
Automated Refactoring of
Legacy Java Software to
Default Methods
RAFFI KHATCHADOURIAN HIDEHIKO MASUHARA
CITY UNIVERSITY OF NEW YORK TOKYO INSTITUTE OF TECHNOLOGY

INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 2017

1

Background:
Default Methods in Java 8

 methods with bodies in interfaces

 introduced in Java 8

 useful to improve
skeletal implementations

2

Background:
default methods
 methods with bodies in interfaces

 (originally for interface evolution)

3

Collection
add(){...}

ImmutableList

D default void add(E elm) {
throw new
UnsupportedException();

}

interface (italic font)

default method

Background: usefulness
of default methods
 alternative to skeletal impl. [Goetz, 2011]

4

Collection
add(){...}

ImmList

D Exception

ArrayList
add(){...}

ImmSet

AbsCollect
add(){...}

ImmList

Exception

ArrayList
add(){...}

ImmSet

Collection
add()

Collection
add()

ImmList
add()

ArrayList
add(){...}

ImmSet
add()

ExceptionException

classical
* many duplication

skeletal default methods
* simple / no dup.

Background: usefulness
of default methods
 alternative to skeletal impl. [Goetz, 2011]

5

Collection
add(){...}

ImmList

D Exception

ArrayList
add(){...}

ImmSet

AbsCollect
add(){...}

ImmList

Exception

ArrayList
add(){...}

ImmSet

Collection
add()

Collection
add(){...}

ImmList ArrayList
add(){...}

ImmSet

ExceptionException

classical
* many duplication

skeletal default methods
* simple / no dup.

Problems

 Inheritance:
single tree only

 Modularity:
need to find this→

 Bloat: +1 class

Problem:
Migration can be Difficult

requiring significant manual effort
because

 ubiquitous

 subtle semantic restrictions

 type-correctness

multiple inheritance

 diff. between class and interface

 tie-breakers

6

Related: Pull-Up Method Refactoring?
[Fowler99, Tip+11]

 moves methods from
a subclass into
a super class

 for reducing
redundancy

— Not directly.
as it is interfaces

multiple inheritance

 “competition” with classes
(tie-breaking)

7

Collection

ImmList
add(){...}

ArrayList
add(){...}

Collection
add(){...}

ImmList ArrayList

Pull-Up

Collection

ImmList
add(){...}

ArrayList
add(){...}

Related: "Move Original Method
to Super Class"? [Borba+04]

 is a law expresses transformational
semantic equivalence

— Not for method bodies.
 In our case, no method declarations are

being moved but rather bodies

8

Contributions: a Refactoring Tool

 developed a refactoring tool

 as an Eclipse plugin

migrates into default methods

 conservative; preserves semantics

 tested with open-source projects

 to count successful/failed cases
by applying the tool

 to inquire developers' opinions
by sending pull-requests

9

Approach

 For each candidate method and
target interface

move the method

 check preconditions
for type-safety
and semantic preservation

 remove the methods with the same
body in sibling classes

10

Contributions: Target Methods
with Multiple Source Methods

 Safe to migrate any of them

 Which one to migrate?

 Choose the largest number of
“equivalent” source methods

11

Collection
isEmpty()

AbsList
isEmpty

AbsStack
isEmpty

AbsSet
isEmpty

int size =
this.size();

return size == 0;return this.size() == 0;

return this.size() == 0;

D return this.size() == 0;

Interfaces cannot
Declare Instance Fields

Q: In general, how can we guarantee that
migration results in a type-correct
transformation?

A: Use type constraints to check
refactoring preconditions.

12

Collection
size()

AbsList
int size
size()

this.size()

?

[Palsberg&Schwartzbach94,Tip+11]

Preconditions for safety &
semantic preconditions

 Type safety rules +
semantic preservation rules

 Extended from [Tip+11]
for default methods

 See paper for more details

13

Preserving Semantics in Light
of Multiple Inheritance

14

Collection

AbsList
removeLast

Queue
removeLast
setSize

AbsQueue
removeLast

throw
Exception

if (!isEmpty())
this.setSize(
this.size()-1);

Collection

AbsList
removeLast

Queue
removeLast
setSize

AbsQueue
removeLast

throw
Exception

D

if (!isEmpty())
this.setSize(
this.size()-1);

new AbsQueue(){}
.removeLast()

where does

dispatches to?

?

Eclipse Plug-in and
Case Study
 Implemented as

an Eclipse plug-in

 Applied to
19 Java programs

 how many methods
can be migrated?

 efficient enough?

when methods
cannot be migrated?

15

Eclipse Plug-in and
Case Study (Result)
subject KL KM cnds dflts fps δ -δ tm (s)

ArtOfIllusion 118 6.94 16 1 34 1 0 3.65
Azureus 599 3.98 747 116 1366 31 2 61.83
Colt 36 3.77 69 4 140 3 0 6.76
elasticsearch 585 47.87 339 69 644 21 4 83.30
Java8 291 30.99 299 93 775 25 10 64.66
JavaPush 6 0.77 1 0 4 0 0 1.02
JGraph 13 1.47 16 2 21 1 0 3.12
JHotDraw 32 3.60 181 46 282 8 0 7.75
JUnit 26 3.58 9 0 25 0 0 0.79
MWDumper 5 0.40 11 0 24 0 0 0.29
osgi 18 1.81 13 3 11 2 0 0.76
rdp4j 2 0.26 10 8 2 1 0 1.10
spring 506 53.51 776 150 1459 50 13 91.68
Tomcat 176 16.15 233 31 399 13 0 13.81
verbose 4 0.55 1 0 1 0 0 0.55
VietPad 11 0.58 15 0 26 0 0 0.36
Violet 27 2.06 104 40 102 5 1 3.54
Wezzle2D 35 2.18 87 13 181 5 0 4.26
ZKoss 185 15.95 394 76 684 0 0 33.95

Totals: 2677 232.2 3321 652 6180 166 30 383.17

16

Automatically migrated
19.6% candidates
(652/3321 methods)

7 KLOC/s runtime

18% (30/166) classes
can be removed

Refactoring Precondition
Failure Distribution

17

Many fails on
different preconditions

Major reason:
inaccessible/nonexistent
fields/methods

(Preliminary)
Pull Request Study

Q: "Is it useful
in practice?"

Procedure:
1. Choose GitHub

projects
2. Apply

refactorings
3. Send pull

requests
4. Wait

Result:
 19 pull requests

 4 merged
 5 still open
 10 rejected

 Reasons of
rejection:
 no Java 8 yet
 support older clients

(Android)
 fear of performance
 ...

18

List of Projects in
Pull Request Study

Merged
 JSilhouette
 Eclipse Collections
 Cyclops React
 Bootique
Still open
 QBit
 JGit
 Java8 Commons
 Koral
 Dari
 Binnavi

Rejected
 Blueocean
 JUnit
 RxJava
 ElasticSearch
 Guava
 Spring Framework
 jOOQ
 Java Design

Patterns
 Jetty

19

A Thought: Evaluation Methods
of New Language Features

Autopsy Proactive

Sending pull
requests

 this work

 manual effort

 can learn reasons
of rejection

20

Investigating
GitHub repo's.

 state of the art

 scales

 can see adopted
cases only

Summary

 A refactoring approach from skeletal
implementation to default methods

 efficient, fully-automated, semantics-
preserving

 based on type constraints

 implemented as an Eclipse IDE plug-in

 Evaluated

 refactored 19.63% of methods in 19
projects

 4 pull requests merged into 19 projects

21

