
Automated Refactoring of
Legacy Java Software to
Default Methods
RAFFI KHATCHADOURIAN HIDEHIKO MASUHARA
CITY UNIVERSITY OF NEW YORK TOKYO INSTITUTE OF TECHNOLOGY

INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 2017

1

Background:
Default Methods in Java 8

 methods with bodies in interfaces

 introduced in Java 8

 useful to improve
skeletal implementations

2

Background:
default methods
 methods with bodies in interfaces

 (originally for interface evolution)

3

Collection
add(){...}

ImmutableList

D default void add(E elm) {
throw new
UnsupportedException();

}

interface (italic font)

default method

Background: usefulness
of default methods
 alternative to skeletal impl. [Goetz, 2011]

4

Collection
add(){...}

ImmList

D Exception

ArrayList
add(){...}

ImmSet

AbsCollect
add(){...}

ImmList

Exception

ArrayList
add(){...}

ImmSet

Collection
add()

Collection
add()

ImmList
add()

ArrayList
add(){...}

ImmSet
add()

ExceptionException

classical
* many duplication

skeletal default methods
* simple / no dup.

Background: usefulness
of default methods
 alternative to skeletal impl. [Goetz, 2011]

5

Collection
add(){...}

ImmList

D Exception

ArrayList
add(){...}

ImmSet

AbsCollect
add(){...}

ImmList

Exception

ArrayList
add(){...}

ImmSet

Collection
add()

Collection
add(){...}

ImmList ArrayList
add(){...}

ImmSet

ExceptionException

classical
* many duplication

skeletal default methods
* simple / no dup.

Problems

 Inheritance:
single tree only

 Modularity:
need to find this→

 Bloat: +1 class

Problem:
Migration can be Difficult

requiring significant manual effort
because

 ubiquitous

 subtle semantic restrictions

 type-correctness

multiple inheritance

 diff. between class and interface

 tie-breakers

6

Related: Pull-Up Method Refactoring?
[Fowler99, Tip+11]

 moves methods from
a subclass into
a super class

 for reducing
redundancy

— Not directly.
as it is interfaces

multiple inheritance

 “competition” with classes
(tie-breaking)

7

Collection

ImmList
add(){...}

ArrayList
add(){...}

Collection
add(){...}

ImmList ArrayList

Pull-Up

Collection

ImmList
add(){...}

ArrayList
add(){...}

Related: "Move Original Method
to Super Class"? [Borba+04]

 is a law expresses transformational
semantic equivalence

— Not for method bodies.
 In our case, no method declarations are

being moved but rather bodies

8

Contributions: a Refactoring Tool

 developed a refactoring tool

 as an Eclipse plugin

migrates into default methods

 conservative; preserves semantics

 tested with open-source projects

 to count successful/failed cases
by applying the tool

 to inquire developers' opinions
by sending pull-requests

9

Approach

 For each candidate method and
target interface

move the method

 check preconditions
for type-safety
and semantic preservation

 remove the methods with the same
body in sibling classes

10

Contributions: Target Methods
with Multiple Source Methods

 Safe to migrate any of them

 Which one to migrate?

 Choose the largest number of
“equivalent” source methods

11

Collection
isEmpty()

AbsList
isEmpty

AbsStack
isEmpty

AbsSet
isEmpty

int size =
this.size();

return size == 0;return this.size() == 0;

return this.size() == 0;

D return this.size() == 0;

Interfaces cannot
Declare Instance Fields

Q: In general, how can we guarantee that
migration results in a type-correct
transformation?

A: Use type constraints to check
refactoring preconditions.

12

Collection
size()

AbsList
int size
size()

this.size()

?

[Palsberg&Schwartzbach94,Tip+11]

Preconditions for safety &
semantic preconditions

 Type safety rules +
semantic preservation rules

 Extended from [Tip+11]
for default methods

 See paper for more details

13

Preserving Semantics in Light
of Multiple Inheritance

14

Collection

AbsList
removeLast

Queue
removeLast
setSize

AbsQueue
removeLast

throw
Exception

if (!isEmpty())
this.setSize(
this.size()-1);

Collection

AbsList
removeLast

Queue
removeLast
setSize

AbsQueue
removeLast

throw
Exception

D

if (!isEmpty())
this.setSize(
this.size()-1);

new AbsQueue(){}
.removeLast()

where does

dispatches to?

?

Eclipse Plug-in and
Case Study
 Implemented as

an Eclipse plug-in

 Applied to
19 Java programs

 how many methods
can be migrated?

 efficient enough?

when methods
cannot be migrated?

15

Eclipse Plug-in and
Case Study (Result)
subject KL KM cnds dflts fps δ -δ tm (s)

ArtOfIllusion 118 6.94 16 1 34 1 0 3.65
Azureus 599 3.98 747 116 1366 31 2 61.83
Colt 36 3.77 69 4 140 3 0 6.76
elasticsearch 585 47.87 339 69 644 21 4 83.30
Java8 291 30.99 299 93 775 25 10 64.66
JavaPush 6 0.77 1 0 4 0 0 1.02
JGraph 13 1.47 16 2 21 1 0 3.12
JHotDraw 32 3.60 181 46 282 8 0 7.75
JUnit 26 3.58 9 0 25 0 0 0.79
MWDumper 5 0.40 11 0 24 0 0 0.29
osgi 18 1.81 13 3 11 2 0 0.76
rdp4j 2 0.26 10 8 2 1 0 1.10
spring 506 53.51 776 150 1459 50 13 91.68
Tomcat 176 16.15 233 31 399 13 0 13.81
verbose 4 0.55 1 0 1 0 0 0.55
VietPad 11 0.58 15 0 26 0 0 0.36
Violet 27 2.06 104 40 102 5 1 3.54
Wezzle2D 35 2.18 87 13 181 5 0 4.26
ZKoss 185 15.95 394 76 684 0 0 33.95

Totals: 2677 232.2 3321 652 6180 166 30 383.17

16

Automatically migrated
19.6% candidates
(652/3321 methods)

7 KLOC/s runtime

18% (30/166) classes
can be removed

Refactoring Precondition
Failure Distribution

17

Many fails on
different preconditions

Major reason:
inaccessible/nonexistent
fields/methods

(Preliminary)
Pull Request Study

Q: "Is it useful
in practice?"

Procedure:
1. Choose GitHub

projects
2. Apply

refactorings
3. Send pull

requests
4. Wait

Result:
 19 pull requests

 4 merged
 5 still open
 10 rejected

 Reasons of
rejection:
 no Java 8 yet
 support older clients

(Android)
 fear of performance
 ...

18

List of Projects in
Pull Request Study

Merged
 JSilhouette
 Eclipse Collections
 Cyclops React
 Bootique
Still open
 QBit
 JGit
 Java8 Commons
 Koral
 Dari
 Binnavi

Rejected
 Blueocean
 JUnit
 RxJava
 ElasticSearch
 Guava
 Spring Framework
 jOOQ
 Java Design

Patterns
 Jetty

19

A Thought: Evaluation Methods
of New Language Features

Autopsy Proactive

Sending pull
requests

 this work

 manual effort

 can learn reasons
of rejection

20

Investigating
GitHub repo's.

 state of the art

 scales

 can see adopted
cases only

Summary

 A refactoring approach from skeletal
implementation to default methods

 efficient, fully-automated, semantics-
preserving

 based on type constraints

 implemented as an Eclipse IDE plug-in

 Evaluated

 refactored 19.63% of methods in 19
projects

 4 pull requests merged into 19 projects

21

