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ContextJ: Context-oriented Programming with Java

Malte Appeltauer Robert Hirschfeld Michael Haupt Hidehiko Masuhara

Context-oriented programming (COP) allows for the modularization of context-dependent behavioral varia-

tions. So far, COP has been implemented for dynamically-typed languages such as Lisp, Smalltalk, Python,

and Ruby relying on reflection mechanisms, and for the statically-typed programming language Java based

on a library and a pre-processor. ContextJ is our COP implementation for Java. It properly integrates

COP’s layer concept into the Java type system. ContextJ is compiler-based. As confirmed by a bench-

mark and a case study, it provides both better performance and higher-level abstraction mechanisms than

its Java-based predecessors. In this paper, we present the ContextJ language and explain its constructs

and semantics. Further, we give an overview of the implementation of our compiler and discuss run-time

benchmarks.

1 Introduction

The separation of crosscutting concerns (CCCs)

is an important issue of modern program language

design. A CCC is program behavior that cannot be

adequately modularized with respect to the other

parts of a system [26]. Such concerns are typi-

cally scattered over an application’s modules and

hinder software evolution and maintenance. Some

programming paradigms, e. g., aspect-oriented pro-

gramming [20] (AOP), feature-oriented program-

ming [7] (FOP), adaptive object-oriented program-

ming [23], and context-oriented programming [18]

(COP) offer language abstractions to cope with

CCCs.

COP is a novel approach to the dynamic com-

position of CCCs, making it easier for example to

adapt a user interface based on the current user’s
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profile or to instrument a server-side application

to record events for settlement according to a cus-

tomer’s current rate plan. COP introduces layers,

an encapsulation mechanism for behavioral varia-

tions that can crosscut several modules of an ap-

plication. Behavioral variations are represented

by partial method definitions that can dynamically

override or extend their respective base methods.

Partial methods are grouped into layers. Layers can

be dynamically composed with other layers, allow-

ing fine-grained control over an application’s run-

time behavior. A broad introduction to COP is pro-

vided in the other literature [18]. The approach has

been implemented mainly for dynamic languages,

such as Lisp [9], Smalltalk [17], Python [31], and

Ruby [29].

The implementations of COP extensions to dy-

namic languages extensively use the languages’

meta-level capabilities. Meta-programming is a

powerful means; for instance, it allows for ma-

nipulating method dispatch at run-time, which is

necessary for dynamic method overriding, a key

feature of COP. However, the expressiveness of
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meta-programming does not come for free. As dis-

cussed in [1], the meta-level implementations of

COP introduce a significant performance decrease

to method lookup and execution of their host lan-

guages.

Based on our experiences with previous COP

implementations, we stated the following two re-

quirements for a Java language extension. First,

run-time performance must be considered. Since

a reflection-based implementation is not an option,

we need to use an alternative implementation strat-

egy. Second, the language extension should be fully

integrated into the Java language. This includes a

intuitive syntax and integration of the COP con-

cepts into the Java type system.

In this paper, we present a ContextJ language

specification and a compiler-based implementation

that fulfills our requirements. We introduce Con-

textJ’s language constructs and give an overview of

the compiler design and implementation. Further-

more, we discuss run-time benchmark evaluations

and a case study.

Our paper is structured as follows. Section 2

gives an overview of context-oriented programming.

Section 3 explains its features for the modulariza-

tion and run-time composition of crosscutting con-

cerns. The ContextJ compiler is presented in Sec-

tion 4, along with some micro-benchmarks. We dis-

cuss related work in Section 5 and finally summa-

rize the paper in Section 6.

2 Context-oriented Programming

2. 1 Overview

The COP paradigm features a new approach to

software modularization by supporting an explicit

representation of context-dependent functionality

that can be dynamically activated or deactivated.

Below, we introduce basic notions of COP rele-

vant in this paper.

COP assumes context to be everything that is

computationally accessible, such as a variable’s

value, control flow properties, or even external

events. Based on these primitives, context can

be modeled for more complex information such

as personalization, security settings, or location-

awareness.

Layers are a modularization concept orthog-

onal to classes, in which crosscutting context-

specific functionality can be encapsulated. Layers

can range over several classes and contain partial

method definitions that implement behavioral vari-

ations. To distinguish between the different kinds

of method definitions, we introduce the terms plain

method definition and layered method definition. A

plain method denotes a method whose execution

is not affected by layers. Layered methods con-

sist of a base method definition, which is executed

when no active layer provides a corresponding par-

tial method, and at least one partial method defi-

nition.

Layers are composed at run-time. Their par-

tial method definitions can be executed before, af-

ter, around, or instead the base method definition.

More than one layer of a composition may provide

a partial definition of the same method, therefore, a

partial method can proceed to the next partial def-

inition in the composition or, if no adequate varia-

tion exists, to the base method definition.

Layer composition is controlled per thread and is

by default scoped to the dynamic extent of a block

of statements. This fine-grained dynamic compo-

sition is essential for the development of context-

dependent systems.

2. 2 Java-based COP

The first ideas about a ContextJ language have

been presented in [10] to improve the accessibility

of the ContextL/Lisp code discussed in that pa-

per. The authors introduced ContextJ syntax only

in a pseudo-code manner and neither provided a
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1 public class Account {

2 private int accountNumber;

3 private float balance;

4 public Account(int accNr) {

5 accountNumber = accNr;

6 }

7 public void credit(float amount) {

8 balance = balance + amount;

9 }

10 public void debit(float amount) {

11 balance = balance - amount;

12 }

13 public float getBalance () {

14 return balance;

15 }

16 }

17 public class TransferSystem {

18 public void transfer(Account from , Account to,

19 float amount) {

20 from.debit(amount );

21 to.credit(amount );

22 }

23 }

Listing 1 Bank accounts and transfers.

feature-complete syntax nor a language specifica-

tion.

That ContextJ draft has not been implemented,

however there exists a proof-of-concept implemen-

tation called ContextJ* [18]. It is a Java 5 library

that implements the core concepts of COP, i. e.,

layer definition and activation. This implementa-

tion demonstrates that COP can be supported by

means of Java without any extension to the syntax

or semantics of the language. However, the proper

use of ContextJ* requires developers to follow sev-

eral idioms within their code, leading to complex

implementations in ContextJ* programs.

ContextLogicAJ [4] [2] is an aspect-oriented pre-

compiler that offers a more convenient syntax than

ContextJ*. It is based on an aspect library imple-

mented in LogicAJ [22], a generic aspect language.

With ContextLogicAJ, we experimented with al-

ternative implementation and transformation tech-

niques to transform COP semantics into an object-

oriented language.

Both implementations remain prototypes and

only provide limited COP support. Furthermore,

they do not extend Java’s syntax with dedicated

constructs but expect the programmer to also fol-

low several idioms, which makes code fragile and

with that not applicable to production scenarios.

3 ContextJ Language

In the following, we introduce ContextJ language

constructs and successively extend the example

presented in Listing 1 with context-specific func-

tionality. The class Account contains methods to

credit or debit money. A TransferSystem handles

the transfer of an amount of money from one ac-

count to another.

Throughout this section, we show the implemen-

tation of two context-dependent concerns, encryp-

tion and logging, by means of ContextJ. We as-

sume that these concerns should not be statically

applied to the system, but rather dynamically com-

posed whenever necessary. The syntax production

rules are specified in Extended Backus-Naur Form

(EBNF), where terminals are shown in fixed font.

ContextJ extends the set of Java terminal symbols

with layer, with, without, proceed, before, and

after. We omit standard Java elements by using

“...” and present only the ContextJ constructs and

their entry points into the Java syntax [14].

3. 1 Modularization

Layer. ContextJ implements the layer-in-class

style [18]; that is, layers are defined within classes,

and classes thereby carry their own context-specific

variations. The syntactic structure of the construct

is shown below.
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1 import layer EncryptionLayer;

2 import layer LoggingLayer;

3

4 public class Account {

5 ...

6 layer EncryptionLayer {

7 public void credit(int am) {

8 proceed(RSA.decrypt(am));

9 }

10 public void debit(int am) {

11 proceed(RSA.decrypt(am));

12 }

13 public int getBalance () {

14 return RSA.encrypt(proceed ());

15 }

16 }

17 layer LoggingLayer {

18 after public void credit(int am) {

19 Logger.logCredit(this , am);

20 }

21 after public void debit(int am) {

22 Logger.logDebit(this , am);

23 }

24 public int getBalance () {

25 int balance = proceed ();

26 Logger.logBalanceRequest(this , balance );

27 return balance;

28 }

29 }

30 }

31 -------------------------------------------

32 import layer EncryptionLayer;

33 import layer LoggingLayer;

34

35 public class TransferSystem {

36 ...

37 layer EncryptionLayer {

38 public void transfer(Account from , Account to,

39 int amount) {

40 without (EncryptionLayer) {

41 proceed(from , to, RSA.encrypt(amount ));

42 }

43 }

44 }

45 layer LoggingLayer {

46 after public void transfer(Account from ,

47 Account to, int amount) {

48 Logger.logTransfer(from , to, amount );

49 }

50 }

51 }

Listing 2 Layers for encryption and logging.

ClassBodyDeclaration ::=

... | LayerDefinition

LayerDefinition ::=

layer Identifier { PartialMethodDefinition* }

A layer consists of an identifier and a list of

partial method definitions. A partial method def-

inition’s signature must correspond to that of a

method of the enclosing class or its superclass. Fi-

nal methods cannot be extended by layers.

Layer Identifier. Layers are referenced by layer

identifiers that must be made visible to the com-

pilation unit by using a layer import declaration,

corresponding to type import declarations.

ImportDeclaration ::=

... | LayerImportDeclaration

LayerImportDeclaration ::=

import layer Identifier ;

Partial Method Definitions. Layer defini-

tions can contain partial method definitions. A par-

tial method definition of a method M overrides

the default definition of M during the activation

of its layer. Partial method definitions allow dif-

ferent strategies to proceed to their corresponding

method. Besides the default around behavior, par-

tial methods can provide functionality that should

be executed before or after a particular method.

This intention can be expressed with the modifiers

before and after for partial methods, denoting

that their behavior should be executed before or

after the method execution. An after method is

always executed after the original method, even if

it throws an exception. This semantics corresponds

to after returning or throwing advice of AspectJ-

like languages.
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PartialMethodDefinition ::=

[ before | after ] MethodDeclaration

For explicit invocation of the next partial method

definition (or the default method), the built-in

pseudo method proceed can be used. Both the re-

turn type and the expected arguments of proceed

conform to the method’s signature.

Expression ::=

... | Proceed

Proceed ::=

proceed( ArgumentList )

Listing 2 depicts the separate declaration of

two layers that implement crosscutting concerns.

For example, the definition of EncryptionLayer

in Account (Lines 5–15) contains partial defini-

tions of methods that encrypt or decrypt method

parameters and then call the next partial defini-

tion with the encrypted values. The same layer

provides a partial definition of a method within

TransferSystem (Lines 35–51).

The partial methods in Lines 7–15 and 24–28 in-

voke the next definition by calling proceed with the

new parameters. LoggingLayer (Lines 17–29, 45–

50) introduces logging functionality to the meth-

ods. Some of its partial method definitions contain

the after modifier, which means that they are ex-

ecuted after the computation of their next partial

definition. To use layer identifiers in a class, the

enclosing compilation unit must declare them first

(Lines 1–2 and 32–33).

3. 2 Dynamic Layer Composition

Layer Activation. To control scoped layer acti-

vation, ContextJ introduces a new block statement,

with, that can be used in method bodies. The with

block provides an argument list that contains the

1 public void transfer100(Account from ,

2 Account to) {

3 ...

4 with(LoggingLayer) {

5 with(EncryptionLayer) {

6 transferSystem.transfer(from , to, 100);

7 }

8 }

9 }

10 -------------------------------------------

11 public void transfer100(Account from ,

12 Account to) {

13 ...

14 with(LoggingLayer , EncryptionLayer) {

15 transferSystem.transfer(from , to, 100);

16 }

17 }

Listing 3 Nested layer activation.

identifiers of the layers to be activated. These lay-

ers are only active for the dynamic extent of the

with block. This implies that the activation of a

particular layer is confined to the threads in which

the layer was explicitly activated. Layer activation

does not propagate to new threads; they start with

no layers being active.

Block ::=

... | LayerActivation

LayerActivation ::=

with(ArgumentList) {BlockStatement*}

Like standard Java block statements, with state-

ments can be nested. The list of active layers is then

extended with the arguments of the inner layer ac-

tivation. If more than one active layer provides a

partial definition for a method, the order of layer

activation defines the proceed chain. The list of ac-

tive layers is traversed according to the last-in-first-

out principle: the most recently activated layer is

visited first. When a layer is activated or deacti-

vated more than once, only its most recent activa-

tion or deactivation is effective.
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図 1 Progression of a method invocation through a list of active layers.

ContextJ supports the direct and indirect enu-

meration of a sequence of layers to be activated.

Layer identifiers can be directly passed to the ar-

gument list.

Listing 3 shows two alternative notations for

a direct layer activation. Lines 1–8 show two

nested with blocks that consecutively activate

LoggingLayer and EncryptionLayer. Lines 10–

15 contain the same activation using a list of layer

identifiers in a single with block.

Figure 1 illustrates the execution of transfer

in Lines 5 and 13 in Listing 3. The invocation

is first dispatched to EncryptionLayer, then to

LoggingLayer, and finally to the base method. The

base method of transfer invokes credit and debit

methods on its Account parameters. Both active

layers also provide partial methods for them, thus

the method calls again pass the layers, as depicted

in Figure 1.

Often, the computation of the layers to be used

is either complex, or the layers cannot be directly

specified at compile-time. For more flexibility,

expressions of type Layer, Iterable<Layer>, or

Layer[] can be used as arguments. If the with ar-

guments are evaluated to an empty list (or null),

no layer will be activated. Listing 4 exemplifies

such an indirect activation by a method call used

as with argument.

Layer Deactivation. We provide a means to

express the exclusion of a certain layer from a com-

1 public void debit100(Account account) {

2 with(debitCompositon(account )) {

3 account.debit (100);

4 }

5 }

6

7 public List <Layer > debitCompositon(Account acct) {

8 List <Layer > layers = new ArrayList <Layer >();

9 if(securityLevelHigh(acct))

10 layers.add(EncryptionLayer );

11 if(transactionLoggingAllowed(acct))

12 layers.add(LoggingLayer );

13 return layers;

14 }

Listing 4 First-class layers.

position. This is because, if several layers provide

a partial definition of a certain method, it may be

possible that these definitions interfere with each

other. The without block construct works con-

trariwise to with in the sense that layers specified

by without are deactivated for its dynamic extent.

All other properties regarding thread locality and

nesting hold as described for layer activation above.

Block ::=

... | LayerDeactivation

LayerDeactivation ::=

without(ArgumentList) {BlockStatement*}

Listing 5 contains a modified version of the par-

tial method of TransferSystem.transfer that uses
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1 layer EncryptionLayer {

2 public void transfer(Account from ,

3 Account to, int amount

4 ) {

5 without(LoggingLayer) {

6 proceed(from , to, RSA.encrypt(amount ));

7 }

8 }

9 }

Listing 5 Layer deactivation.

without to prevent the logging layer from monitor-

ing the transaction.

3. 3 Reflection API

With the constructs presented so far we are

able to handle most common scenarios for be-

havioral variations. For situations requiring spe-

cial reasoning about layer, we provide a reflec-

tion API that gives access to inspect and ma-

nipulate layers, their composition and their par-

tial methods at run-time. The API consists of

three classes of the contextj.lang package, namely

Layer, Composition, and PartialMethod. The

superclass of all layers, Layer, provides meth-

ods to access a layer’s enclosing composition

and partial method definitions. Composition ob-

jects allow access to their layers and the (de-

)activation of layers. PartialMethod is the meta-

class of partial methods, corresponding to Java’s

java.lang.reflect.Method class. As Method, it

inherits from AccessibleObject and implements

the Member interface, which are both defined in the

package java.lang.reflect. Table 1 describes the

API methods.

As an example for the use of the API, we want

to assert that no other layer provides a partial def-

inition for transfer. Listing 6 presents an imple-

mentation of such behavior. First, we access the

current composition (Line 3) and retrieve an array

1 layer EncryptionLayer {

2 public void transfer( ... ) {

3 Composition comp = Composition.current ();

4 Layer[] ls = comp.getLayers ();

5 String signature = /*this methods signature */;

6 for(Layer l : ls ) {

7 if ( (l != EncrpytionLayer) &&

8 (l.providesPartialMethodFor(signature )))

9 throw new RuntimeException(

10 "Method overriding by layer forbidden.");

11 }

12 /* do the encryption */

13 }

Listing 6 Use of reflection API.

of all active layers (Line 4). For each active layer

except EncryptionLayer we check if it provides a

partial definition of transfer (Lines 6-7). If it does,

we throw a runtime exception.

4 Implementation and Evaluation

We developed a compiler for ContextJ because

the reflection-based implementation approaches

(see Section 5) taken for COP extensions to dy-

namic languages are not suitable for Java.

4. 1 Layer-aware Message Dispatch

Since we want to use ContextJ with existing

Java tools and environments, our compiler is byte

code compatible with Java. To generate plain Java

byte code from ContextJ source code, we devel-

oped a translator from ContextJ’s abstract syntax

tree (AST) to that of Java. This translator, as de-

scribed in the following, is implemented as re-write

rules that are executed during compilation.

First, we describe the general steps of layer-aware

method lookup at runtime. For a call to a method

M and a list of active layers L:

1. Find the last layer Li ∈ L that contains a par-

tial method definition (MLi) for method M .

2. If a MLi exists, execute it.

3. If MLi contains a proceed expression, lookup



8 日本ソフトウェア科学会第 26回大会 (2009年度)講演論文集

contextj.lang.Layer

static Layer forName(String) Returns the layer associated with the given string name

Composition getComposition() Returns the enclosing layer composition

boolean isActive() Returns true if the layer is activated

boolean providesPartialMethodFor(String) Determines if the layer provides a partial definition for a

method with signature represented by the parameter

PartialMethod[] getPartialMethods() Returns an array of PartialMethod objects reflecting all the

partial methods provided by the layer

PartialMethod getPartialMethod(String) Returns a PartialMethod object representing a partial method

of the layer with the signature specified by the parameter

contextj.lang.Composition

Layer[] getLayers() Returns an array of the layers of the composition

void activateLayer(Layer) Activates a layer in the current composition

void deactivateLayer(Layer) Deactivates a layer in the current composition

contextj.lang.PartialMethod

Layer getDefiningLayer() Returns the layer defining this partial method

Class getDeclaringClass() Returns the declaring class of the partial method

Class[] getExceptionTypes() Returns an array of the exception types

String getName() Returns a string representation of that method

Class getReturnType() Returns the return type of the method

int getModifiers() Returns the Java language modifiers for the method represented

by this Method object, as an integer

Object invoke(Object target, Invokes the underlying partial method on the specified object

Object... args) with the specified parameters
表 1 The ContextJ reflection API.

the next layer Lx ∈ L, x < i that contains MLx

and repeat Step 2, else continue with Step 4.

4. Execute the original method definition.

The dynamic structure of L can be implemented

as an ordered list consisting of layer objects. For

the implementation of layer lookup we use inheri-

tance: Each layer Li is subtype of ConcreteLayer,

which in turn inherits from Layer. If no layer is

activated, the layer list only consists of one Layer

element. For each layered method M , Layer pro-

vides a delegation method that simply calls M , cor-

responding to Step 4.

To traverse the layer list in Steps 1 and 3,

ConcreteLayer overrides these methods and im-

plements a delegation to the next layer in the list.

Each Li that provides a MLi overrides the delega-

tion method of ConcreteLayer with a call to MLi ,

which is implemented in the same class as M . Its

signature corresponds to M ’s, except for the first

parameter, whose type is Li. The first parameter

allows to distinguish multiple partial definitions of

M . Layer activation can be implemented in a sim-

ple way: Basically, the with block is replaced by

two static methods of Layer that allow to add and

remove items from the list.

Mappings for Account and EncryptionLayer are

shown in Figure 2. Note that the Java source code

presented here is not generated but directly trans-

formed into byte code during compilation.

4. 2 Compiler Implementation

Syntax Specification. The implementation

of the ContextJ compiler is an extension of Jas-

tAddJ [12], an open Java compiler based on the Jas-

tAdd [16] compiler framework. Typically, compiler

extensions require adaptations in several modules,

such as the scanner, parser, abstract syntax tree

(AST), and semantic analysis. JastAdd is a mod-

ular compiler framework that uses aspect-oriented

techniques to encapsulate specifications into dedi-
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図 2 Mapping of a ContextJ program to Java.

cated modules. During the compiler build process,

the separate specifications are woven into one exe-

cutable compiler.

For lexical analysis, JastAdd employs JFlex [21],

a scanner generator for Java. Each keyword spec-

ification provides a corresponding terminal symbol

that can be used in the parser and is woven into

the scanner at build-time. This is how the Con-

textJ keywords are introduced.

JastAdd provides an object-oriented abstract

grammar from which the Java AST representation

is generated. The abstract grammar does not con-

tain any behavior specification; this is done by sep-

arate attribute and equation specifications. For a

modularized specification, inter-type declarations

are used to extend existing trees. We extend the

Java AST definition by node types for layers, par-

tial method definitions, the proceed expression,

and layer activation and deactivation.

By default, JastAdd uses the Java-based parser

generator Beaver [11], a LALR(1) parser genera-

tor. The system is able to consume the tokens that

are generated by JFlex. Beaver accepts a context

free grammar, expressed in EBNF, and converts it

to a Java class that implements a parser for the

language described by the grammar.

AST Transformations. For the implementa-

tion of the behavior shown in Section 4. 1, we make

use of JastAdd’s re-writing facilities. Typically, re-

write rules change or replace a certain AST node

or subtree with another. We use this technique to

translate ContextJ-specific nodes into Java nodes

that implement their behavior. For the implemen-

tation of layer-aware message dispatch the re-write

rules introduce a class for each layer L and several

methods for each of L’s partial methods.

In the following, we describe the transformation

steps to generate these methods.

• For each layer L, a class Lclass will be created

as a subtype of contextj.lang.Layer

• A new parameter of type Lclass is inserted into

the parameter list of each partial method defi-

nition ML. Subsequently, ML is moved to the

enclosing class. When all partial methods of L

have been transformed, L is removed from the

member list of its enclosing class.
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• For each ML a forwarding method Mforward

is created in Lclass. It calls ML with its own

instance as first parameter.

• The body of a base method Mbase is moved to

a new method M base.

• For each ML a default forwarding method

Mforward is created in contextj.lang.Layer.

It calls Mforward on the next layer of the com-

position. If the composition does not contain

any more layers it calls M base with its own

instance as first parameter.

• The body Mbase will be replaced by a call to

Lclass
first.M

forward, where Lclass
first is the outermost

layer in the thread local composition.

In addition to this transformations, the compiler

provides auxiliary transformations for static, pri-

vate, or protected methods. Figure 2 gives an ex-

ample of ContextJ syntax and its transformation

into Java.

Finally, the compiler generates byte code for the

transformed layers. The application can then be

executed as a plain Java program.

4. 3 Benchmarks

This section discusses our run-time measure-

ments, based on the Java Grande Forum Bench-

mark Suite [8], for which we developed, in the fash-

ion of [15], a set of micro-benchmarks to assess the

performance of layer-aware method dispatch. The

micro-benchmarks were run on an 1.8 GHz dual

core Intel Core2Duo with 2 GB main memory run-

ning on Windows XP. All benchmarks are executed

once before the actual measurement to assure that

virtual machine optimizations are performed.

4. 3. 1 Plain vs. Layered Methods

In order to measure the overhead of the execution

of a layered method compared to an identical plain

method, we set up a micro-benchmark that exe-

cutes different types of plain methods and layered

methods without active layers. The benchmark in-

cludes synchronized and non synchronized instance

and class methods. Besides self-invocations, the

benchmark considers calls to other classes. All

methods increment a class variable.

Figure 4 illustrates the results of this bench-

mark. In all tests, plain methods are significantly

faster than their layered counterparts; the latter

are two to five times slower. The overhead is

caused by layer lookup, which is executed even if no

layer is active. The lookup requires at least three

additional method invocations plus access to the

thread-local layer list.

4. 3. 2 Layer-aware Message Dispatch

A further set of benchmarks measures the over-

head caused by the execution of an increasing num-

ber of partial methods. We again compare the

throughput of plain methods and layered meth-

ods. The measurement consists of 15 plain methods

(m01-m15) and integer fields (c01-c15), where each

method increments one more field than its prede-

cessor, so that method m01 increments c01 and m15

increments the fields c01-c15. The benchmark ver-

sion using layers contains one base method m that

increments c01, and 14 layers. Each layer provides

a partial definition for m that increments one dis-

tinct field and then proceeds to the next layer.

The results are presented in Figure 5. The num-

ber of invocations per millisecond of the layered

method decreases with an increasing number of lay-

ers from approximately 40,000 to 10,000, which

is a performance decrease of 75%. The plain

method calls per millisecond range from 300,000 for

a method that increments one field down to 77,000

for a method incrementing 15 fields. Again, the

performance decrease equals approximately 75%.

The plain methods are highly optimized by the

Java virtual machine in the first four runs of

our benchmark, where up to four fields are incre-

mented. The succeeding runs of five and more field

increments are approximately three times slower,
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図 3 AST transformation of ContextJ nodes to Java nodes.

図 4 Different types plain and layered methods.

indicating that the virtual machine stops some opti-

mizations of blocks containing more than four field

increments.

The layered methods are executed significantly

slower. The Java code of layered message lookup

generated by the ContextJ compiler contains

thread-local method invocations that cannot be

easily optimized by the Java VM. However, except

for the overall overhead, intensive use of layers in-

creases execution time of layered methods only pro-

portional to plain methods. Nevertheless, future

work on ContextJ must consider performance opti-

mizations.

4. 4 Other COP Implementations for Java

The preceding measurements compare the run-

time behavior of ContextJ with Java. Since one

goal of our compiler-based implementation is to

provide an adequate performant COP implemen-

tation in Java, we applied the previous benchmark

setting to ContextJ and the two preceding imple-

mentations, namely ContextJ* and ContextLogi-

cAJ. The results are presented in Figure 6.

ContextJ and ContextLogicAJ exhibit roughly

equal performance characteristics. We expected

this result since both approaches transform COP

syntax into (almost the same) plain Java code at

compile-time or weaving time, respectively. Con-

textJ supports however more features and comes

with a dedicated, more declarative syntax than

ContextLogicAJ.

ContextJ and ContextLogicAJ perform signifi-

cantly better than the Java 5 based ContextJ*

approach. With more than one active layer,

ContextJ* constantly processes approximate 1,500

method calls per millisecond. This is 6 to 16 times

slower than ContextJ and ContextLogicAJ.

4. 5 Case Study

As a case study, we implemented CJEdit [3],

a simple programming environment for ContextJ

in ContextJ. The editor provides syntax highlight-

ing, an outline view, and a compilation/execution

toolbar. CJEdit also allows to comment Con-
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図 5 Increasing number of active layers.

textJ compilation units using rich text. For this

task, the editor provides rich text formatting fea-

tures. Through the combination of rich text and

source code, CJEdit documents are single-source,

executable representations of code and documenta-

tion.

Both activities require different functionality, so

our application supports focusing on the actual task

at hand by offering only relevant tools, menus, and

widgets. A switch between the text editing and

programming features is either directly triggered

by the user, or on text cursor change: While writ-

ing new text, the user can enter the programming

mode by pushing a toolbar button. Whenever the

text cursor is moved through the document from

text to code and vice versa, the GUI elements are

changed accordingly also.

CJEdit is implemented using ContextJ and the

Qt Jambi GUI Framework [25]. It consists of ap-

proximately 1400 lines of code, where most parts

are written with plain Java constructs and the help

of the Qt GUI Designer. The de-/activation of

task-specific user interfaces and behavior are imple-

mented in ContextJ. The system contains distinct

layers that encapsulate rich text and programming

widgets such as toolbars and their corresponding

behavior.

5 Related Work

We discuss related work in two areas; namely

existing implementations of context-oriented pro-

gramming and approaches to the modularization

of crosscutting concerns for the Java programming

図 6 Comparison of Java COP extensions.

language.

5. 1 COP Implementations

ContextL [9] [10] was the first COP extension to a

programming language. It is based on Lisp and ex-

tends the Common Lisp Object System. Layers can

be defined for classes, functions and methods. At

run-time, layers can be de-/activated for a certain

control flow.

Subsequently, several meta-level libraries for dy-

namic programming languages were developed,

namely ContextS [17] for Smalltalk, ContextR [29]

for Ruby, ContextJS for JavaScript, ContextPy [30]

and PyContext [31] for Python, and ContextG for

Groovy. A minimal subset of ContextJ, cj, is im-

plemented for the delMDSOC kernel [27] [28].

Another approach to context-orientation is Am-

bience and its underlying Ambient Object Sys-

tem [13]. It supports behavior adaptations with

partial method definitions and context objects,

which correspond to COP layers.

The various context-oriented extensions for sev-

eral other programming languages are implemented

using the respective language’s meta-level facilities;

none of them utilizes bytecode transformation as

ContextJ does. An comparison of their language

features is provided in [1].

5. 2 Modularization of Crosscutting Con-
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cerns in Java

Aspect-oriented language extensions also provide

constructs for modularizing CCCs [20] in order to

decrease code scattering and tangling. Aspect-

orientation adopts a specific view on CCCs: A CCC

contains functionality that is executed at different

join points, well-defined points in a program’s con-

trol flow. The key abstractions of aspect-oriented

languages are pointcuts, predicates that describe a

set of join points, and advice, blocks of functionality

that can be bound to pointcuts. In COP, CCCs can

be expressed as behavioral variations within lay-

ers. Layers can either be dedicated modules like as-

pects (class-in-layer), or defined within the classes

themselves (layer-in-class). Depending on the host

language properties, concrete COP implementation

support either one or both layer definition styles.

ContextJ supports layer-in-class and therefore dif-

fers from AspectJ-like Java extensions.

AspectJ [19] is an aspect-oriented language ex-

tension to Java. It comes with a join point model

that includes method calls, executions and field ac-

cess. Advice blocks allow to extend a join point

with additional behavior which can be woven be-

fore, after, or around the join point. Aspects are

woven at compile or load time and are globally

scoped.

CaesarJ [5] comes with an alternative module

concept by unifying classes, aspects, and packages.

CaesarJ aspects can be deployed at run-time using

different kinds of dynamic scope, much like Con-

textJ layers. CaesarJ supports virtual classes [24],

a concept that enables dynamic class extension, de-

pending on the caller’s scope. The ability of virtual

classes to extend modules is similar to layers. How-

ever, class extension with layers is not bound on the

caller’s module but differs depending on the current

layer composition.

Feature-oriented programming (FOP) [7] ad-

dresses the process of step-wise refinement for

product-line development. The Java-based

AHEAD Tool Suite [6] is an implementation

of FOP. As programming language, it supports

Jakarta which extends Java with constructs such as

class refinements for static feature-oriented compo-

sition. Layers in Jakarta are distinct files describing

static class refinements. The foundations of FOP

and COP are similar: Both introduce new or alter-

native program behavior through features or lay-

ers, respectively. However, FOP applies compile-

time composition of feature variations in contrast

to run-time composition as provided by COP.

For further comparison of AOP, FOP, and COP,

we refer to [18].

6 Summary

The modularization of CCCs is a well known

issue that is addressed by several programming

paradigms and language extensions. For their vali-

dation and further development they need to be ap-

plied to different language domains to assess their

usability and expressiveness. In that regard, Java-

like languages are an important domain for the as-

sessment of new language abstractions, due to their

popularity and use in a wide range of software sys-

tems.

In this paper, we present a compiler-based im-

plementation of ContextJ, a language extension for

COP to Java. We describe ContextJ’s language

features that support the modularization and dy-

namic composition of CCCs. Further, we show

the design and implementation of the ContextJ

compiler and discuss benchmarks of layer-aware

method lookup. Our language is used for the im-

plementation of a context-aware programming en-

vironment and proved to be stable in combination

with existing Java-based frameworks.
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[31] von Löwis, M., Denker, M., and Nierstrasz, O.:

Context-oriented Programming: Beyond Layers,

ICDL ’07: Proceedings of the 2007 International

Conference on Dynamic Languages, Demeyer, S.

and Perrot, J.-F.(eds.), ACM International Confer-

ence Proceeding Series, Vol. 286, New York, NY,

USA, ACM Press, 2007, pp. 143–156.


