
1

日本ソフトウェア科学会第 28 回大会 (2011 年度) 講演論文集

Test-Driven Fault Navigation for Debugging

Reproducible Failures

Michael Perscheid, Michael Haupt, Robert Hirschfeld and

Hidehiko Masuhara
Debugging activities, particularly those for searching for failure causes, are often laborious and time-

consuming. Techniques such as spectrum-based fault localization or back-in-time debugging help program-

mers to reduce development cost. However, such approaches are often limited to a single point of view,

ignoring the need for combined perspectives.

We present test-driven fault navigation as an interconnected guide to failure causes. Based on failure-

reproducing unit tests, we introduce a novel systematic top-down debugging process with corresponding

tool support. With spectrum-based fault localization, we offer navigation to suspicious system parts and

erroneous behavior in the execution history and rank developers most qualified for addressing the faults

localized. Our evaluation illustrates the practicability of this approach, its high accuracy of developer

recommendation, and the fast response times of its corresponding tool suite.

1 Introduction

Debugging is one of the most laborious develop-

ment activities. The search for failure causes re-

quires deep knowledge of the system and its be-

havior [26]. Developers have to follow the infection

chain backwards from the observable failure to the

past defect [27]. In practice, this process is mostly

manual and tedious since standard debuggers offer

neither advice to failure-inducing origins nor back-

in-time capabilities. Thus, this activity often con-

sumes a significant amount of time.

To decrease the required effort for localizing fail-

ure causes, researchers have proposed several tech-

再現可能な誤りをデバッグするためのテスト駆動型誤り発
見ツール

Michael Perscheid, Michael Haupt, and Robert

Hirschfeld, Software Architecture Group, Hasso

Plattner Institute, University of Potsdam, Germany.

増原英彦, 東京大学大学院総合文化研究科, Gradu-

ate School of Arts and Sciences, the University of

Tokyo.

niques which, however, only provide either a purely

static, dynamic, or expertise-focused point of view.

Spectrum-based fault localization [9] produces a pri-

oritized list of suspicious statements from the dy-

namic analysis of test cases. These source code

snippets have no relations to erroneous behavior

and it is not clear how failures come to be or how

infected state is propagated. Back-in-time debug-

gers [12] focus on dynamic views of execution his-

tory. Unfortunately, the missing classification of

suspicious or harmless behavior forces developers

to make several and often laborious decisions on

which execution subtree to follow. Automatically

assigning bug reports to more experienced devel-

opers [2] reduces overall debugging time, but the

problem of how to identify failure causes remains.

Although all of these techniques have respective

benefits, we expect their combination to be able

to limit the shortcomings. We argue that efficient

debugging requires linked views between suspicious

source code entities and erroneous behavior, as well

2 日本ソフトウェア科学会第 28回大会 (2011年度)講演論文集

as qualified developers for analyzing these entities.

In this paper, we present test-driven fault navi-

gation as a systematic top-down debugging process

with corresponding tool support that guides de-

velopers to failure causes within structure and be-

havior, and also to corresponding expert members

of the development team. Developers can localize

suspicious system parts, debug erroneous behav-

ior back in time, and identify colleagues for help.

Based on unit tests as descriptions of reproducible

failures, we combine the results of spectrum-based

fault localization with a compact system overview,

execution history, and development information.

The Path tool suite realizes our approach

and consists of an extended test runner (Path-

Map) for visualizing suspicious system parts, a

lightweight back-in-time debugger for unit tests

(PathDebugger), and a metric for linking failures

to suitable developers. By leveraging unit tests as

a basis for dynamic analysis, we can ensure a high

degree of automation, scalability, and performance.

Thus, we expect to further reduce the cost of de-

bugging as we are able to answer where the failure

cause is located, how erroneous behavior is related

to suspicious methods, and which developer is most

qualified for fixing the bug.

The contributions of this paper are as follows:

• A novel systematic debugging process for un-

derstanding and fixing faults that can be re-

produced by tests.

• A test-driven fault navigation technique that

suggests interconnected advice to failure causes

in structure, behavior, and experts in the de-

velopment team.

• A realization of our approach by providing in-

tegrated tool support for the Squeak/Smalltalk

IDE.

We evaluate our approach with respect to prac-

ticability in a real-world project, accuracy of our

developer ranking metric, and efficiency of our tool

suite.

The remainder of this paper is structured as

follows: Section 2 introduces our motivating case

study and explains contemporary challenges in test-

ing and debugging. Section 3 presents test-driven

fault navigation as a systematic debugging process,

followed by a detailed description of its supporting

tools. Section 4 evaluates the practicability, ac-

curacy, and efficiency of our approach. Section 5

discusses related work, and Section 6 concludes.

2 Finding Causes of Reproducible Fail-

ures

We introduce a motivating example for an error

taken from the Seaside Web framework [19] that

serves as a basis for our discussion of challenges in

testing and debugging. Seaside is an open source

Web framework written in Smalltalk and consists

of about 400 classes, 3,700 methods and a large

unit test suite with more than 650 test cases. By

this example, we will demonstrate test-driven fault

navigation in Section 3.

2. 1 Typing Error Example in Seaside

We have inserted a defect into Seaside’s Web

server and its request/response processing logic

(WABufferedResponse class, writeHeadersOn: method).

Figure 1 illustrates the typing error inside the

header creation of buffered responses. The typo

in “Content-Lenght” is inconspicuous but leads to

invalid results in requests that demand buffered re-

sponses. Streamed responses are not influenced and

still work correctly.

Although the typo is simple to characterize, ob-

serving it can be laborious. First, some clients hide

the failure since they are able to handle corrupted

header information. Second, as the response header

is built by concatenating strings, the compiler does

not report an error. Third, by reading source code

like a text, developers tend to overlook such small

日本ソフトウェア科学会第 28回大会 (2011年度)講演論文集 3

Fig. 1 An inconspicuous typo in writing

buffered response headers leads to faulty

results of several client requests.

typos.

2. 2 Challenges in Testing and Debugging

Localizing our typing error with standard tools

such as test runner and debugger can be cumber-

some. Figure 2 depicts a typical debugging session.

First, Seaside’s test suite answers with 9 failed and

53 passed test cases for all response tests. Since all

failing runs are part of WABufferedResponseTest,

developers might expect the cause within buffered

responses. However, this assumption lacks evi-

dence, such as a list of methods being executed by

all failed tests. Second, starting the standard de-

bugger on a failing test shows a violated assertion

within the test method itself. This, however, means

that developers only recognize the observable fail-

ure instead of its origin. Only the current stack

is available, but our typo is far away from the ob-

servable malfunction. Third, the thrown assertion

suggests that something is different from the ex-

pected response. Developers have to introspect the

complete response object for localizing the typo.

There are no pointers to the corrupted state or its

infection chain. Remarkably, the response status is

still valid (200, OK). Furthermore, in our example

we assume that developers are aware of Seaside’s

request/response processing. However, developers’

expertise significantly influences the required de-

bugging effort; for instance, less experienced devel-

opers need more time for comprehending the client

server communication.

Fig. 2 Localizing failure causes with standard

tools is cumbersome.

In general, standard testing and debugging ap-

proaches face several challenges with respect to

localizing failure causes. Although testing is a

widely adopted practice, especially in agile devel-

opment [3], it only verifies if a failure occurs or

not. There is no additional information about fail-

ure causes or at least similarities between failing

and passing tests. It is not clear how erroneous

test behavior is related to each other. We expect

that tests and their behavior own an extensive and

hidden source of information not only for fault lo-

calization.

By starting the debugger, developers are able to

introspect failed tests at the point in time where the

assertion or exception was thrown. Such observ-

able failures are in many cases far apart from the

failure-inducing cause that happened in the past.

For this reason, developers have to follow the infec-

tion chain backwards from the observable failure

via infected state and behavior to the defect [27].

However, most debuggers do not support back-in-

time capabilities, and if they do, these features of-

ten come with a performance overhead [12] or a

more complicated setup [21]. Moreover, both kinds

of debuggers force developers to make several de-

4 日本ソフトウェア科学会第 28回大会 (2011年度)講演論文集

cisions regarding how to follow the infection chain.

We argue that lightweight back-in-time debuggers

as well as new navigation concepts for examining

behavior can reduce the cost of debugging.

Apart from good tool support, developers’ exper-

tise is also important for the entire debugging pro-

cess [2]. The required debugging effort significantly

depends on individual skills and knowledge about

the system under observation. More experienced

developers invent better hypotheses about failure

causes than novices that do not know the code base.

We believe that dedicated developers understand

causal relations or fix defects in less time. Unfortu-

nately, the identification of corresponding experts

is quite challenging since the observable failure does

not explicitly reveal infected system parts.

3 Test-Driven Fault Navigation

We present test-driven fault navigation for de-

bugging failures reproducible by unit tests. Our

systematic top-down process and accompanying

Path tools guide developers with interconnected ad-

vice to failure causes in structure, behavior, and to

corresponding experts in the development team.

3. 1 Debugging Reproducible Failures

Localizing non-trivial faults requires a systematic

procedure to find the way in endless possibilities of

time and space [27]. Experienced developers apply

a promising debugging method by starting with a

breadth-first search [26]. They look at a system

view of the problem area, classify suspicious sys-

tem parts, and refine their understanding step by

step. However, independent and specialized debug-

ging tools does not coherently support such a sys-

tematic procedure. This often leads to confusing

and time-consuming debugging sessions, especially

for novice developers who trust more in intuition

instead of searching failure causes systematically.

We introduce a systematic top-down debugging

Fig. 3 Our debugging process guides with

interconnected advice to reproducible failure

causes in structure, behavior and to

corresponding experts.

process with corresponding tools that not only sup-

ports the method of experts but also provides guid-

ance for novices. Developers are able to navigate

from failures to causes by reproducing observable

faults with the help of test cases. Afterwards, they

can isolate possible defects within parts of the sys-

tem, understand corresponding erroneous behavior,

and optionally identify other developers for help.

Figure 3 summarizes our test-driven fault naviga-

tion process and its primary activities:

Reproducing failure

As a precondition for all following activities, de-

velopers have to reproduce the observable failure in

the form of at least one unit test. Besides the ben-

eficial verification of resolved failures, we require

tests above all as entry points for analyzing erro-

neous behavior. We have chosen unit test frame-

works because of their importance in current devel-

opment projects. Our approach is neither limited

to unit testing nor does it require minimal test cases

as proposed by some guidelines [3].

Localizing suspicious system parts (Struc-

日本ソフトウェア科学会第 28回大会 (2011年度)講演論文集 5

tural navigation)

Having at least one failing test, developers can

compare its execution with other test cases and

identify structural problem areas. By analyzing

failed and passed test behavior, possible failure

causes are automatically localized within a few sus-

picious methods so that the necessary search space

is significantly reduced. We have developed an ex-

tended test runner called PathMap that provides

both a static overview and related dynamic test in-

formation.

Debugging erroneous behavior back in

time (Behavioral navigation)

For refining their understanding of erroneous be-

havior, developers explore the execution and state

history of a specific test. To follow the infection

chain back to the failure cause, they can start our

back in time PathDebugger either at the failing test

directly or at arbitrary methods as recommended

by PathMap. If suspicious system parts are avail-

able, conspicuous methods classify the executed

trace and so ease the behavioral navigation to de-

fects.

Identifying developers as contact persons

(Team navigation, optional)

Some failures require expert knowledge of oth-

ers so that developers understand and debug faults

more easily. By combining localized problem ar-

eas with source code management information, we

provide a novel developer ranking metric that iden-

tifies the most qualified experts for fixing a fail-

ure. Developers having changed the most suspi-

cious methods are more likely to be experts than

authors of non-infected system parts. We have inte-

grated our metric within PathMap providing navi-

gation to suitable team members.

Besides our systematic process for debugging re-

producible failures, the combination of unit testing

and spectrum-based fault localization also provides

the foundation for interconnected navigation with

a high degree of automation. All activities and

their results are affiliated with each other and so

allow developers to explore failure causes from com-

bined perspectives. Our tools support these points

of view in a practical and scalable manner.

3. 2 Localizing Suspicious System Parts

For supporting a breadth-first search, we provide

a complete system overview that highlights prob-

lematic areas for potential failure causes. Applying

spectrum-based fault localization, which predicts

failure causes by the ratio of failed and passed tests

at covered methods, we analyze overlapping test

behavior, identify suspicious system parts, and vi-

sualize the results. Our PathMap tool implements

this approach as an extended test runner for the

Squeak/Smalltalk development environment (Fig-

ure 4). Its integral components are a compact vi-

sualization in form of an interactive tree map, a

lightweight dynamic analysis framework for record-

ing test executions, and different fault localization

metrics for identifying suspicious methods.

We visualize a structural system overview and its

relation to test case execution in form of a compact

and scalable tree map [24]. We reflect selected cat-

egories†1 as full columns that include their classes

as rows which in turn include methods†2 as small

boxes. The allocated space is proportional to the

number of methods per node. All elements are or-

ganized alphabetically, and for a clear separation

we distinguish between test classes on the left-hand

side and core classes on the right-hand side (label

2 in Figure 4). The entire map can interactively be

explored to get more details about a specific node

(label 4 in Figure 4). Furthermore, each method

can be colorized with a hue element between green

†1 Categories are similar to packages in other pro-

gramming languages.

†2 We provide Smalltalk’s method categories as an

optional layer, too.

6 日本ソフトウェア科学会第 28回大会 (2011年度)講演論文集

Fig. 4 PathMap is our extended test runner that analyzes test case behavior and visualizes

suspicious methods of the system under observation.

and red for reflecting its suspiciousness score and a

saturation element for its confidence. For instance,

methods with a high failure cause probability pos-

sess a full red color. Such a visualization allows for

a high information density at a minimal required

space. The tree map in Figure 4 consists of only

500×500 pixels but is able to scale up to 4,000

methods. Even though this should suffice for most

medium-sized applications, PathMap allows for fil-

tering specific methods such as accessors, summa-

rizing large elements, and resizing the entire tree

map.

We ensure scalability of spectrum-based fault lo-

calization by efficiently recording test coverage with

method wrappers [4]. To reduce the overhead of

run-time observation, we restrict instrumentation

to relevant system parts and dynamic analysis to

the granularity level of methods. With the focus on

selected categories we filter irrelevant code such as

libraries where the defect is scarcely to be expected.

Analyzing only executed methods provide a good

trade-off between comprehensibility and scalabil-

ity since they offer both an extensive breadth-first

search and a lightweight dynamic analysis.

Based on collected test behavior, we automati-

cally rank covered methods and visualize suspicious

information in our tree map. In spectrum-based

fault localization [9] failure cause probabilities are

estimated by the ratio of all failing tests to test

results per covered source code entity. Thus, meth-

ods are more likely to include the defect if they

are executed by a high number of failing and a low

number of passing tests. We distinguish between

suspiciousness and confidence values of methods.

While the former scores the failure cause proba-

bility with respect to covered tests and their re-

sults, the latter measures the degree of significance

based on the number of all test cases. A lot of met-

rics for spectrum-based fault localization have been

proposed among which Ochiai has shown to be the

most effective one [1].

日本ソフトウェア科学会第 28回大会 (2011年度)講演論文集 7

suspicious(m) =
failed(m)√

totalFailed ∗ (failed(m) + passed(m))
This formula returns a value between 0 and 1 for

each method m being covered by at least one test.

To visualize this result, we colorize method nodes

in our tree map with a hue value between green

and red. For instance, a suspiciousness score of 0.7

creates an orange area.

To assess the significance of a suspiciousness

value, we apply a slightly adapted confidence met-

ric. We only consider the relation between failed

tests per method and all failing tests as we are not

interested in sane behavior for fault localization.

confidence(m) =
failed(m)

totalFailed
The returned value is directly mapped to the sat-

uration component of already colorized method

nodes. By looking only at faulty entities, we re-

duce the visual clutter of too many colors and re-

sults. For instance, a method covered by three out

of six failing tests is grayed out.

Adapting spectrum-based fault localization to

unit testing limits the influence of multiple faults.

The effectiveness of existing spectrum-based ap-

proaches suffers from overlapping test cases describ-

ing different failures as well as coincidentally cor-

rect test cases which execute failures but do not

verify their appearance. The selection of suitable

unit test suites allows for ignoring such problematic

tests and to focus on a single point of failure. Fur-

thermore, based on the origination condition of sin-

gle faults [23], which means each failure must evalu-

ate the defect, PathMap optionally filters methods

which were not executed by all failing tests. Thus,

developers choose designated test suites, further re-

duce fault localization results, and concentrate on

one specific failure at a time.

In our motivating typing error, PathMap local-

izes the failure cause within a few methods of Sea-

side’s response classes. In Figure 4, developers only

execute the response test suites as in ordinary test

runners with the result of 53 passed and 9 failed

tests (1). In the middle (2) they see a tree map

of Seaside’s structure with test classes on the left

side and core classes on the right side†3. Each color

represents the suspiciousness score of a method re-

vealing problem areas of the system. For instance,

the interactively explorable red box (3) illustrates

that all nine failing tests are part of the buffered

test suite. In contrast, the green box below in-

cludes the passed streaming tests and in orange

shared test methods. The more important infor-

mation for localizing the failure cause is visualized

at (4). There are three red and orange methods

providing confidence that the failure is included in

the WABufferedResponse class. To that effect, the

search space is reduced to six methods. However,

a detailed investigation of the writeContentOn:

method (5) shows that it shares the same character-

istics as our failure cause, i. e., writeHeadersOn:.

At this point, it is not clear from a static point of

view how these suspicious methods are related to

each other. Developers need an alternative view of

failing test behavior in order to understand how the

failure comes to be.

3. 3 Debugging Erroneous Behavior Back

in Time

To follow corrupted state and behavior back to

failure-inducing origins, we offer fast access to fail-

ing tests and their erroneous run-time data. Based

on our lightweight PathFinder tool [18], Path-

Debugger is our back in time debugger for intro-

specting specific test executions with a special fo-

cus on fault localization. It does not only provide

immediate access to run-time information, but also

classifies traces with suspicious methods. For local-

†3 For the purpose of clarity, we limit the partial

trace to Seaside’s core.

8 日本ソフトウェア科学会第 28回大会 (2011年度)講演論文集

izing faults in test case behavior, developers start

exploration either directly or out of covered sus-

picious methods as provided by PathMap. Subse-

quently, PathDebugger opens at the chosen method

as shown in Figure 5 and allows for following the

infection chain back to the failure cause. We pro-

vide arbitrary navigation through method call trees

and their state spaces. Besides common back in

time features such as a query engine for getting a

deeper understanding of what happened, our Path-

Debugger possesses three distinguishing character-

istics. First, step-wise run-time analysis allows for

immediate access to run-time information of test

cases. Second, the classification of suspicious trace

data facilitates navigation in large traces. Third,

refining fault localization at the statement level re-

veals further details for identifying failure causes.

We ensure a feeling of immediacy when explor-

ing behavior by splitting run-time analysis of test

cases over multiple runs [18]. Usually, developers

comprehend program behavior by starting with an

initial overview of all run-time information and con-

tinuing with inspecting details. This systematic

method guides our approach to dynamic analysis:

run-time data is captured when needed. Step-wise

run-time analysis consists of a first shallow analy-

sis that represents an overview of a test run (a pure

method call tree) and additional refinement analy-

sis runs that record on-demand user-relevant details

(e.g. state of variables, profiling data, statement

coverage). Thereby, test cases fulfill the require-

ment to reproduce arbitrary points on a program

execution in a short time [25]. Thus, by dividing

dynamic analysis costs across multiple test runs,

we ensure quick access to relevant run-time infor-

mation without collecting needless data up front.

We classify behavior with respect to suspicious-

ness scores of methods for an efficient navigation to

failure causes in large traces. Therefore, we either

reuse PathMap’s already ranked methods or re-

run the spectrum-based fault localization on traced

methods again. The trace is divided into more or

less erroneous behavior depending on test results

of called methods. On the analogy of PathMap,

we colorize the trace with suspiciousness and con-

fidence scores at each executed method. Moreover,

a query mechanism supports the navigation to er-

roneous behavior. We expect that our classified

traces identify failure causes more quickly as it al-

lows shortcuts to methods that are likely to include

the defect.

Analogous to step-wise run-time analysis, we are

also able to refine fault localization at the statement

level. For identifying failure causes in full detail,

PathDebugger allows for refining spectrum-based

fault localization inside specific methods. We run

all covering tests, simulate byte code execution, and

obtain required coverage information. We compute

suspiciousness scores of statements with the same

formulas as before. Combining spectrum-based

fault localization and step-wise run-time analysis

provides a good trade-off between performance and

fault localization details. We restrict the perfor-

mance decrease of statement-level analysis only to

the method of interest and offer developers both

fast access to erroneous behavior of methods and

optionally refinements of suspicious statements.

In our Seaside example, PathDebugger high-

lights the erroneous behavior of creating buffered

responses and supports developers in understand-

ing how suspicious methods belong together. Fol-

lowing Figure 5, developers focus on the failing

testIsCommitted behavior. They begin with the

search for executed methods with a failure cause

probability larger than 90 % (1). The trace in-

cludes and highlights four methods matching this

query. Since the writeContentOn: method (2) has

been executed shortly before the failure occurred,

it should be favored for exploring corrupted state

日本ソフトウェア科学会第 28回大会 (2011年度)講演論文集 9

Fig. 5 PathDebugger is our lightweight back in time debugger that classifies failing test behavior

for supporting developers in navigating to failure causes.

and behavior first†4. A detailed inspection of the

receiver object reveals that the typo already exists

before executing this method. Following the in-

fection chain backwards, more than three methods

can be neglected before the next suspicious method

is found (3). Considering writeHeadersOn: in the

same way manifests the failure cause. If necessary,

developers are able to refine fault localization at

the statement-level and see that only the first line of

the test case is always executed, thus triggering the

fault (4). Although PathDebugger supports devel-

opers in comprehending programs [18], it depends

on experience if they recognize that all suspicious

methods are part of the response creation.

3. 4 Identifying Developers as Contact

†4 The simple accessor method contents can be ne-

glected at this point.

Persons

As understanding failure causes still requires

thorough familiarity with suspicious system parts,

we propose a new metric for identifying expert

knowledge. Especially in large projects where not

everyone knows everything, an important task is

to find contact persons that are able to explain

erroneous behavior or even fix the bug itself [2].

Assuming that the author of the failure-inducing

method is the most qualified contact person, we

approximate developers that have recently worked

on suspicious system parts. Based on PathMap’s

data, we sum up suspicious and confident methods

for each developer, compute the harmonic mean for

preventing outliers, and constitute the proportion

to all suspicious system parts.

First, from all methods of our system under ob-

servation (MPartial) we create a new set that in-

cludes methods being identified by the spectrum-

10 日本ソフトウェア科学会第 28回大会 (2011年度)講演論文集

based fault localization.

MSuspicious =

{m ∈ MPartial | suspicious(m) > 0}
Second, with the help of Smalltalk’s source code

management system we identify developers that

have implemented at least one of these suspicious

methods. Having this list, we divide suspicious

methods into one set per developer based on the

method’s last author.

MDeveloper =

{m ∈ MSuspicious | authorOf (m) = Developer}
Third, for a specified set of methods we sum up

suspiciousness and confidence scores and create a

weighted average of both. The harmonic mean

combines both values and prevents outliers such as

high suspiciousness but low confidence.

FScore(M) =

2 ·

(∑
m∈M

suspicious(m)

)
·
(∑

m∈M
confidence(m)

)
∑

m∈M
suspicious(m) + confidence(m)

Fourth, we normalize individual developer scores

by comparing them with the value of all suspicious

methods.

developerRanking(Developer) =
FScore(MDeveloper)

FScore(MSuspicious)
Finally, we sort all developers by their achieved

expert knowledge so that we estimate the most

qualified contact persons even though the cause is

not yet known.

Table 1 Our developer ranking points out

(anonymized) experts.

Deve- Rank- Suspi- Confi- F-Mea-

loper ing ciousness dence sure

A 68 % 13.6 17.3 15.2

B 26 % 5.8 6.1 5.9

C 4 % 1.0 0.7 0.8

D 1 % 0.3 0.2 0.2

With respect to our typing error, we reduce the

number of potential contact persons to 4 out of

24 Seaside developers, whereby the author of the

failure-inducing method is marked as particularly

important. Table 1 summarizes the (interim) re-

sults of our developer ranking metric and suggests

Developer A for fixing the defect by a wide mar-

gin. With our fault-based team navigation, we do

not want to blame developers but rather we expect

that the individual skills of experts help in compre-

hending and fixing failure causes more easily.

4 Evaluation

We evaluate test-driven fault navigation with re-

spect to its practicability for developers, the ac-

curacy of our developer ranking metric, and the

efficiency of our Path tool suite†5.

4. 1 Practicability of Test-Driven Fault

Navigation

For evaluating our process and tools, we con-

duct a user study within the scope of a real world

project. We observe different developers while de-

bugging several failures and compare our approach

with standard debugging tools.

Experimental Setup

We choose the Orca Web framework as the un-

derlying software system for our user study. Orca

allows to implement Web applications in a sin-

gle object-oriented language and was developed by

eight students in nine months. They worked full

time on the project and in close collaboration with

an industrial partner. We restrict the study to

Orca’s core packages (Web server, Javascript trans-

lator, and object cache) whose properties are sum-

marized in Table 5.

Since the required debugging effort depends on

individual skills and knowledge about the system,

†5 Raw data at http://www.hpi.uni-potsdam.de/

swa/tmp/tdfnEvaluation.xlsx

日本ソフトウェア科学会第 28回大会 (2011年度)講演論文集 11

we determined by a questionnaire four developers

that have similar skills but different understand-

ings of Orca’s core packages. All selected students

have more than five years of programming experi-

ence and professional expertise with symbolic de-

buggers. Regarding comprehension, the first devel-

oper called low has implemented nothing in one of

the core classes, the second developer called mid

has last seen the code two months ago, and the re-

maining two developers called high 1 and high 2

have recently changed large parts of the core.

The students should localize four typical failures,

which are described in Table 2. Failure A returns a

specific session object instead of all sessions. Fail-

ure B breaks the parsing loop too soon. Failure

C cannot cache a null object. Failure D forgets to

select a collection and processes with false clients.

Each failure is reproducible with 4-15 failing test

cases.

We conduct the user study by observing our de-

velopers during debugging Orca’s failures. First, we

introduced test-driven fault navigation to the par-

ticipants within 30 minutes followed by one hour

of instructed practice with our tools. Second, we

chose for each developer two failures for debugging

with standard tools and two failures for our Path

tools. Finally, we observed them during debugging,

measured the required time, and interviewed them

afterwards. If the defect has not been localized af-

ter 20 minutes, we marked the failure as not solved.

Lessons Learned

We evaluate the influence of test-driven fault nav-

igation for each developer. Table 3 summarizes the

required time for debugging with and without our

tools.

Although the low developer has nearly no under-

standing of the system, he was able to solve both

failures with our approach in about 12 minutes. In

contrast, failure B could not be solved with stan-

dard tools. After 20 minutes we allowed him to

Table 3 Comparison of debugging tools

(column: developer, row: failure, TFN:

Test-driven Fault Navigation, STD: Standard

Tools, N/S: not solved, time in minutes).

Low Mid High 1 High 2

A 12:10

(TFN)

11:51

(STD)

5:04

(STD)

4:04

(TFN)

B N/S

(STD)

11:53

(STD)

2:21

(TFN)

1:21

(TFN)

C 12:00

(TFN)

5:24

(TFN)

2:38

(STD)

1:20

(STD)

D 4:30

(STD)

4:38

(TFN)

2:21

(TFN)

1:45

(STD)

apply our Path tools and he localized the defect in

less than two minutes. As the last defect was on

the stack of the symbolic debugger, he identified

the cause straightforwardly.

The mid developer requires twice as much time

with standard tools as with our Path tools. He

identified infected state still fast but following the

infection chain back was cumbersome. While de-

bugging failure B with standard tools he men-

tioned: ”I know the corrupted state but I cannot

remember where does it come from. I need a trace

of what happened before.” In the case of failure C

and D, the classification of suspicious entities al-

lowed him to invent better hypotheses about the

failure cause and to abbreviate the execution his-

tory.

Due to their good program understanding both

high developers invent proper diagnosis for the fail-

ure cause quite fast. Even if both tool chains have

no significant differences in debugging time, both

developers confirmed that the suspiciousness scores

further strengthen their hypotheses. High 1 stated:

”The coloring of map and trace has helped a lot in

focusing on suspicious entities.” The short debug-

ging time of failure B, C, and D came into being

because there were only two suspicious methods,

they jumped directly to the initialization method,

12 日本ソフトウェア科学会第 28回大会 (2011年度)講演論文集

Table 2 Description of Orca’s failures.

Orca Defect Localization

Failure Description Package on stack rank

A Wrong return value Server No 10 (1.0)

B False loop condition Translator No 2 (0.76)

C Not initialized object Cache No 17 (1.0)

D Missing selection Server Yes 8 (1.0)

or the defect was apparently on the debugger stack.

Nevertheless, one of them concluded ”I can very

well imagine that the Path tools improve debugging

of our real failures, too.”

During test-driven fault navigation, all develop-

ers take advantage of the combined perspectives of

our Path tools. In doing so, they usually started

with a breadth-first search and used PathMap for

the first two minutes. The rest of the time, they

chose an erroneous test case and followed the in-

fection chain through suspicious behavior. Only in

the case of failure B, no run-time information was

required for developer high 2.

With the help of our user study, we conclude that

test-driven fault navigation is able to decrease de-

bugging costs with respect to required time and

developer’s effort. Especially, developers with less

system knowledge, which is often the case in main-

taining legacy systems, profit from reduced debug-

ging time. Also all developers confirmed that our

approach is promising in debugging with less men-

tal effort and that our tools enable a feeling of im-

mediacy [18]. It appeared easier for them to create

proper hypotheses about failure causes without to

be slowed down by our approach.

4. 2 Accuracy of Recommended Develop-

ers

We evaluate our developer ranking metric by in-

troducing a considerable number of defects into the

Seaside Web framework. We randomly chose 1,000

covered methods that are neither part of test code

nor trivial (e. g., getters). For each method, we in-

sert a defect (hiding the method body and return-

ing the receiver object), compute a sorted list of

recommended developers, and compare it with the

last author of the faulty method. We assume this

person is the most qualified developer for explain-

ing the failure cause.

Table 4 Average developer ranking results

Developer rat-

ing

Developer

rank

Number of

developers

0.439 1.75 7

Table 4 presents the average scores of our devel-

oper ranking metric. We identify the most qualified

developers with a rating of 43 % and between the

first two positions out of seven recommended devel-

opers. Figure 6 illustrates the distribution of the

most qualified developers and their positions in the

recommendations. For almost half of all defects,

the responsible developer of the faulty method is

ranked in the first place and for more than 90 %

of all cases within the first three ranks. Even if

developers being responsible for the fault are not

listed at the top, we expect that their higher ranked

colleagues are also familiar with suspiciously re-

lated system parts. Considering that failure causes

are still unknown, our developer ranking metric

achieves very satisfactory results with respect to

the accuracy of recommended contact persons.

日本ソフトウェア科学会第 28回大会 (2011年度)講演論文集 13

1.	

(51%)	

2.	

(33%)	

3.	

(10%)	

4.	
 (4%)	
 5.	
 (1%)	
 >	
 5.	
 (1%)	

Fig. 6 Rankings of the most qualified

developers.

4. 3 Efficiency of the Path Tool Suite

We evaluate the overhead of our Path tools by

measuring the total time for collecting and pre-

senting run-time information from four different

Smalltalk projects. The project properties are sum-

marized in the upper part of Table 5. The test cases

cover system, acceptance, and unit tests, imposing

different computational costs. Of the four projects,

two (Orca and AweSOM) are research prototypes

developed in our group. The remaining two are

production-quality projects and in daily use in soft-

ware development and business activities. For mea-

suring the run-time overhead PathMap executes

the entire unit test suite with and without fault lo-

calization, PathDebugger runs each test on its own

and analyzes the overhead produced by step-wise

run-time analysis. All experiments were run on a

MacBook with a 2.4 GHz Intel Core 2 Duo and 4

GB RAM running Mac OS X 10.6.6, using Squeak

version 4.1 on a 4.2.1b1 virtual machine.

The average results for each project are described

in the lower part of Table 5. The first two rows

show the time (in seconds) required for executing

all tests and the overhead resulting from spectrum-

based fault localization. PathMap’s fault local-

ization slows down execution by a factor of 1.7

to 3.9. The variation originates from additional

instrumentation and visualization costs. Never-

theless, this overhead is low enough for applying

spectrum-based fault localization frequently.

The last four rows list the average run-time per

test and the overhead associated with building the

lightweight call tree, reloading state, and refining

fault localization at statements. For all tests and

projects, each kind of dynamic analysis is done in

less than 500 ms on average. The 99th percentile

for the shallow analysis overhead is below 750 ms.

Incremental refinement imposes a minimum over-

head in most cases: the 95th percentile is below 25

ms for all tests. The same is true for refining fault

localization with the 95th percentile below 20 ms.

This supports fast response times when debugging

a test execution back in time since run-time data is

provided in considerably less than two seconds [18].

4. 4 Threats to Validity

The Smalltalk context of our evaluation might

impede validity by limited scalability and general

applicability. However, the Seaside Web framework

is in fact a real-world system and it exhibits source

code characteristics comparable to particular com-

plex Java systems such as JHotDraw [18]. Even

if the remaining projects were developed in parts

by ourselves, they illustrate the applicability of our

Path tools once unit tests are available. While these

insights do not guarantee scalability to arbitrary

languages and systems, they provide a worthwhile

direction for future studies assessing general appli-

cability.

The evaluation setting has four characteristics

that might limit validity. First, our user study is

only based on a small student project. Although

we require a larger study for a general conclusion,

our user study still reveals the benefits of our pro-

cess and tool suite. Moreover, we consider our stu-

dents and their Orca project as a real world sce-

nario. Each developer has more than five years of

programming experience and they worked full time

14 日本ソフトウェア科学会第 28回大会 (2011年度)講演論文集

Table 5 Project characteristics and average run-time analysis

Orca Seaside Compiler AweSOM

Classes 60 394 64 68

Methods 848 3708 1294 742

Tests 68 674 49 124

Coverage 68.6 % 58.3 % 51.1 % 81.8 %

Execution time all tests (s) 7.17 9.19 0.91 3.77

∆ Fault Localization (s) 4.77 26.61 1.85 8.70

Execution time per test (ms) 74.98 0.76 7.69 17.33

∆ Shallow Analysis (ms) 389.50 336.17 247.23 235.79

∆ Refinement Analysis (ms) 10.27 16.92 2.15 5.93

∆ Refined Fault Localization (ms) 15.81 1.23 9.76 16.29

on Orca for nine months. Second, the accuracy of

our developer ranking metric might be limited by

the fact that after a fundamental refactoring about

90 % of Seaside’s methods belong to three main

authors. For this reason, we have always a prob-

ability of circa 30 % to guess the best developer.

Nevertheless, the accuracy of our metric suggest

for every second failure the right contact person.

Third, garbage collection was disabled during mea-

surement to elide performance influences. In a real-

istic setting with enabled garbage collection, mini-

mal slowdowns would be possible. Finally, we rely

on tests to obey certain rules of good style: e. g.,

they should be deterministic. Tests that do not fol-

low these guidelines might hamper our conclusions.

The tests that we used in our evaluation were all

acceptable in this respect.

5 Related Work

We divide related work into three categories cor-

responding to our PathMap, PathDebugger, and

developer ranking metrics: spectrum-based fault

localization, back in time debugging, and ap-

proaches to determine developer expertise.

5. 1 Spectrum-based Fault Localization

Spectrum-based fault localization is an active

field of research where passing and failing pro-

gram runs are compared with each other to iso-

late suspicious behavior or state. Tarantula [9] an-

alyzes and visualizes the overlapping behavior of

test cases with respect to their results. At the sys-

tem overview level, each statement is represented as

a line of pixels and colorized with a suspiciousness

score that refers to the probability of containing

the defect. Later, Gammatella [17] presents a more

scalable and generalized visualization in form of a

tree map but only for classes. The Whither tool [22]

collects spectra of several program executions, de-

termines with the nearest neighbor criterion the

most similar correct and faulty run, and creates a

list of suspicious differences. AskIgor [5] identifies

state differences of passed and failed test runs and

automatically isolates the infection chain with delta

debugging and cause transitions. A first empirical

study [8] comparing these different spectrum-based

approaches concludes that the Tarantula technique

is more effective and efficient than the other ones.

A more comprehensive study [1], investigating the

impact of metrics and test design on the diagnostic

accuracy of fault localization, states that similarity

metrics are largely independent of test design and

日本ソフトウェア科学会第 28回大会 (2011年度)講演論文集 15

that the Ochiai coefficient consistently outperforms

all other approaches.

All presented approaches produce ranked source

code entities that are likely to include failure

causes. However, as defects are rarely localized

without doubt, developers have to determine the

remaining results by hand. We argue that our

presented test-driven fault navigation deals with

this issue. It combines multiple perspectives based

on already gathered suspiciousness information and

supports developers in further approximating the

real failure cause.

5. 2 Back in Time Debugging

To follow the infection chain from the observ-

able failure back to its cause, back-in time debug-

gers allow developers to navigate an entire pro-

gram execution and answer questions about the

cause of a particular state. The omniscient de-

bugger [12] records every event, object, and state

change until execution is interrupted. However,

the required dynamic analysis is quite time- and

memory-consuming. Unstuck [7] is the first back-

in time debugger for Smalltalk but suffers from

similar performance problems. WhyLine [11] al-

lows developers to ask a set of “why did” and “why

didn’t” questions such as why a line of code was not

reached. However, WhyLine requires a statically-

typed language and it does not scale well with long

traces. Other approaches aim to circumvent these

issues by focusing on performance improvements in

return for a more complicated setup. The trace-

oriented debugger [21] combines an efficient instru-

mentation for capturing exhaustive traces and a

specialized distributed database. Later, a novel in-

dexing and querying technique [20] ensures scala-

bility to arbitrarily large execution traces and of-

fers an interactive debugging experience. Object

flow analysis [13] in conjunction with object aliases

also allows for a practical back in time debugger.

The approach leverages the virtual machine and its

garbage collector to remove no longer reachable ob-

jects and to discard corresponding events.

Compared to such tools, our PathDebugger is a

lightweight and specialized back in time debugger

for localizing failure causes in unit tests. Due to

step-wise run-time analysis, we do not record each

event beforehand but rather split dynamic analy-

sis over multiple runs. Furthermore, our classified

traces allow to hop into erroneous behavior directly.

Without this concept, developers require more in-

ternal knowledge to isolate the infection chain and

to decide which path to follow.

5. 3 Determining Developer Expertise

Our developer ranking metric is mostly related

to approaches that identify expert knowledge for

development tasks. The expertise browser [16]

quantifies people with desired knowledge by analyz-

ing information from change management systems.

XFinder [10] is an Eclipse extension that recom-

mends a ranked list of developers to assist with

changing a given file. A developer-code map cre-

ated from version control information presents com-

mit contributions, recent activities, and the num-

ber of active workdays per developer and file. The

Emergent Expertise Locator [15] approximates, de-

pending on currently opened files and their histo-

ries, a ranked list of suitable team members. An

empirical study [6] verifies the assumption that

programmer’s activity indicates some knowledge of

code and presents additional factors that also in-

dicate expertise knowledge such as authorship or

performed tasks. Besides common expertise knowl-

edge, there are other approaches that focus on as-

signing bug reports to the most qualified devel-

opers. A first semi-automated machine learning

approach [2] works on open bug repositories and

learns from already resolved reports the relation-

ship between developers and bugs. It classifies new

16 日本ソフトウェア科学会第 28回大会 (2011年度)講演論文集

incoming reports and recommends a few developers

that have worked on similar problems before. Dev-

elect [14] applies a similar approach but it matches

the lexical similarities between the vocabulary of

bug reports and the diffs of developers’ source code

contributions.

In contrast to our developer ranking metric, pre-

vious approaches are generally applicable but their

recommendation accuracy is limited. Our metric is

specialized for debugging and recommends in most

cases a suitable contact person. Although we re-

quire at least one failing test case, we think that

often its implementation can be derived from bug

reports.

6 Conclusion

We propose test-driven fault navigation as a pro-

cess and accompanying tool suite for debugging

failures reproducible via unit tests. A system-

atic breadth-first search guides developers to fail-

ure causes within structure and behavior. Corre-

sponding expert members of the development team

are ranked as potential candidates for fixing these

problems. With the help of PathMap and Path-

Debugger, developers can localize suspicious system

parts, debug erroneous behavior back to failure-

inducing origins, and learn about other developers

who are likely able to help. Our evaluation and

case study demonstrate that the combination of

unit tests, spectrum-based fault localization, and

test-driven fault navigation is practical for bring-

ing developers closer to failure causes.

Future work is two-fold. Our approach will be

extended to take version control information into

account such that the change history of methods

further reduces search space and to better propose

more suitable experts. Also, we are planning a

larger user study to assess how test-driven fault

navigation improves more general debugging activ-

ities.

References

[1] Abreu, R., Zoeteweij, P., Golsteijn, R., and

van Gemund, A. J.: A practical evaluation of

spectrum-based fault localization, JOSS, Vol. 82,

No. 11(2009), pp. 1780–1792.

[2] Anvik, J., Hiew, L., and Murphy, G. C.: Who

Should Fix this Bug?, ICSE, 2006, pp. 361–370.

[3] Beck, K.: Test-driven Development: By Exam-

ple, Addison-Wesley Professional, 2003.

[4] Brant, J., Foote, B., Johnson, R., and Roberts,

D.: Wrappers to the Rescue, ECOOP, 1998,

pp. 396–417.

[5] Cleve, H. and Zeller, A.: Locating Causes of Pro-

gram Failures, ICSE, 2005, pp. 342–351.

[6] Fritz, T., Murphy, G. C., and Hill, E.: Does

a Programmer’s Activity Indicate Knowledge of

Code?, ESEC-FSE, 2007, pp. 341–350.

[7] Hofer, C., Denker, M., and Ducasse, S.: Design

and Implementation of a Backward-in-Time Debug-

ger, NODe, 2006, pp. 17–32.

[8] Jones, J. A. and Harrold, M. J.: Empiri-

cal Evaluation of the Tarantula Automatic Fault-

Localization Technique, ASE, 2005, pp. 273–282.

[9] Jones, J. A., Harrold, M. J., and Stasko, J.: Vi-

sualization of Test Information to Assist Fault Lo-

calization, ICSE, 2002, pp. 467–477.

[10] Kagdi, H., Hammad, M., and Maletic, J.: Who

Can Help Me with this Source Code Change?,

ICSM, 2008, pp. 157–166.

[11] Ko, A. J. and Myers, B. A.: Debugging Rein-

vented: Asking and Answering Why and Why Not

Questions about Program Behavior, ICSE, 2008,

pp. 301–310.

[12] Lewis, B.: Debugging Backwards in Time,

AADEBUG, 2003, pp. 225–235.

[13] Lienhard, A., Gı̂rba, T., and Nierstrasz, O.:

Practical Object-Oriented Back-in-Time Debug-

ging, ECOOP, 2008, pp. 592–615.

[14] Matter, D., Kuhn, A., and Nierstrasz, O.: As-

signing Bug Reports Using a Vocabulary-based Ex-

pertise Model of Developers, MSR, 2009, pp. 131–

140.

[15] Minto, S. and Murphy, G. C.: Recommending

Emergent Teams, MSR, 2007, pp. 5–14.

[16] Mockus, A. and Herbsleb, J. D.: Expertise

Browser: A Quantitative Approach to Identifying

Expertise, ICSE, 2002, pp. 503–512.

[17] Orso, A., Jones, J., and Harrold, M. J.: Visu-

alization of Program-Execution Data for Deployed

Software, SoftVis, 2003, pp. 67–76.

[18] Perscheid, M., Steinert, B., Hirschfeld, R.,

Geller, F., and Haupt, M.: Immediacy through In-

teractivity: Online Analysis of Run-time Behavior,

WCRE, 2010, pp. 77–86.

[19] Perscheid, M., Tibbe, D., Beck, M., Berger, S.,

Osburg, P., Eastman, J., Haupt, M., and Hirschfeld,

R.: An Introduction to Seaside, Software Architec-

ture Group (Hasso-Plattner-Institut), 2008.

日本ソフトウェア科学会第 28回大会 (2011年度)講演論文集 17

[20] Pothier, G. and Tanter, E.: Summarized Trace

Indexing and Querying for Scalable Back-in-Time

Debugging, ECOOP, 2011, pp. to appear.

[21] Pothier, G., Tanter, E., and Piquer, J.: Scalable

Omniscient Debugging, OOPSLA, 2007, pp. 535–

552.

[22] Renieres, M. and Reiss, S.: Fault Localization

with Nearest Neighbor Queries, ASE, 2003, pp. 30–

39.

[23] Richardson, D. J. and Thompson, M. C.: An

Analysis of Test Data Selection Criteria Using the

RELAY Model of Fault Detection, IEEE TSE,

Vol. 19(1993), pp. 533–553.

[24] Shneiderman, B.: Tree Visualization with Tree-

Maps: 2-D Space-Filling Approach, ACM Trans.

Graph., Vol. 11, No. 1(1992), pp. 92–99.

[25] Steinert, B., Perscheid, M., Beck, M., Lincke,

J., and Hirschfeld, R.: Debugging into Examples:

Leveraging Tests for Program Comprehension, Test-

Com, 2009.

[26] Vessey, I.: Expertise in Debugging Computer

Programs: A Process Analysis, Int. J. Man Mach.

Stud., Vol. 23, No. 5(1985), pp. 459–494.

[27] Zeller, A.: Why Programs Fail: A Guide to Sys-

tematic Debugging, Morgan Kaufmann, 2006.

