
日本ソフトウェア科学会第 36 回大会 (2019 年度) 講演論文集

ASTToken2Vec: An Embedding Method for

Neural Code Completion

Li Dongfang Masuhara Hidehiko

Code completion systems help programmers to write code more efficiently and to reduce typographical er-

rors by automatically suggesting the code fragment that the programmers likely to write next. This work

attempts to increase prediction performance of an LSTM-based code completion system proposed by Chang

Liu et al. by proposing a new embedding method (a vector representation) for AST nodes. This method is

called ASTToken2Vec, similar to Word2Vec, which trains a neural network by using context information to

give a vector representation of an AST node. We integrate our embedding method with an LSTM model

and evaluate its prediction performance on a JavaScript AST dataset generated from open-source programs

containing a total of 150,000 JavaScript files.

1 Introduction

Code completion systems are one of the most use-

ful and indispensable tools in modern integrated

development environments (IDEs). They help pro-

grammers writing code faster with less typograph-

ical errors. An effective code completion system

can predict what kind of code programmers want

to write and generate a code suggestion list auto-

matically.

Traditional code completion systems are not in-

telligent enough. Most of them are based on sta-

tistical methods and suggest code only by simple

term frequency which often relatively have a higher

error rate. Another problem is that they rely on

static types (like Eclipse for Java) to filter out can-

didates. However, the dependency on typing infor-

mation limits their applicability to widely used in

dynamically typed languages like Python.etc.

With the rapid development of deep learning

techniques, more and more research pays attention

to applying deep learning models, especially recur-

rent neural networks (RNNs) to automatic code

completion. RNN models achieved excellent per-

formance in the natural language processing (NLP)

李 東方, 増原 英彦, 東京工業大学数理計算科学系, Dept.

of Mathematical and Computing Science, Tokyo In-

stitute of Technology.

field. Intuitively, a programming language can be

considered as a special language just with stricter

semantic and syntax. Hence, it is straightforward

to apply RNNs to programming languages tasks

like code completion and may have an exciting per-

formance.

In this paper, we propose an embedding method

for abstract syntax trees (ASTs) nodes called AST-

Token2Vec to improve the prediction performance

of the deep learning-based code completion. It con-

sists of a four-layer neural network for encoding the

context information of ASTs to generate semantic-

based embedding representation vectors that con-

tain more knowledge hidden behind ASTs. We use

this ASTToken2Vec model as a pre-trained model

and integrate it with an LSTM based model as a

code completion system to predict next tokens. We

name our integration model as AT2V-LSTM model

and the overview of our model illustrates in Figure

1.

As an experiment, we implement both AST-

Token2Vec embedding and AT2V-LSTM model

with a JavaScript AST dataset [10] collected from

open-source programs containing a total of 150,000

JavaScript files. We visualize representation vec-

tors of several terminal tokens and evaluate the

performance of predicting next tokens by AT2V-

LSTM integration model From the evaluation and

results analysis, we conclude that the ASTTo-

Fig. 1 Overview of ASTToken2Vec LSTM

integration model

ken2Vec method is able to generate semantic-based

representation vectors of AST nodes and the AT2V-

LSTM integrated model predicts tokens more cor-

rectly.

2 Background

Hindle et al. [3] explore how to use a widely

adopted n-gram statistical language model for code

completion and provide empirical evidence which

is able to prove that programming language code

is even more repetitive than natural languages.

Nguyen et al. [6] propose generative models of nat-

ural source code with hierarchical structure and a

distributed representation of source code element.

They also leverage compiler logic and abstractions

to improve their generative models. Tung et al. [8]

extends the state-of-the-art n-gram approach which

is called SLAMC by incorporating semantic infor-

mation into code tokens.

Comparing with n-gram model, a statistical non-

parametric Bayesian probabilistic tree-based sys-

tem [1] is proposed by Allamanis et al. which is

able to extract code idioms from the existing writ-

ten code files. Liang et al. [4] focus on learning pro-

grams for multiple related tasks with a few training

samples and propose a nonparametric hierarchical

Bayesian model which is able to share the statistical

information across multiple tasks for code comple-

tion.

Bielik et al. [2] introduce a generative model

for code called probabilistic higher-order grammar

(PHOG). This model is able to capture the rich

context information between tokens by allowing

conditioning of a production rule. Raychev et al.

[9] create a domain-specific language (DSL) over

abstract syntax trees (ASTs) called TGEN which

can encode an AST to a specific language context.

They also propose a special decision tree called

DEEP3 which can make code predictions leverag-

ing the AST context encoded by the TGEN model.

Raychev et al. [11] and White et al. [12] explore

how to apply RNN models on sequences of tokens

to facilitate the task of code completion. Chang et

al. [5] propose several LSTM-based models for code

completion with an AST dataset and they lever-

age the ASTs by converting ASTs to sequences of

training samples. Their work gives us inspiration

about how to convert an AST to a sequence and

how to train an LSTM model with AST dataset.

3 Abstract Syntax Tree

Abstract Syntax Trees (AST) are a tree structure

that represents structural information of programs.

It is widely used in code completion engines.

There are two kinds of a node in ASTs, non-

terminal nodes and terminal nodes. A non-terminal

node has a children node list denoting all its chil-

dren nodes. For example, in JavaScript, a non-

terminal token could be “FunctionDeclaration”,

“VariableDeclarator”, etc. These non-terminal to-

kens declare what kind of functions or variables

specified in the program. Other kinds of non-

terminal tokens represent more knowledge about

the structure and logical judgment of a program

like “ForStatement”, “IfStatement”, “WhileState-

ment”, etc.

A terminal node has “value” to represent the

value of terminals and does not have any children

node. In JavaScript, for instance, the type of termi-

nal tokens could be “LiteralString”, “LiteralNum-

ber”, “Identifier” etc. Due to programmers can

specify any strings, variables and function’s name

in a program, it is obvious that there are infinite

possibilities for terminal tokens.

Due to ASTs contain more semantic knowledge

about source code, we use ASTs as the basic data to

generate two sets of training samples for our mod-

els’ training.

4 ASTToken2Vec Embedding

ASTToken2Vec model is an embedding model for

AST nodes. It is inspired by the embedding method

for natural languages, namely Word2Vec [7]. It

trains a four-layers neural network to generate

the semantic-based representation vectors of AST

nodes which enable the LSTM-based code comple-

tion model to leverage more structural knowledge

to predict next tokens. In order to do that, we give

a basic hypothesis of ASTToken2Vec which is same

as Word2Vec’s: we assume that if two nodes in an

AST have a similar context, the meaning of these

two nodes also has a high-level similarity. We speci-

fied the surrounding non-terminal nodes of a target

node as the non-terminal context and surrounding

terminal nodes as the terminal context. The de-

tails of contexts is explained in subsection4. 2 and

subsection4. 3.

4. 1 Model Architecture

The ASTToken2Vec model is a four layers neural

network contains one input layer, one single hid-

den layer, and two output layers. Due to there

are two kinds of tokens non-terminal and terminal

in ASTs, we design two application variant of our

embedding model: ASTToken2Vec for terminal to-

ken abbreviated as TT2V and ASTToken2Vec for

a non-terminal token called NT2V.

The input layer is the one-hot encoding represen-

tation vector of a non-terminal node for the NT2V

model and a terminal node for the TT2V model.

The ASTToken2Vec model has two output layers:

non-terminal output layer for non-terminal context

representation and terminal output layer represent-

ing the terminal context of the input node. The

length of these two output layers is equal to the

size of the terminal vocabulary and non-terminal

vocabulary separately. We use the values in the

hidden layer as the embedding vectors to represent

the input AST node and the length of the hidden

layer is a hyperparameter D specified by users. In

the training phase, we calculate a joint loss function

to update the model.

Figure 2(1) illustrates the architecture of the

NT2V model and Figure 2(2) is the architectrue

of TT2V model.

Fig. 2 Architecture of NT2V (1) and TT2V

(2)

4. 2 Embedding for Non-terminals

The ASTToken2Vec model for encoding non-

terminals to vectors is abbreviated as NT2V. It

employs both the terminal context and the non-

terminal context of a target non-terminal to gen-

erate embedding representation vectors. A train-

ing tuple for NT2V contains three elements: (tar-

get non-terminal, non-terminal context, terminal

context) where the target non-terminal is the non-

terminal token which the NT2V model generates

embedding vector for. The second and third ele-

ments are lists representing the contexts of the in-

put target non-terminal. We define these two con-

texts as follows.

4. 2. 1 Non-terminal context

The non-terminal context for a non-terminal to-

ken means the surrounding non-terminal nodes of

it in an AST. Concretely, we define the n parent

non-terminal nodes of a target non-terminal and its

all non-terminal children nodes as its non-terminal

context. Here, n is a hyper-parameter which de-

clares the scope of the parent non-terminal context

employed by the NT2V model. If n is relatively

small, it means NT2V model does not consider the

surrounding non-terminal tokens which are far from

the target node as the non-terminal context.

4. 2. 2 Terminal context

We define the terminal context of a target non-

terminal as all its children terminal nodes. If a

non-terminal node does not have any terminal chil-

dren nodes (all its children nodes are non-terminal

tokens or it does not have any children), we use a

special terminal token: TT-EMPTY to declare an

empty terminal context for it.

We use an example of partial AST to illustrate

the contexts of a non-terminal in the Figure 3(1).

The nodes whose name starts with “NT” are non-

terminal nodes and nodes whose name starts with

“TT” represent terminal nodes. In this AST, We

assume a target non-terminal node “NT-4” which

is surrounded by an oval. Non-terminal nodes sur-

rounded by a rectangle are the non-terminal con-

text of the target node including “NT-2” and “NT-

1”. Terminal nodes: “TT-1”, “TT-2” and “TT-3”

which have an underline mean the terminal con-

text of the target node “NT-4”. Hyper-parameter

n here is specified as two.

Fig. 3 Non-terminal and terminal context for

non-terminal nodes (1) and terminal nodes (2)

4. 3 Embedding for Terminals

The ASTToken2Vec model for terminal tokens’

embedding vectors generation is abbreviated as

TT2V. Similar with NT2V model, the structure of

training tuples for TT2V is (target terminal, non-

terminal context, terminal context) NT2V model

leverage both non-terminal context and terminal

context to generate the embedding vectors for the

target terminal. The non-terminal context and ter-

minal context of a target terminal are described as

below.

4. 3. 1 Non-terminal context

Because there is no child node of a terminal

node, we only consider the non-terminal context of

a terminal as only its n parent non-terminal nodes.

Same with NT2V, hyperparameter n is used to de-

fine the scope of non-terminal context.

4. 3. 2 Terminal context

We define the terminal context of a target termi-

nal node as m neighbor terminal nodes in an AST.

Neighbor terminal nodes of a target terminal mean

its sibling terminals which have the same parent

non-terminal with the target terminal. Here m is a

hyperparameter to specify the size of the terminal

context. A relatively small m means TT2V model

does not consider too many surrounding terminal

nodes as the terminal context. If a terminal node

does not have any neighbor terminal nodes which

means its parent node only has one single terminal

child, in this case, we use a special terminal node:

TT-EMPTY to represent an empty terminal con-

text.

The partial AST in the Figure 3(2) shows a con-

crete example of what is contexts for terminals. We

specify a target terminal node “TT-2” which is sur-

rounded by an oval. Non-terminal nodes: “NT-2”

and “NT-4” which are emphasized by a rectangle,

represent the non-terminal context and terminal

nodes “TT-1” and “TT-3” are the terminal context

of the target node. In this example, hyperparame-

ter n is specified as two and m is equal to one.

4. 4 Joint Loss Function

Due to there are two output layers in our ASTTo-

ken2Vec model, we design a joint loss function com-

bining the non-terminal context output and termi-

nal context output.

There are three parts of the loss function calcu-

lation. Lossnt is used to represent the loss of non-

terminal context output. The loss of terminal con-

text output is represented by Losstt. Both of them

are multi-labels loss calculations because there are

more than one surrounding tokens as the context.

And Losstotal is the final joint loss function for our

model’s training.

Lossnt = −
N∑
i=1

(yi
nt−context × log(ŷi

nt−context))

(1)

Equation1 is the Lossnt calculation formula

which is a log loss function. Concretely, for an

input token x, ASTToken2Vec model calculates

the non-terminal context output as ŷnt−context

and yi
nt−context represents its ground-truth non-

terminal context. N is the size of the non-terminal

vocabulary.

Losstt = −
M∑
j=1

(yj
tt−context × log(ŷj

tt−context))

(2)

Equation2 illustrates the formula of Losstt calcu-

lation which also a log loss function. ŷtt−context is

the terminal output of our model. and ytt−context

is the ground truth label of the terminal context.

M is the size of terminal vocabulary.

Losstotal = α ∗ Lossnt + (1− α)× Losstt (3)

Equation3 is the joint loss function combining

Lossnt and Losstt. We utilize a hyperparameter

α whose range is from zero to one to adjust the im-

portance between the loss of non-terminal context

output Lossnt and terminal context output Losstt.

5 AT2V-LSTM Integration

We integrate a basic LSTM model with our AST-

Token2Vec embedding method. This integration

model is called AT2V-LSTM which is able to lever-

age the semantic-based information extracted by

ASTToken2Vec embedding and predict the next to-

kens as code completion.

5. 1 Sequences of Training Samples

In order to train the linear-structured LSTM

model, we convert ASTs to sequences of training

samples. Basically, we first convert an AST to a

left-child-right-sibling (LC-RS) binary tree. Then,

we transform this LC-RS binary into a complete

binary tree by padding a special non-terminal node

NT-EMPTY. Next, we apply a deep-first in-order

traversal on this complete binary tree to generate

a visiting sequence of training samples. There are

four elements in a sample: (non-terminal, termi-

nal, node-or-leaf, right-or-left). Concretely, when

a non-terminal node is visited, it is considered

as a target non-terminal and the first element in

the sample. The second element: terminal is the

children terminals of the target non-terminal. If

the target non-terminal does not have any termi-

nal child, we use a specified terminal token TT-

EMPTY to represent its empty child. The last two

elements: node-or-leaf is used to declare whether

the non-terminal is a leaf or not in the complete bi-

nary tree and right-or-left represents the position

relationship between the target non-terminal and

its parent node. These two elements are used to

reconstruct the predicting AST from the sequence

of training samples.

5. 2 Model Architecture

The architecture of our integration model is illus-

trated in the Figure 4. It contains one input layer,

one LSTM layer, and an output layer.

Fig. 4 The architectrue of AT2V-LSTM model

5. 2. 1 Input layer

The input layer is a combination layer of the

representation vectors of feeding elements and

these vectors are initialized by ASTToken2Vec

embedding. The input is a sequence of train-

ing samples and one sample has four elements:

(Ni, Ti, NLi, RLi) where Ni is a non-terminal, Ti is

a terminal, NLi is the type information of Ni and

RLi is the side information of Ni. All these four

elements are encoded by one-hot encoding and mul-

tiply embedding matrices as below:

Inputi = Concat(A·Ni+B ·Ti, C ·NLi+D ·RLi)

(4)

where A,B are the embedding matrices for non-

terminals, terminals and initialized by embedding

vectors generated by ASTToken2Vec. A is aK×VN

matrix and the shape of matrix B is K × VT . K

is the length of embedding vectors. VN and VT are

the size of non-terminal vocabulary and terminal

vocabulary respectively. C,D are embedding ma-

trices for type information, and side information.

5. 2. 2 LSTM layer

The LSTM layer receives the embedding vectors

from the input layer as xi and takes the output

ht−1 and hidden state ct−1 from the previous state

of LSTM layer. Then, the LSTM layer computes

three operating gates: forget gate, update gate and

output gate to calculate a new hidden state as ht

and the new output as ct.

5. 2. 3 Output layer

The output layer has four trainable matrices

as the linear mapping between the output of the

LSTM layer and the prediction. There are four

instances our model predicting: next non-terminal

Ni+1, next terminal Ti+1, type and side informa-

tion of the next non-terminal, NLi+1 and RLi+1.

The formula of output layer is as below:

Pi = softmax(W × hi + b) (5)

where P is the prediction of next training sample

including pn, pt, pnl and prl representing the predic-

tion of next non-terminal, next terminal, the side

and type information of pn. W s are four trainable

matrices for linear mapping and hi is the output of

the LSTM layer. The softmax function returns the

possibility of the next tokens predicting.

6 Experiments

6. 1 Dataset Details

The data we use for both the ASTToken2Vec em-

bedding model training and AT2V-LSTM integra-

tion model training is from the same dataset which

is a JavaScript AST dataset provided by Raychev et

al. [10]. There are 100,000 ASTs as training dataset

and 50,000 ASTs as evaluation dataset.

6. 1. 1 Non-terminal Vocabulary

There are 44 different kinds of non-terminal to-

kens specified by the JavaScript programming lan-

guage grammar. Base on these 44 non-terminals,

we add two more bits of information: whether the

non-terminal token has a child token; whether this

non-terminal has a right sibling or not. These two

bits care more about the surrounding context of

non-terminals and make the task of non-terminal

predict become more challenge. This adjunction

is also used in the previous work [5] [10]. There

are 98 kinds of bits-information combination non-

terminal tokens in total as the elements in the

non-terminal vocabulary including the special non-

terminal token:NT-EMPTY we use as a padding

token to build a complete binary tree from an AST.

6. 1. 2 Terminal Vocabulary

Theoretically, there are infinite kinds of terminal

tokens may be included in programs. So, we use

the idea of Word of Bag to specify the terminal

vocabulary. Concretely, we sort all terminal to-

kens appearing in the training dataset by their fre-

quencies of occurrence. Then we choose the 50,000

most frequent terminal tokens as the vocabulary of

the terminal. For infrequent terminal tokens (out

of our terminal vocabulary bag), we use a special

terminal token UNK to represent these terminals.

In total, we have 50,002 tokens in the vocabulary

of the terminal including particular terminal UNK

and TT-EMPTY which is used to represent a child

terminal for a non-terminal who does not have a

terminal child.

6. 2 Experiment of ASTToken2Vec

6. 2. 1 Training details

We implement ASTToken2Vec models to gener-

ate embedding vectors for both non-terminals and

terminals. We define the size of the hidden layer D

is equal to 1,000 so that the length of embedding

vectors is 1,000. We specify the adjuster α in the

joint loss function as 0.6. We use the Adam opti-

mization algorithm with the learning rate of 0.002

to train models. The size of the training batch for

ASTToken2Vec is b = 100 and the training epoch

is e = 10.

6. 2. 2 Visualization

We visualize the representation vectors of sev-

eral terminal tokens to show the performance of

ASTToken2Vec. We first apply principal compo-

nent analysis (PCA) algorithm to these vectors to

reduce the dimension from 1000-d to 2-d. Then we

normalize the 2-d vectors with min-max normaliza-

tion so that the entire range of values of elements

is -2 to 2.

We pick up several terminal tokens to visualize,

the visualization is shown in Figure 5. Terminal

token Identifiers are blue, LiteralNumbers are rep-

resented by purple, Property terminals are green

token and red tokens are LiteralString in the fig-

ure.

In the figure, there are several clusters like: “lit-

eral string cluster”, “property cluster” which repre-

sent different types of terminals. We also find that

even tokens are the same type, if their meaning is

different, they are still not in the same cluster. For

example, even the type of “append” and “value”

are Property, they are still far from each other be-

cause “append” is a property which can add some

elements to a container in the most cases. However

“value” usually is a member in a class without some

operation functionality of a container. Another ex-

Fig. 5 The visualization of embedding vectors

ample is “length” and “userName”. Due to they

have a different meaning, they are not in the same

cluster even they are all Identifiers

We also calculate the cosine similarity between

these embedding vectors and the result meets our

conclusion of visualization.

6. 3 Experiment of AT2V-LSTM

6. 3. 1 Training details

We implement two models for code completion:

basic LSTM model and our AT2V-LSTM integra-

tion model to compare the predicting performance.

We use Adam optimization algorithm to train our

model with base learning rate 0.0025 and it multi-

plies 0.9 every epoch as learning rate decay. We clip

the gradient which is more than 6 to 6 and less than

-6 to -6 to avoid the gradient exploding problem.

We specify the time sequence s = 50 and the batch

size is b = 100, therefore, there are s × b = 5000

training instances for one training batch. We train

two models e = 10 epochs.

6. 3. 2 Next Non-terminal Prediction

Valid accuracy curve of the next non-terminal to-

ken prediction during the training phase is illus-

trated in Figure 6. The blue curve represents the

validation accuracy of the basic LSTM model and

the orange curve is our AT2V-LSTM integration

model.

From the validation accuracy curves, we find the

non-terminal prediction accuracy of AT2V-LSTM

Models Top 1 accuracy Top 3 accuracy

Basic LSTM 83.5 ± 0.2% 92.6 ± 0.2%

AT2V-LSTM 85.2 ± 0.2% 94.4 ± 0.2%
Table 1 Non-terminal evaluation accuracy

integration model is a little higher than the accu-

racy of the basic LSTM model. The evaluation re-

sult illustrated in the table1 also shows that the

accuracy of the integration model is 1.5% higher

than the basic baseline model.

Fig. 6 Validation accuracy for non-terminal

prediction during the training phase

6. 3. 3 Next Terminal Prediction

Figure 7 illustrates the validation accuracy curve

for next terminal token prediction during the train-

ing phase. Orange curve represents our AT2V-

LSTM integration model and the blue curve is the

accuracy of the basic LSTM model. The evaluation

accuracy for the terminal in the test phase is shown

in Tabel2. From both the evaluation result, we can

find that the AT2V-LSTM integration model has a

better performance with the predicting accuracy of

78.9% than the basic baseline model 75.8%.

Fig. 7 Validation accuracy for terminal

prediction during the training phase

Models Top 1 accuracy Top 3 accuracy

Basic LSTM 75.8 ± 0.2% 87.7 ± 0.2%

AT2V-LSTM 78.9 ± 0.2% 89.2 ± 0.2%
Table 2 Terminal evaluation accuracy

Models Type accuracy Side accuracy

Basic LSTM 97.6 ± 0.2% 94.8 ± 0.2%

AT2V-LSTM 97.8 ± 0.2% 95.1 ± 0.2%
Table 3 Type and side evaluation accuracy

6. 3. 4 Next Token Information Prediction

The evaluation result of the type (non-leaf or

leaf) and the side (right-child or left-child) is shown

in the Table3. We can find that both two models

achieve a good performance that the accuracy of

type information is near to 97% and side informa-

tion is near to 95%.

6. 3. 5 Uncommon terminal repeation

We analyze the possible reasons that may cause

our integration model to work better for some eval-

uation cases.

Fig. 8 Code snippets for prediction result

analysis

The code snippet in the figure8 is a test case and

models predict what token should be filled in the

hole. The expecting token is “Property pageY”.

The basic model predicts terminal “UNK” which

means this model consider the token appearing in

the hole is a quite uncommon terminal. However,

our AT2V-LSTM model gives a correct prediction.

From the programming habits and the statistic of

the dataset, the “property pageY” is an uncommon

terminal only appears in several files but repeats

many times in one file. Due to it is uncommon, the

basic LSTM model is hard o ltearn enough infor-

matnio and give an incorrect prediction. On the

contrary, the AT2V-LSTM integration model can

leverage the semantic information of “pageY” ex-

tracted by the ASTToken2Vec embedding and give

a correct prediction.

7 Conclusion

In this paper, we propose an embedding method

for AST nodes called ASTToken2Vec. We integrate

it with a basic LSTM model to build an integration

model called AT2V-LSTM. From the results of our

experiments, we conclude that the ASTToken2Vec

model is able to generate the semantic-based em-

bedding representation vectors for tokens. These

embedding vectors enable our AT2V-LSTM inte-

gration model to leverage more semantic knowledge

hidden behind ASTs and to complete code with

a higher possibility of predicting next tokens cor-

rectly.

References

[1] Allamanis, M. and Sutton, C.: Mining idioms

from source code, Proceedings of the 22nd ACM

SIGSOFT International Symposium on Foun-

dations of Software Engineering, ACM, 2014,

pp. 472–483.

[2] Bielik, P., Raychev, V., and Vechev, M.: PHOG:

probabilistic model for code, International Confer-

ence on Machine Learning, 2016, pp. 2933–2942.

[3] Hindle, A., Barr, E. T., Su, Z., Gabel, M., and

Devanbu, P.: On the naturalness of software, 2012

34th International Conference on Software Engi-

neering (ICSE), IEEE, 2012, pp. 837–847.

[4] Liang, P., Jordan, M. I., and Klein, D.: Learning

programs: A hierarchical Bayesian approach, Pro-

ceedings of the 27th International Conference on

Machine Learning (ICML-10), 2010, pp. 639–646.

[5] Liu, C., Wang, X., Shin, R., Gonzalez, J. E., and

Song, D.: Neural code completion, (2016).

[6] Maddison, C. J. and Tarlow, D.: Structured

Generative Models of Natural Source Code, CoRR,

Vol. abs/1401.0514(2014).

[7] Mikolov, T., Sutskever, I., Chen, K., Corrado,

G., and Dean, J.: Distributed Representations

of Words and Phrases and their Compositionality,

CoRR, Vol. abs/1310.4546(2013).

[8] Nguyen, T. T., Nguyen, A. T., Nguyen, H. A.,

and Nguyen, T. N.: A Statistical Semantic Lan-

guage Model for Source Code, Proceedings of the

2013 9th Joint Meeting on Foundations of Soft-

ware Engineering, ESEC/FSE 2013, New York, NY,

USA, ACM, 2013, pp. 532–542.

[9] Raychev, V., Bielik, P., and Vechev, M.: Prob-

abilistic model for code with decision trees, ACM

SIGPLAN Notices, Vol. 51, No. 10, ACM, 2016,

pp. 731–747.

[10] Raychev, V., Bielik, P., Vechev, M., and Krause,

A.: Learning Programs from Noisy Data, SIGPLAN

Not., Vol. 51, No. 1(2016), pp. 761–774.

[11] Raychev, V., Vechev, M., and Yahav, E.: Code

completion with statistical language models, Acm

Sigplan Notices, Vol. 49, No. 6, ACM, 2014,

pp. 419–428.

[12] White, M., Vendome, C., Linares-Vásquez, M.,

and Poshyvanyk, D.: Toward deep learning soft-

ware repositories, Proceedings of the 12th Working

Conference on Mining Software Repositories, IEEE

Press, 2015, pp. 334–345.

