
Automated Refactoring of Legacy Java Software to Default Methods

RAFFI KHATCHADOURIAN CITY UNIVERSITY OF NEW YORK

HIDEHIKO MASUHARA
TOKYO INSTITUTE OF TECHNOLOGY

INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 2017

Background: Default Methods in Java 8

- methods with bodies in interfaces
- introduced in Java 8
- useful to improve skeletal implementations

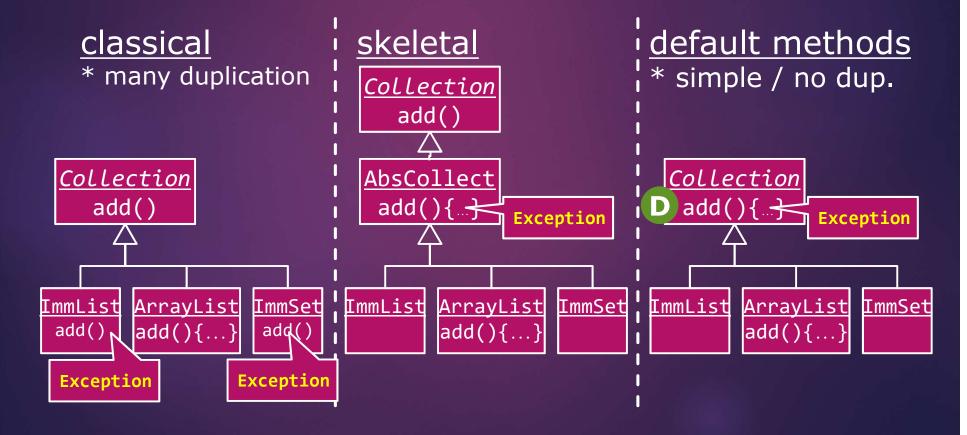
The key change in JDK 9 is the introduction of "a new kind of Java programming component, the module, which is a named, self-describing collection of code and data", according to Oracle. To key aim of the modules technology is to reduce the size and complexity of both Java application and the core Java runtime itself. To this end, the JDK itself has been modularized, an approach that Oracle intend to improve performance, security and maintainability.

To support Java 9 modules, a new modular JAR file with a module-info.class file in its root directory has also been introduced. Oracle have also introduced tooling to allow a set of moto be assembled and optimized into a custom runtime image, without requiring a full Java ruto be present. Other changes as a consequence of modularisation include the removal of

Background: default methods

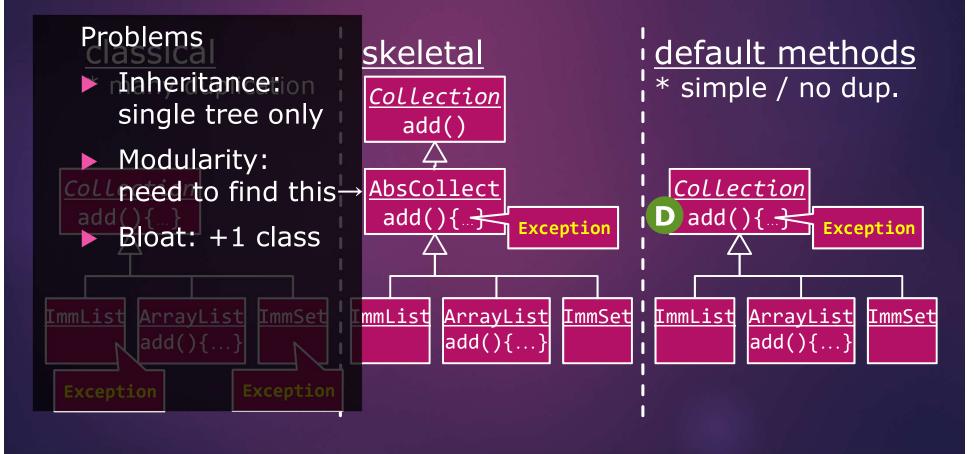
- methods with bodies in interfaces
- (originally for interface evolution)

```
interface (italic font)


Collection

D add(){
    throw new
    UnsupportedException()
}

ImmutableList
```

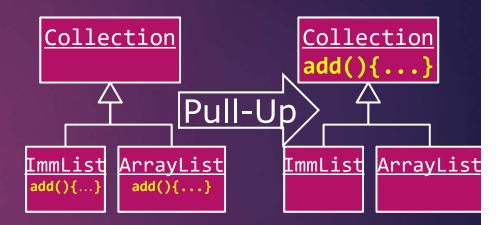

Background: usefulness of default methods

alternative to skeletal impl. [Goetz, 2011]

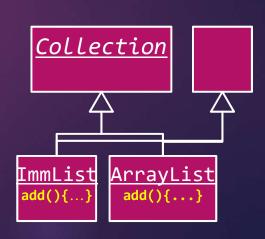
Background: usefulness of default methods

alternative to skeletal impl. [Goetz, 2011]

Problem: Migration can be Difficult


requiring significant manual effort because

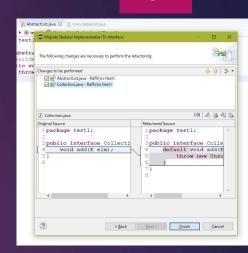
- ubiquitous
- subtle semantic restrictions
 - type-correctness
 - multiple inheritance
 - diff. between class and interface
 - tie-breakers


Related: Pull-Up Method Refactoring?

[Fowler99, Tip+11]

- moves methods from a subclass into a super class
 - for reducing redundancy

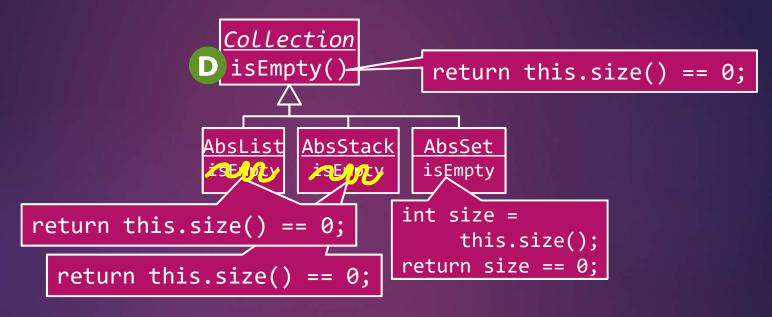
- Not directly.
 as it is interfaces
 - multiple inheritance
 - "competition" with classes (tie-breaking)


Related: "Move Original Method to Super Class"? [Borba+04]

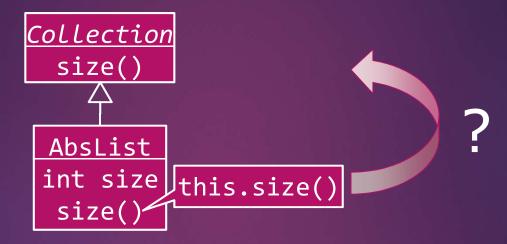
is a law expresses transformational semantic equivalence

- Not for method bodies.
- In our case, no method declarations are being moved but rather bodies

Contributions: a Refactoring Tool


- developed a refactoring tool
 - as an Eclipse plugin
 - migrates into default methods
 - conservative; preserves semantics
- tested with open-source projects
 - to count successful/failed cases by applying the tool
 - to inquire developers' opinions by sending pull-requests

Approach

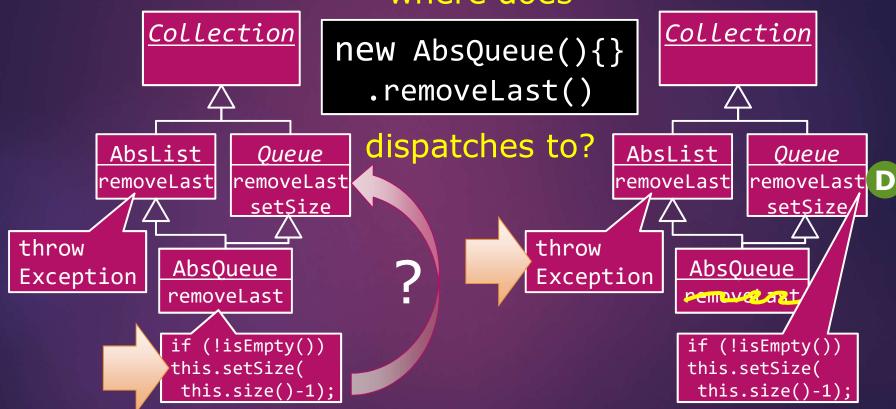

- For each candidate method and target interface
 - move the method
 - check preconditions for type-safety and semantic preservation
 - remove the methods with the same body in sibling classes

Contributions: Target Methods with Multiple Source Methods

- Safe to migrate any of them
- Which one to migrate?
- Choose the largest number of "equivalent" source methods

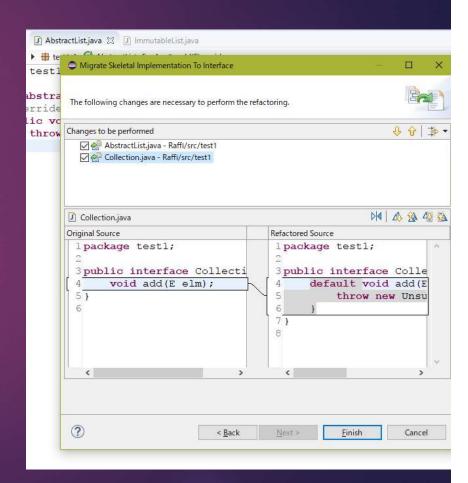
Interfaces cannot Declare Instance Fields

Q: In general, how can we guarantee that migration results in a type-correct transformation?


[Palsberg&Schwartzbach94,Tip+11]

A: Use type constraints to check refactoring preconditions.

Preconditions for safety & semantic preconditions


program construct	implied type constraint(s)					
assignment $E_i = E_j$	$[E_j] \le [E_i]$	(1)				
method call	$[E.m(E_1, \dots, E_n)] \triangleq [M]$ $[E_i] \leq [Param(M, i)]$	(2)				
$E.m(E_1,\ldots,E_n)$ to a virtual method M	$[E] \leq Decl(M_1) \vee \cdots \vee [E] \leq Decl(M_k)$ where $RootDefs(M) = \{M_1, \dots, M_k\}$	(4)				
(throwing exceptions Ex_{t1}, \ldots, Ex_{tj})	$\exists Ex_h \in \{Ex_{t1}, \dots, Ex_{tj}\} $ $\exists Ex_h \in Handle(E.m(E_1, \dots, E_n))[[Ex_t] \leq [Ex_h]]$	(5)				
access $E.f$ to field F	$[E.f] \triangleq [F]$	(6)				
return E in method M	$[E] \leq Decl(F)$ $[E] \leq [M]$	(7)				
return E in method M	$ [E] \leq [M] $ $ [Param(M',i)] = [Param(M,i)] $	(9)				
M' overrides M ,	$[Param(M,i)] = [Param(M,i)]$ $[M'] \le [M]$	(10)				
$M' \neq M$	Decl(M') < Decl(M)	(11)				
for every lass (an I of Set	Pty rules $\frac{Decl(M') < Decl(M)}{d \le \text{java.lang.Object}}$	(12)				
for every interface mantic	$I \not\leq \text{java.lang.Object} \land \forall M[Decl(M) \triangleq \text{java.lang.Object} \land \forall M[Decl(M) \triangleq \text{java.lang.Object} \land \exists M[Decl(M) \triangleq I \land Abstract(M)]]$	(13)				
Scillaticic	$\exists M[Decl(M) \triangleq I \land Abstract(M)]$	(10)				
for every functional interface I		(14)				
implicit declaration of the six many control of the si	$fron_{Interjlce(Det\mathcal{M})} = p_{[sup(r]} \triangleq super(Decl(M))$	(15)				
		(16)				
implicit declaration of I. surer in methol M	$ult-meth_{0}^{{\tiny Decl(M)}} \overset{\scriptstyle S}{\overset{\scriptstyle I}{\Longrightarrow}} \overset{\scriptstyle [\mathtt{I.super}]}{\overset{\scriptstyle \Delta}{\Longrightarrow}} \overset{\scriptstyle I}{\overset{\scriptstyle I}{\Longrightarrow}}$	(17)				
expression new $T(E_1, , U_n)$. $U \subset I \subset I$	$\bigcup [L] [L] [L] [L] [L] [L] [L] [L] [L] [L]$	(18)				
declaration of method M (declared in type T)	$Decl(M) \triangleq T$	(19)				
declaration of field F (declared in type T)	$\int_{0}^{1} r for more \int_{0}^{Der(l(r))} \frac{dr}{dr} dr$	(20)				
explicit declaration of variable state Cpara Del Del	i ful filule details	(21)				
declaration of method M with return type T	$[M] \triangleq T$	(22)				
declaration of field F with type T	$[F] \triangleq T$	(23)				
cast $(T)E$	$[(T)E] \triangleq T$	(24)				
	$\exists J, M'[Interface(J) \land J \nleq I \land I \nleq J \land J \leq Decl(M') \\ \land NOverrides(M', M) \land (Default(M') \lor Default(M))]$					
declaration of method M declared in interface I	$\Rightarrow \forall C \mid Class(C) \land C < I \land C < J[\exists M''[M'' \neq M' \land M'' \neq M \land Class(Decl(M'')) \land C \leq Decl(M'') \land Public(M'')$					
	$\land NOverrides(M'', M')]]$	(25)				
declaration of concrete type T implementing interface I	$\exists M'[T \leq Decl(M') \land NOverrides(M, M')]$					
$\begin{array}{c} \text{declaring method } M \\ \end{array}$	$ \wedge \neg Abstract(M') \wedge \forall M''[T < Decl(M'') < Decl(M') \wedge \\ NOverrides(M'', M') \implies \neg Abstract(M'')]] $ (26)					

where does

Eclipse Plug-in and Case Study

- Implemented as an Eclipse plug-in
- Applied to19 Java programs
 - how many methods can be migrated?
 - efficient enough?
 - when methods cannot be migrated?



Eclipse Plug-in and Case Study (Result)

subject	KL	KM	cnds	dflts	fps	δ	-δ	tm (s)
ArtOfIllusion	118	6.94	16	1	34	1	0	3.65
Azureus	599 8 0	/ % 8(3	(74.7)	66) (las	ses	2	61.83
Colt	36	3.77	69	4	140	3	_	6.76
elasticsearch	585	47.87	339	69	644	21	4	83.30
Java8	20a	3(3)(2)		oved	775	25	10	64.66
JavaPush	6	0.77	1	0	4	0	0	1.02
JGraph	13	1.47	16	2	21	$\frac{1}{2}$	0	3.12
JHotDraw	32	3.60	181	46 /	282	.8/S	rur	itime
JUnit	26	3.58	9	0	25	0	0	0.79
MWDumper	5	0.40	11	0	24	0	0	0.29
<u> የ</u> ኒኒtoma	ţical		nigra	nted	11	2	0	0.76
MATCOLLIC			11910		2	1	0	1.10
	506	1 ^{53.5} 1	776	150	1459	50	13	91.68
	ualic	Haat	3	31	399	13	0	13.81
verbose	$\stackrel{4}{\sim}$	0.55	1	9	1	0	0	0.55
ゆりと/ ろこ	512 J	meti	าดตร	50)	26	0	0	0.36
Violet	27	2.06	104	40	102	5	1	3.54
Wezzle2D	35	2.18	87	13	181	5	0	4.26
ZKoss	185	15.95	394	76	684	0	0	33.95
Totals:	2677	232.2	3321	652	6180	166	30	383.17

Refactoring Precondition Failure Distribution

17

(Preliminary) Pull Request Study

Q: "Is it useful in practice?"

Procedure:

- Choose GitHub projects
- Apply refactorings
- 3. Send pull requests
- 4. Wait

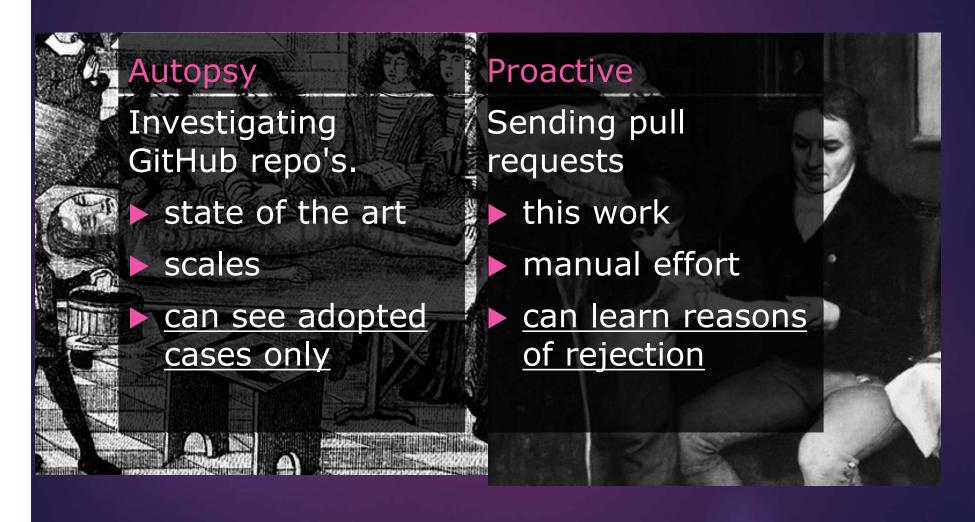
Result:

- ▶ 19 pull requests
 - ▶ 4 merged
 - ▶ 5 still open
 - ▶ 10 rejected
- Reasons of rejection:
 - no Java 8 yet
 - support older clients (Android)
 - fear of performance
 - **...**

List of Projects in Pull Request Study

Merged

- ▶ JSilhouette
- ▶ Eclipse Collections
- Cyclops React
- Bootique


Still open

- QBit
- ▶ JGit
- ▶ Java8 Commons
- ▶ Koral
- ▶ Dari
- Binnavi

<u>Rejected</u>

- Blueocean
- **▶** JUnit
- RxJava
- ► ElasticSearch
- Guava
- Spring Framework
- **▶** jOOQ
- Java Design Patterns
- Jetty

A Thought: Evaluation Methods of New Language Features

Summary

- A refactoring approach from skeletal implementation to default methods
 - efficient, fully-automated, semanticspreserving
 - based on type constraints
 - implemented as an Eclipse IDE plug-in
- Evaluated
 - refactored 19.63% of methods in 19 projects
 - ▶ 4 pull requests merged into 19 projects