag label representing node’s characteristics.
In particular, a tag label indicates the node’s property, whether it
is a statement, an expression, or a function call.

For example, we consider a tool that produces a specified string
before and after each node is executed. Figure 8 shows an imple-
mentation example of the tool. The class ExampleNode, which is
a subclass of ExecutionEventNode (Line 10 and later in Fig. 8),
describes what to do before and after the execution of the node.
The method create defined in the class ExampleNodeFactory,
which inherits ExecutionEventNodeFactory, specifies what
kind of process is performed on a node based on information that
the instance of the class EventContext, which is passed as an
argument, has. In this example, the method create returns an in-
stance of ExampleNodewhen the context has the tag Statement;
otherwise, it is null. When the program that is listed in the first
line of Fig. 9 is executed with the tool, we obtain the outputs
shown after the third line of Fig. 9.

From the perspective of an AST interpreter definition, we need
to follow the implementation discipline that the Instrumenta-
tion API provides. Specifically, the class representing an AST
node should inherit not only the class Node but also the in-
terface InstrumentableNode provided by the Instrumentation

c© 2022 Information Processing Society of Japan 454

Journal of Information Processing Vol.30 451–463 (June 2022)

Fig. 8 Example of tool implementation with Instrumentation API.

Fig. 9 JavaScript program outputing “Executing” and the result obtained by
executing the program with the tool shown in Fig. 8.

API. This InstrumentableNode interface requires the follow-
ing two methods to be defined.

The first requested method is createWrapper, which returns
a node converted so that it is possible to monitor its execution.
The returned node must perform the process specified by the tool
before and after executing the original node. This method takes
an ExecutionEventNode as an argument. A tool developer has
to implement the method execute of the nodes returned by the
method createWrapper so that the method execute performs
in the following order:
(1) execution of the method onEnter that is defined in the
ExecutionEventNode instance passed as an argument,

(2) execution of the method execute of the original node,
(3) execution of the method onReturnValue that is defined in

the ExecutionEventNode instance passed as an argument.
The second requested method is hasTag. This method is used

in the create method in the ExecutionEventNodeFactory
class. This hasTag method identifies what a node is. It takes
a Tag instance as an argument and returns a boolean value indi-
cating whether the node has a specific property or not.

Figure 10 shows an implementation using
InstrumentableNode. The class StatementNode represents
a node corresponding to a statement in a guest language. It im-
plements InstrumentableNode and overrides createWrapper
and hasTag methods. When the method createWrapper,
which is listed after the second line, is called, an instance of
an anonymous class that inherits the class Node is returned.
The method createWrapper takes an instance of the class
ProbeNode, which wraps an ExecutionEventNode. In the
body of the executemethod, the onEnter and onReturnValue
methods are called before and after the original executemethod.
By this implementation, we can invoke the process defined by
ExecutionEventNode before and after the execution of the

Fig. 10 Example of a class definition that implements
InstrumentableNode.

original node. Also, the method hasTag ensures that the given
tag equals StatementNode.

3. Proposal of the Object Graph Collecting
System

There are roughly two approaches to construct object graphs
at each point of a program during execution: (1) storing the en-
tire object graph generation histories (snapshot technique), or (2)
storing the entire operation history, such as instantiation and mod-
ification of collected objects onto data structures like arrays, and
then constructing graphs while drawing them (operation history
technique).

The snapshot technique constructs object graphs at run-time.
The time complexity of a run-time object graph generation is
O(N), where N is the total number of objects. The system must
construct at least as many object graphs as the number of times
the object is manipulated. Therefore, the time complexity of exe-
cuting the program is at least O(MN), where M is the total num-
ber of object operations. On the other hand, the system applies
binary search on the snapshots generated during program execu-
tion to pick out an object graph. Thus the time complexity of
selecting an object graph is O(M).

The operation history technique only records operation history
and constructs an object graph while drawing it. The time com-
plexity is O(M) because the system only has to collect object his-
tories at run-time. Next, we consider the cost of constructing an
object graph. The naı̈ve approach replays the object history to
an appropriate point for the object graph generation. This way
requires at least O(M) time.

In this paper, we propose a time-series approach that constructs
object graphs using an intermediate representation (IR) that repre-
sents changes of the value in a field as a time series. For example,
we consider a program such that the value in the field x is 1 at
time 1. Its value changes to 2 at time 2. In this approach, the IR
does not hold the record that x = 1 and x = 2 but the informa-
tion whereby the value in the field x is 1 at time 1, and its value
changes to 2 at time 2. In other words, our proposed IR contains a
pair of a time and a value in each field. When constructing an ob-
ject graph, this method replays the object history that is extracted
from the IR. It can reduce the cost for object construction while

c© 2022 Information Processing Society of Japan 455

Journal of Information Processing Vol.30 451–463 (June 2022)

Fig. 11 Overview of the proposed system.

keeping the cost at execution equal to that of the naı̈ve operation
history technique.

Figure 11 shows an overview of our proposed object collection
mechanism and the Kanon implementation using it. The solid and
broken lines represent the flows of processes when a given pro-
gram is executed, and an object graph is selected and visualized,
respectively. Next, we describe how we implement our proposal.

First, we explain the definition of an object operation history in
Section 3.1. This contribution corresponds to “Operating Info.”
in Fig. 11.

Second, we show the method of collecting object operations
with a language implementation framework, which corresponds
to “JavaScript Interpreter” in Fig. 11, in Section 3.2. We also
present an implementation design to collect an object opera-
tion history in a language implementation framework. This step
also corresponds to “JavaScript Interpreter” in Fig. 11. We also
present an implementation design using a framework to collect an
object operation history defined in the first step at run-time there.

Finally, we describe the IR based on an object operation his-
tory, and the method to build the object graph with it, in Sec-
tion 3.3. This step corresponds to the IR in Fig. 11. We show that
our proposal, which uses the IR, builds up an object graph faster
than the naı̈ve method using the operation history, especially in
the case of handling a large number of object operations.

3.1 Recording Object Operations Used for Object Graph
Collection

To generate object graphs, we need to gather the following in-
formation:
(1) object operation history, such as updating the value of a field

contained in an object,
(2) source code section that is being executed when the object

operation occurs,
(3) call stack when the object operation occurs.
3.1.1 Object Operation History

Our proposed approach records all changes, e.g., object initial-
izations or updates, of each object’s field value during execution.
In particular, this approach stores the following information:
(1) object to be manipulated,
(2) identifier of the field whose value is being updated,

Fig. 12 Sample code that manipulates an object.

(3) new value assigned to a field.
We consider the program shown in Fig. 12. The right-hand side

of the assignment statement in Line 5 generates an object (we
refer to this object as ObjectA). This assignment initializes the
field at the same time and assigns the value 100 to fldA. Thus, the
recorded information is (1) ObjectA, (2) fldA, and (3) 100. An
assignment to a field also occurs in Line 6. In the same way, the
recorded information is (1) ObjectA, (2) fldB, and (3) "Hello".

In addition to object operations, we also record variable assign-
ments. To be specific, we keep tabs on the following three kinds
of data:
(1) A variable area. We record it by seeing it as an object field.

Taking an assignment to global variables as an example, we
suppose that there is an object that has each global variable
as a field. Then, the system records the operation as if it had
occurred on the virtual object.

(2) A variable name.
(3) An assigned value.

We again consider the program shown in Fig. 12. In Line 5,
ObjectA is assigned to the global variable ob. We assume
that global variables are stored as fields in an object called
GlobalVariables. In this case, the recorded information is
(1) GlobalVariables, (2) ob, and (3) ObjectA.
3.1.2 Source Code Section

Live programming environments that visualize a data structure
such as Kanon construct and visualize the object graph at the
point specified by in the source code. To implement this feature,
it is necessary to map the object operation and the section in the
source code that is executed when the operation occurs.

We have to determine the granularity of a source code section
to be recorded. The recording unit in the current version of Kanon
is sentences. Given this implementation, our approach regards
AST nodes as sections.

c© 2022 Information Processing Society of Japan 456

Journal of Information Processing Vol.30 451–463 (June 2022)

We consider the program shown in Fig. 12 for explanation. A
description of fldA: 100 in Line 5 is the source code section
corresponding to an object initialization. We record this section
together with the initialization operation.
3.1.3 Call Stack

In some cases, Kanon and other live data structure program-
ming environments have to know object identities before and af-
ter program editing; Kanon uses a call stack for identification. In
particular, when a function call occurs, Kanon records a source
code section that calls the function and stores it as a call stack.

Given the program shown in Fig. 12, in Line 7, the function f
defined by Lines 1 and 3 is called. Note that this function ma-
nipulates the object taken as an argument in Line 2. When this
operation is performed, the call stack has only one element that
is the function call on Line 7. Our approach also records the call
stack when the operation in Line 2 occurs.

3.2 Extraction of Object History with Language Implemen-
tation Framework

This section describes a method to obtain information that is
necessary to construct an object graph during program execution
by using a language implementation framework.
3.2.1 Recording Object Operation

To capture a run-time object operation, we patch a framework
and an interpreter. Moreover, we design this patch to notify the
framework that an object operation happens. Object operation oc-
curs when the interpreter executes a source code section that ma-
nipulates an object. The source codes that perform object manip-
ulation are written in an appropriate area in the interpreter. Our
approach inserts a process to notify the side of a framework of
information about an object operation after the operation occurs.
Moreover, we add functions to collect operation notifications to
the framework.

Next, we define the sender technique that throws notifications
to systems that have an object graph construction mechanism.
3.2.2 Source Code Section

Our system monitors the entire execution of an AST node. Af-
ter noticing all nodes are executed, it links each object operation
to each section. For example, we assume the situation whereby
there are two nodes (A and B), and node B is being executed af-
ter executing node A. In this situation, this technique allows us to
count all object operations after executing node A that belong to
node B.

We explain the detail of this design as follows. The system first
prepares an empty buffer and adds information to it when an ob-
ject operation occurs. When the execution of a node is finished,
the system links the object operations in the buffer with the node.
3.2.3 Call Stack

The system monitors the execution start and end of the func-
tion call node to maintain the call stack virtually. When an object
operation occurs, it links the call stack with the operation.

3.3 Constructing an Object Graph with Intermediate Rep-
resentation Generated from Object Operation History

In this section, we describe the concrete design of a IR we
propose to solve the problem of slow construction using our op-

Table 1 Correspondence table from positions in source code to time.

Line Array at a time
2 [2]
5 [1]
6 [3]
7 [4]
8 [5]

Fig. 13 Example of JavaScript program.

Fig. 14 Hashtable of object operations.

eration history technique.
3.3.1 Time-Series Method

Here, we propose the time-series method, which records ob-
ject operations during program execution and generates an object
graph at a certain point of the execution on demand.

First, this method manages each running process by time.
Specifically, it uses a global time variable for time management.
When an AST node’s executemethod finishes, we take the value
of a current time variable as the finish time of that node. For
all AST nodes, we collect their finish times to get a correspon-
dence between time and source code sections. Thus, when the
user points the cursor at a certain section on the source code, the
method can obtain the time of execution of the section. For ex-
ample, we can get the correspondence shown in Table 1 from the
program shown in Fig. 13.

Next, this method creates a hash table. The key is a couple of
an object and a field identifier, and the value is an array whose
element is a pair of a time and its value. In particular, this method
monitors and collects when the execution of an AST node ends.
When an object is generated, it gathers all referable fields and in-
serts their times and values into the hash table at an appropriate
position. In the case of the program shown in Fig. 13, we can
obtain the records shown in Fig. 14 from the program.

When the user sends a request for visualizing an object graph,
the system generates it using the following procedure:
(1) It collects a time when a section specified in the source code.
(2) It searches the hash table to generate the object graph at that

time. Specifically, it first selects an object to begin scan-
ning, such as a global variable. Next, it examines all of its
fields and records the value if it is a primitive value, such as
a number or a string, at that time. If the value is a reference
to the other object, it records this reference and examines
the object. The system repeats this procedure until it reaches
a primitive value and then produces an object graph at that

c© 2022 Information Processing Society of Japan 457

Journal of Information Processing Vol.30 451–463 (June 2022)

time.
(3) It caches the constructed object graph with the time. If the

user requires an object graph that has already been con-
structed, the system returns the cached one.

We describe the time complexity of the conversion to the IR
during the execution and that of the construction of the object
graph in this method. Hereinafter we assume that the hash ta-
ble and the array have an ideal implementation. First, the execu-
tion cost is O(M), as in a naı̈ve technique using operation history,
where M is the total number of the object operations. Next, we
consider the cost of the construction. By binary search, we can
obtain a value of a particular field in an object at a certain time.
The cost of the construction is O(L log N), where L is the total
number of fields and N is the total number of objects. Therefore,
the time-series method seems to construct the object graph faster
than the naı̈ve method when the number of object operations is
large.

4. Implementation Using Graal/Truffle and
GraalJS

This section describes how to implement our proposals from
Section 3. To be specific, we show the implementation design
by using Graal/Truffle that records and extracts operation history
collection at run-time.

4.1 Recording Object Operations Used for Object Graph
Collection

We define the data representation of an object operation as
shown in Fig. 15. Hereinafter, object denotes an object to be
operated, key denotes an identifier of the field, and value de-
notes a value to be assigned.

4.2 Extraction of Object Operation History Using Graal/
Truffle

4.2.1 Object Operation History
We define a class ObjectTracker and an interface

ObjectChangeListener in the Truffle framework (as shown in
Fig. 16). The class ObjectTracker receives object operation
notifications from the interpreter and notifier systems that require
operation histories. The interface ObjectChangeListener is a
listener for receiving operation notifications. Both have a method
onFieldAssigned. The system that requires the operation his-
tory registers the implementation of ObjectChangeListener
with ObjectTracker. When the interpreter manipulates an ob-
ject, it calls the method onFieldAssigned of ObjectTracker
to notify ObjectTracker of the content of the operation. When
the method onFieldAssigned of ObjectTracker is called,
it calls that of each registered ObjectChangeListener to
notify them of the operation. These implementations enable the
framework to send information about the object operation to the
system.

We select a subclass of SetCacheNode as an example
to explain the implementation described above. A class
SetCacheNode is a superclass that performs an object opera-
tion in the target language. Depending on the type of object
to be manipulated and the value to be assigned, there are mul-

Fig. 15 Definition of a recorded object manipulation.

Fig. 16 Class diagram of ObjectChangeListener and ObjectTracker.

Fig. 17 Example of definition of a subclass of SetCacheNode.

Fig. 18 Example involving modification for notifying SetCashNode of ob-
ject updates.

tiple subclasses of SetCacheNode. The class SetCacheNode
has an abstract method setValue, which takes an instance of
DynamicObject to be operated on and a value to be assigned
as arguments. It performs the operation based on the informa-
tion of the subclass. We show a class ObjectPropertySetNode
as an example subclass of SetCacheNode in Fig. 17. It is spe-
cialized to manipulate an instance of DynamicObject and has
an instance of Property as a member. The method setValue
of ObjectPropertySetNode updates the value of the field of
the given DynamicObject, which the member variable of type
Property represents, to the passed one (as shown in Line 5).

Figure 18 shows the implementation of ObjectPropertySet
Node modified in the way explained above to notify the frame-
work of an object change. Line 5 updates the object, and Lines 6
and below send the operation to the framework.

We have added 397 lines to Truffle to implement the proposed
process. We have also inserted 169 lines and changed 133 lines
to GraalJS. We mention that the total number of lines of code in
Truffle and GraalJS containing our modification is approximately
1.70 million and 265 thousand, respectively.
4.2.2 Source Code Section

This section details the implementations that monitor the exe-
cution of AST nodes of the target language on Graal/Truffle.

We use the ExecutionEventNodeFactory and Execution
EventNode defined in the Instrumentation API to record the end

c© 2022 Information Processing Society of Japan 458

Journal of Information Processing Vol.30 451–463 (June 2022)

of the execution of each node. When an object operation occurs,
they obtain the section in which the execution is completed first
after the operation. Here, we have to consider the nullability of
the value that the method getSourceSection of Node returns.
Given this, we implement recording of the non-null section.
4.2.3 Call Stack

We also use the ExecutionEventNodeFactory and
ExecutionEventNode to construct a call stack. As we ex-
plained in Section 2.2.3, ExecutionEventNodeFactory can
specify which nodes are monitored by ExecutionEventNode.
Truffle provides the tag StandardTag.CallTag, which shows
that it calls a function. Thus we can record the start and end of
the node that is labeled by StandardTag.CallTag to obtain a
call stack.

5. Evaluation

5.1 Targets of Evaluation
In this section, we evaluate the performance of the snapshot

technique and the operation history technique by comparing the
following methods:
• original implementation of Kanon (Original),
• naı̈ve method using operation history (Naı̈ve),
• time-series method (Time-series),
• copy method (Copy) (we describe this in Section 5.1.1).
The original implementation of Kanon converts the given pro-

gram into one with checkpoints and executes it to construct the
object graph. Moreover, it generates an object graph each time
the checkpoint is executed. By contrast, the proposed method
does not perform the program conversion, since the mechanism
of constructing object graphs is implemented in the framework
and the interpreter. While the copy method generates an object
graph each time the checkpoint runs, the time-series method gen-
erates it just-in-time. We have evaluated these and considered
how their differences affect performance.

We have also assessed the performance of the execution in bare
GraalJS (no instrumentation) to measure the overhead of the gen-
eration of snapshots, the collection of operation history, and the
construction of object graphs.
5.1.1 Copy Method

We imitated the snapshot technique in our system to compare
the two techniques: the original Kanon and our operation his-
tory technique. In the snapshot technique, a system initializes
an empty graph. When the object operation occurs, it copies the
current graph generated by the last object modification. Then it
reflects the new operation to the duplicate and stores it with the
current time. These processes generate the time series of the ob-
ject graphs. When the user requires the graph at a certain section
of the source code, it converts the section into time and returns
the latest graph before the time. It can obtain the latest one by
binary search.

Using this technique, the object graph shown in Fig. 19 is ob-
tained from the program shown in Fig. 13. When the system exe-
cutes the program, the object operations performed at Times 1, 2,
and 5 are recorded. When the object graph at the end of Line 3 is
needed, it returns the graph at Time 2, since it is the latest one at
Time 3.

Fig. 19 Object graphs at each time.

5.2 Evaluation Environment
The environment for this evaluation is as follows.
• AMD Ryzen 9 5900X,
• DDR4-2666 64GB RAM,
• Linux 5.10.61-gentoo,
• OpenJDK 1.8.0 292 / 11.0.11 p9-r1,
• V8 9.5.151.

5.3 Evaluation Method
For the original Kanon and our proposed implementations, we

carried out two performance measurements, as explained in Sec-
tion 5.3.1 and Section 5.3.2. For each program, we iterated 30
times and calculated the mean and standard error.

To consider the differences of interpreters, we executed the
original Kanon on GraalJS and V8 and measured its performance.
V8 [12] is a JavaScript engine used in some browsers, such as
Chromium.
5.3.1 Measuring the Execution Time

We measured the execution time to obtain the object operation
history for each target. In particular, we assess the time required
for the following processes:
• for the original implementation: the conversion of the pro-

gram and its execution;
• for the time-series and the copy methods: the execution of

the program with recording of the object operations in the
proposed manner.

We executed these processes enough times to perform a
warmup that is not included in these measurements.
5.3.2 Measuring the Construction and Selection Time of

Object Graphs
We measured the time required for object graph selection and

construction when the user requests the graph at the end of the last
line of the program. For the same reason as for warmup times in
Section 5.3.1, we executed the program enough times but this is
not used in the measurement.
5.3.3 Test Programs for the Measurement

To perform the above performance evaluation, we used three
programs that add elements based on a specific sequence to each
of the data structures of an array-based heap, a doubly linked list,
and an AVL tree.

5.4 Evaluation Results
5.4.1 Measurement Result of the Execution Time

Since each program to be evaluated inserts elements repeat-
edly, the number of object operations is considered to be pro-
portional to the size of the data structure. Indeed the number of
object operations increased in proportion to the size of the data
structure, as shown in Table 2, Table 3, and Table 4. Figure 20,

c© 2022 Information Processing Society of Japan 459

Journal of Information Processing Vol.30 451–463 (June 2022)

Fig. 20 Comparison of execution time on DLList with each method.

Fig. 21 Comparison of execution time on Heap with each method.

Fig. 22 Comparison of execution time on AVL Trees with each method.

Fig. 21, and Fig. 22 are measurement results for the execution
time of each program. Table 5 explains the legends in the evalu-
ation results.

The time complexity in conventional implementation and that
in the copy method seem to be O(N2), where N is the size of
the data structure. The execution in the copy method was faster
than that in the original implementation. On the other hand, the
execution in the naı̈ve method with object history and that it the
time-series method were performed in O(N), and the slope and
the intercept of both were approximately equal.
5.4.2 Measurement Result of the Construction and Selection

of an Object Graph
Figure 23，Fig. 24, and Fig. 25 show the time required to con-

struct or select an object graph. Since the system simply selects
the proper graph from the list of constructed object graphs in the
copy method, it was the fastest of the three methods. Whereas
the theoretical time complexity is considered to be O(log M), the
selection was carried out in constant time in this measurement.
The generation times in the naı̈ve method and in the time-series
method for the program using the doubly linked list were propor-
tional to N, where N is the size of the data structure. In contrast,
for the other programs, those in the naı̈ve method were propor-
tional to N, but those in the time-series method were constant or
proportional to N.

c© 2022 Information Processing Society of Japan 460

Journal of Information Processing Vol.30 451–463 (June 2022)

Table 2 Number of object operations in DLList.

Data size Number of operations
10 193
30 553
50 913
70 1273
90 1633

110 1993
130 2353
150 2713
170 3073
190 3433
210 3793
230 4153
250 4513
270 4873
290 5233

Table 3 Number of object operations in Heap.

Data size Number of operations
10 228
30 913
50 1766
70 2675
90 3675

110 4675
130 5696
150 6836
170 7976
190 9116
210 10256
230 11396
250 12536
270 13781
290 15061

Table 4 Number of object operations in AVL Tree.

Data size Number of operations
10 717
30 2852
50 5299
70 7850
90 10600

110 13350
130 16109
150 19119
170 22129
190 25139
210 28149
230 31159
250 34169
270 37344
290 40614

Table 5 Explanation for the legends in the evaluation results.

Legend Description
Original (D8) Execution of original Kanon on D8
Original (GraalJS) Execution of original Kanon on

GraalJS
Naı̈ve Execution in the naı̈ve method us-

ing operation history
Copy Execution in the copy method (in-

troduced in Section 5.1.1)
Time-series Execution in time-series method
No instrumentation Execution on GraalJS without any

instruments

6. Related Work

6.1 Babylonian System
Babylonian Programming System (BPS) [13] is a language-

agnostic live programming environment. It is also implemented

Fig. 23 Snapshot acquisition and construction time in DLList.

Fig. 24 Snapshot acquisition and construction time in Heap.

Fig. 25 Snapshot acquisition and construction time in AVL Tree.

using Graal/Truffle. Figure 26 shows a screenshot where it anal-
yses the JavaScript program via Visual Studio Code. It provides
some features, such as obtaining and displaying the value re-
turned by the function and arguments specified by the user. That
is, it allows users to write the program and debug it simultane-
ously. BPS obtains the runtime information with GraalVM simi-
larly to our proposed method. In addition, it performs static anal-
ysis to collect information that is not available from the current
API of GraalVM. On the other hand, we proposed to slightly
modify the Truffle framework in order to obtain on it all of the
necessary information required to construct object graphs.

6.2 OnlinePythonTutor
OnlinePythonTutor [14] is also a live programming environ-

ment specialized in data structures. It executes the given program
and displays the graph based on reference relations of objects

c© 2022 Information Processing Society of Japan 461

Journal of Information Processing Vol.30 451–463 (June 2022)

Fig. 26 Babylonian Programming System running on VSCode.

Fig. 27 Screenshot of Online Python Tutor running a program using an
AVL tree.

constructed during the execution (Fig. 27), similarly to Kanon. It
accepts programs written not only in Python but also JavaScript.
In OnlinePythonTutor, its editor and the parts that display the
graph are common to all languages, while the parts collecting the
object graph are implemented from scratch for each language.

7. Conclusion

In this paper, we proposed recording the history of object con-
structions and modifications for live programming environments
specialized to data structures to collect object graphs. We also
suggested implementing it by extending a VM on the language
implementation framework. By extending Graal/Truffle, we im-
plemented a mechanism for the collection of object graphs that
are the same as those obtained by Kanon. In addition, we mea-
sured the execution time and construction time of the object graph
for the original implementation and proposed method. We con-

cluded that the proposed method improves performance.
In future work, we plan to connect the implementation on

Graal/Truffle to the original Kanon. We have already imple-
mented the parts that obtain the information required by Kanon,
but now we have to connect the current Kanon with the proposed
method seamlessly to generate node-link diagrams based on this
implementation.

We must also generalize the proposed method, and we also
plan to apply it to languages other than JavaScript. In particular,
in the VMs with Graal/Truffle, the basic operations such as object
generation seem common to all languages. Thus, we expect that
it will be possible to apply our method to other languages without
substantial changes.

In addition, enabling live programming environments such as
Kanon to be usable in any development environment is the object
of further study. Since many of them now support the language
server protocol (LSP) [15], we consider implementing Kanon us-
ing LSP to be valuable.

References

[1] Tanimoto, S.L.: A Perspective on the Evolution of Live Programming,
Proc. 1st International Workshop on Live Programming, LIVE ’13,
pp.31–34, IEEE Press (2013).

[2] Maloney, J., Resnick, M., Rusk, N., Silverman, B. and Eastmond,
E.: The Scratch Programming Language and Environment, ACM
Trans. Comput. Educ., Vol.10, No.4 (online), DOI: 10.1145/1868358.
1868363 (2010).

[3] Kato, J., McDirmid, S. and Cao, X.: DejaVu: Integrated Sup-
port for Developing Interactive Camera-Based Programs, Proc. 25th
Annual ACM Symposium on User Interface Software and Technol-
ogy, UIST ’12, pp.189–196, ACM (online), DOI: 10.1145/2380116.
2380142 (2012).

[4] Aaron, S. and Blackwell, A.F.: From Sonic Pi to Overtone: Cre-
ative Musical Experiences with Domain-specific and Functional Lan-
guages, Proc. 1st ACM SIGPLAN Workshop on Functional Art, Mu-
sic, Modeling & Design, FARM ’13, pp.35–46, ACM (online), DOI:
10.1145/2505341.2505346 (2013).

[5] Oka, A., Masuhara, H. and Aotani, T.: Live, Synchronized, and Men-
tal Map Preserving Visualization for Data Structure Programming,
Proc. 2018 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software, On-
ward! 2018, pp.72–87, Association for Computing Machinery (on-
line), DOI: 10.1145/3276954.3276962 (2018).

[6] Würthinger, T., Wöß, A., Stadler, L., Duboscq, G., Simon, D. and
Wimmer, C.: Self-Optimizing AST Interpreters, SIGPLAN Not.,
Vol.48, No.2, pp.73–82 (online), DOI: 10.1145/2480360.2384587
(2012).

[7] Würthinger, T., Wimmer, C., Wöß, A., Stadler, L., Duboscq, G.,
Humer, C., Richards, G., Simon, D. and Wolczko, M.: One VM to
Rule Them All, Proc. 2013 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming & Software,
Onward! 2013, pp.187–204, Association for Computing Machinery
(online), DOI: 10.1145/2509578.2509581 (2013).

[8] Archambault, D. and Purchase, H.C.: The mental map and memora-
bility in dynamic graphs, 2012 IEEE Pacific Visualization Symposium,
pp.89–96 (online), DOI: 10.1109/PacificVis.2012.6183578 (2012).

[9] Bolz, C.F., Cuni, A., Fijalkowski, M. and Rigo, A.: Tracing
the Meta-Level: PyPy’s Tracing JIT Compiler, Proc. 4th Work-
shop on the Implementation, Compilation, Optimization of Object-
Oriented Languages and Programming Systems, ICOOOLPS ’09,
pp.18–25, Association for Computing Machinery (online), DOI:
10.1145/1565824.1565827 (2009).

[10] Würthinger, T., Wimmer, C., Humer, C., Wöß, A., Stadler, L.,
Seaton, C., Duboscq, G., Simon, D. and Grimmer, M.: Practical
Partial Evaluation for High-Performance Dynamic Language Run-
times, SIGPLAN Not., Vol.52, No.6, pp.662–676 (online), DOI:
10.1145/3140587.3062381 (2017).

[11] Wöß, A., Wirth, C., Bonetta, D., Seaton, C., Humer, C. and
Mössenböck, H.: An Object Storage Model for the Truffle Lan-
guage Implementation Framework, Proc. 2014 International Con-
ference on Principles and Practices of Programming on the Java
Platform: Virtual Machines, Languages, and Tools, PPPJ ’14,

c© 2022 Information Processing Society of Japan 462

Journal of Information Processing Vol.30 451–463 (June 2022)

pp.133–144, Association for Computing Machinery (online), DOI:
10.1145/2647508.2647517 (2014).

[12] Project, V.: V8 JavaScript engine, available from 〈https://v8.dev/〉.
[13] Niephaus, F., Rein, P., Edding, J., Hering, J., König, B., Opahle, K.,

Scordialo, N. and Hirschfeld, R.: Example-Based Live Programming
for Everyone: Building Language-Agnostic Tools for Live Program-
ming with LSP and GraalVM, Proc. 2020 ACM SIGPLAN Interna-
tional Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, Onward! 2020, pp.1–17, Association
for Computing Machinery (online), DOI: 10.1145/3426428.3426919
(2020).

[14] Guo, P.J.: Online Python Tutor: Embeddable Web-Based Program
Visualization for Cs Education, Proc. 44th ACM Technical Sympo-
sium on Computer Science Education, SIGCSE ’13, pp.579–584, As-
sociation for Computing Machinery (online), DOI: 10.1145/2445196.
2445368 (2013).

[15] Microsoft: Official page for Language Server Protocol, available from
〈https://microsoft.github.io/language-server-protocol/〉.

Shusuke Takahashi received his B.S.
degree in Computer Science from Tokyo
Institute of Technology in 2021. He is
currently a master student at Department
of Mathematical and Computing Science,
Tokyo Institute of Technology.

Yusuke Izawa is a doctoral student at
Department of Mathematical and Com-
puting Science, Tokyo Institute of Tech-
nology. He received his B.S. and M.S.
degrees from Tokyo Institute of Technol-
ogy in 2018 and 2020, respectively. His
research interests include design and im-
plementation of programming languages,

program optimization, and programming experience.

Hidehiko Masuhara is a Professor at
Department of Mathematical and Com-
puting Sciences, Tokyo Institute of Tech-
nology. He received his B.S., M.S.,
and Ph.D. degrees from the University
of Tokyo in 1992, 1994 and 1999 re-
spectively. Before joining Tokyo Institute
of Technology, he served as an Assistant

Professor, Lecturer, and Associate Professor at Graduate School
of Arts and Sciences, the University of Tokyo. His research in-
terests include design and implementation of programming lan-
guages and software development environments.

Youyou Cong is an assistant professor
of the Department of Mathematical and
Computing Science, Tokyo Institute of
Technology. She received her Ph.D. from
Ochanomizu University in 2019. Her re-
search is centered on the theory and ap-
plications of delimited continuations and
type systems.

c© 2022 Information Processing Society of Japan 463

