Automated Refactoring of
Legacy Java Software to
Default Methods

RAFFI KHATCHADOURIAN HIDEHIKO MASUHARA
CITY UNIVERSITY OF NEW YORK TOKYO INSTITUTE OF TECHNOLOGY

INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 2017

Background
Default Methods in Java 8

methods with bodies in interfaces
introduced in Java 8

useful to improve

skeletal implementations

Long Awaited Java 9.0 ReleaSIng This Week
| by Amit K Gupta on Sep 18, 2017. Estimated reading time: 5 minutes | Discuss

(+ M vl Y o S

The long awaited next release of Java SE, version 9, is being released on September 2
and with it come some major changes.

The key change in JDK 9 is the introduction of "a new kind of Java programming component. ir
module, which is a named, self-describing collection of code and data”, according to Oracle. T!
key aim of the modules technology is to reduce the size and complexity of both Java applicatic

and the core Java runtime itself. To this end, the JDK itself has been modularized, an approac
that Oracle intend to improve performance, security and maintainability

To support Java 9 modules, a new modular JAR file with a module-info_class file in its root
directory has also been introduced. Oracle have also introduced tooling to allow a set of mc
to be assembled and optimized into a custom runtime image, without requiring a full Java ru

to be present. Other changes as a consequence of modularisation include the removal of !

Background:
default methods

methods with bodies in interfaces
(originally for interface evolution)

_.- Interface (italic font)

-
-
-
-

|CoLLection

. D add(){ | ldefault void add(E elm) {
o= ~ throw new
default method UnsupportedException()
}

Immutablelist

Background: usefulness
of default methods

alternative to skeletal impl. [Goetz, 2011]

classical
* many duplication

Collection
add()
JAN

skeletal

Collection

add()

JAN

AbsCollect

addX{ %ell Exception

' default methods
% simple / no dup.

|CoLLection
D add(){ - Exception
JAN

TmmList JArrayList| ImmSet

TmmList

Arraylist

ImmSet

Arraylist

add() | ladd(){...} adi()

Exception Exception

add(){...}

add(){...}

Background: usefulness
of default methods

alternative to skeletal impl. [Goetz, 2011]

Problems

Inheritance:
single tree only

Modularity:

need to find this—|{AbsCollect
addX{.,ﬁ Exception

Bloat: +1 class

skeletal

Collection
add()

JAN

' default methods
% simple / no dup.

|CoLLection
D add(){ - Exception
JAN

mmList] |ArraylList

ImmSet

Arraylist

add(){...}

add(){...}

Problem:
Migration can be Difficult

requiring significant manual effort
because

ubiquitous

subtle semantic restrictions
type-correctness
multiple inheritance

a a¥Ya YiaYala
i . VAT

tie-breakers

Related: Pull-Up Method Refactoring?
[Fowler99, Tip+11]

moves methods from Collection Collection
I dd ceo
a subclass into add (){

T -Up i

a super class Pu

; ITmmList] |JArraylist ImmList |Arraylist
for reducing ol
redundancy

— Not dlrectly

Collection

JAN JAN

multiple inheritance

“competition” with classes tnnList Arraylist
(tie-breaking)

Related: "Move Original Method
to Super Class"? [Borba+04]

IS a law expresses transformational
semantic equivalence

— Not for method bodies.

In our case, no method declarations are
being moved but rather bodies

Contributions: a Refactoring Tool

developed a refactoring tool
as an Eclipse plugin
migrates into default methods
conservative; preserves semantics
tested with open-source projects
to count successful/failed cases

to inquire developers' opinions
by sending pull-requests

Approach

For each candidate method and
target interface

move the method

check preconditions
for type-safety
and semantic preservation

remove the methods with the same
body in sibling classes

Contributions: Target Methods
with Multiple Source Methods

|CoLLection

D isEmpty(—

7N

return this.size() == 0;

AbsList

AbsStack

AbsSet

A

P

N

[

return this.size() == 0;

in

v

return this.size() == 0;

re

isEmpty

t size =
this.size();
turn size == 0;

Safe to migrate any of them

Which one to migrate?

Choose the largest number of
“equivalent” source methods

Interfaces C

annot

Declare Instance Fields

Collection

size()

A

AbslList

int size

Jthis.size()

size()A

-,

?

Q: In general, how can we guarantee that
migration results in a type-correct
transformation?

_ [Palsberg&Schwartzbach94,Tip+11]
A: Use type constraints to check

refactoring preconditions.

Preconditions for safety &
semantic preconditions

program construct implied fype constraint(s)
assignment F; = E; [E;] £ [Ei) [
[E.m(Ey,..., En)] = [M] @)

method call [E:] < [Param(M,1)] 3)
Em(En, ..., En) [E] < Decl(M1) V -+~ V |E] < Decl(My) @
to a virtual method M where RootDefs(M) = {My,..., M}
(throwing exceptions VEz; € {Fx¢1,..., Ezi;} 3)
Ex¢q, ..., Exy ;) dFEz;, € Handle(E.m(E,..., EN[Ext] < [Exy]]
ENEF) ©

access E.f to field F [E] € Decl(F) (7)

return £ in method M (E] < [M] ®)
[Param (M’ ,)] = [Param(M,i)] 9)
(10)
(an
(12)

g lype safety rules + |
. semantic preservation rules ZUAIRE

bstract(M')]] (14

Extended from [Tip+11] a8

for default methods i

(19)

expression

declaration of n

declaration o - (20)
o> €e paper for more details @
declaration of 0d r (22)
declaration of field F with type T' [FI&T (23)

cast (T)E [(MEZT 24)

3J, M'[Interface(JYANJ £ IAT & JAJ < Decl(M')
A NOwverrides(M', M) A (Default(M') v Default(M))]
declaration of method M declared in interface I = VC'| Class(C)NC < TAC < JEM"[M"” # M AM" #£ M
A Class(Decl(M"”)) AC < Decl(M") A Public(M")

A NOverrides(M"”, M")]] (25)

e . e ———— AM'[T < Decl(M") A NOwverrides(M, M")

eclaration of concrete type 7" implementing interface - / 1 7 ’
declaring method M N —Abstract(M?) /\VM [T <I;Decl’(M) < Decl(M")A .
NOverrides(M", M') = —Abstract(M")]] (26)

Preserving Semantics in Light ..
of Multiple Inheritance

where does

Collection Collection

new AbsQueue(){}
.removelLast() N

| | L [|
AbslList Queue d|5patCheS to? AbsList Queue

removelLast| |[removelLast removelLast| |[removelLast

///7 4E setSize setSize
throw

Exception

AbsQueue

removelLast

\

Exception

AbsQueue

/

if (!isEmpty())
this.setSize(
this.size()-1);

if (!isEmpty())
this.setSize(
this.size()-1);

Eclipse Plug-in and
Case Study

Implemented as
an Eclipse plug-in

Applied to
19 Java programs

how many methods
can be migrated?

efficient enough?

when methods
cannot be migrated?

default wvoid add{ﬁ

throw new Unsu

Eclipse Plug-in and
Case Study GEELY

subject KM cnds dflts fps - tm (s)
ArtOflllusion 3.65

Aaureus 18% (30/166) classes 6183

Colt 6.76
elasticsearch 83.30

Java8 can be removed 64.66

JavaPush 1.02
JGraph 13 1.47 16

JHotDraw 32 360 181 7 KLOC/S runtime

JUnlt 26 3 58 9
24 0 0.29

Automatlcally m|grated y 10
19.6% candidates)

91.68
1

(652/3321 methods) 26 '

0.55
102

0.36
3.54
Wezzle2D 35 2.18 87 181
ZKoss 185 15.95 394 76 684

4.26
Totals: 2677 2322 3321 652 | 6180

OOAOOOSOOO

L 2

33.95
383.17

w
o

Refactoring Precondition
Failure Distribution

Fistdhatfconssible
Method Conlams SuperRefarencs
MethodConteinsTypeincompatibla ThisReferens
MethodMolhccessihis
HodbetraciMethods
HNokbaihatsinMemberTyp .
e Many fails on
NokeihodsinTypasThalD

NolMelhodsinTypesidithl

Easei=n different preconditions

Sourcaplathodhcorsses| .

SourcehsibosCvemdesh M a O r re a S O n u
TangedlelhodH asbd Lol J L
TypeMotAcces=his

e INAcCcessible/nonexistent

Dol inabonintantacels Mar
NoFinallethads =
DesiinalianintsraceDacl fl e I d S/ m et h O d S
HobktelbagsinTypas®ith TypeParamalers e
DeslinaboninterfaceDeclores TypaParamealss
inbullipleCandidate Targe Types 7.700
urcabdelhodimplemerts Mullipl efethod s
¥ ExzeplionTypeMismalch

Annctationbismabch

TyoeVarablelabheailable

v

(Preliminary)
Pull Request Study

Q: "Is it useful Result:
in practice?" 19 pull requests

Procedure: 4 merged

1. Choose GitHub 5 still open
prOJectS 10 I‘ejeCted

Reasons of

rejection:
no Java 8 yet
support older clients

requests (Android)
 Wait fear of performance

. Apply
refactorings

List of Projects in
Pull Request Study

Merged Rejected
» JSilhouette Blueocean
» Eclipse Collections JUnit
» Cyclops React RxJava
» Bootique ElasticSearch
Still open Guava
QBit Spring Framework
JGit j[e]e]e)
Java8 Commons Java Design
Koral Patterns
Dari Jetty
Binnavi

A Thought: Evaluation Methods
of New Language Features

R T -,
b 3

T

;

| g”I nvestigating g Sending pull ;

- requests
state of the art 2 » this work
scales 4 » manual effort

can see adopted . » can learn reasons ®
cases only ~ of rejection

Summary

A refactoring approach from skeletal
implementation to default methods

efficient, fully-automated, semantics-
preserving

based on type constraints

implemented as an Eclipse IDE plug-in
Evaluated

refactored 19.63% of methods in 19

projects
4 pull requests merged into 19 projects

