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Sanajeh: A DSL for GPGPU programming with

Python objects

Jizhe Chenxin Hidehiko Masuhara Matthias Springer Youyou Cong

GPGPU (general purpose computing on graphics processing units) is one of the economical methods of

parallel programming. However, in order to obtain high performance, the programmers must write code in

a low-level programming language such as C and pay attention to memory allocation. We propose Sanajeh,

a Python DSL (domain-specific language) that compiles object-oriented programs into GPGPU code. It is a

language which is based on the Single-Method Multiple-Objects (SMMO) model. Sanijeh compiles parallel

Python code into C++/CUDA code and utilizes DynaSOAr for efficient GPU memory allocation.

1 Introduction

GPGPU is a method that uses GPUs (graph-

ics processing units) to perform computations that

are usually performed by CPUs (central processing

units). Although a single core on a GPU operates

at a lower frequency than a CPU does, by utiliz-

ing the computation power of multiple GPU cores,

programmers can gain high performance in parallel

programs in a more economical way.

Object-oriented programming (OOP) is a widely

used programming paradigm but it is seen as

too inefficient for high-performance computing

(HPC). Recent work has shown that efficient OOP

is feasible on GPUs when following the Single-

Method Multiple-Objects (SMMO) [11] program-

ming model. In SMMO, programs are designed

to run one method on all objects of a class. It

fits well with parallel Single-Instruction Multiple-

Data (SIMD) architectures. SMMO model al-

lows programmers to write efficient parallel pro-

grams in OOP style. The performance of many

SMMO applications depends on efficient memory
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(de)allocation.

In this paper, we propose a Domain Specific

Language (DSL) called Sanajeh. Sanajeh pro-

vides API (section 4) for programmers to write

SMMO applications with high performance in nor-

mal Python syntax. Programmers do not have to

bother with GPU memory allocation, which is dif-

ficult implement efficiently. Also, Sanajeh allows

users to use Python libraries in HPC programs. We

evaluated Sanajeh’s performance with an N-Body

simulation (section 7).

2 Background

2. 1 DynaSOAr

DynaSOAr [12] is an efficient GPU memory allo-

cator for SMMO applications. It stores data in a

Structure of Arrays (SOA) memory layout to im-

prove the efficiency of memory access. However,

programmers must adhere to a certain coding style

and follow certain coding conventions when using

DynaSOAr.

• Pre-declarations for fields:

DynaSOAr requires user to pre-declare all the

fields of a class that resides on the device (we

call these classes “device classes”) through a

special syntax (Listing 1). Such code is differ-

ent from ordinary C++ (Listing 2) and harder

to read. Also, all device classes have to be child

classes of “AllocatorT::Base”.

• Specification for device data:
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class Body : public AllocatorT : : Base {
public :

d e c l a r e f i e l d t y p e s (Body , f loat ,

f loat , f loat , f loat , f loat ,

f loat , f loat )

private :

F ie ld<Body , 0> pos x ;

Fie ld<Body , 1> pos y ;

Fie ld<Body , 2> ve l x ;

Fie ld<Body , 3> ve l y ;

Fie ld<Body , 4> f o r c e x ;

Fie ld<Body , 5> f o r c e y ;

Fie ld<Body , 6> mass ;

}

Listing 1 Field pre-declarations (DynaSOAr)

in an N-Body simulation

class Body : public AllocatorT : : Base {
private :

f loat pos x ;

f loat pos y ;

f loat ve l x ;

f loat ve l y ;

f loat f o r c e x ;

f loat f o r c e y ;

f loat mass ;

}

Listing 2 Ordinary C++ field declarations

(equiv. to Fig. 1)

Since DynaSOAr is a CUDA framework,

programmers must annotate functions and

certain fields with “ device ” and/or “

host ” modifiers, indicating whether code/-

data should run/reside on the GPU or on the

CPU.

We use DynaSOAr as our device memory alloca-

tor.

2. 2 Host and device

In GPGPU programs, code is separated into two

parts: Host code and Device code. Host code

run on the host (CPU), includes code that invokes

the GPU kernel, while device code run on the de-

vice (GPU).

In CUDA programs, users have to write

“ device ” keywords (Listing 3). These keywords

marked as red are required for data on the device.

device void Body : : app l y f o r c e (Body∗
other ) {

// Update ‘ other ‘ .

i f ( other != this ) {
f loat dx = pos x − other−>pos x ;

f loat dy = pos y − other−>pos y ;

f loat d i s t = sq r t ( dx∗dx + dy∗dy ) ;
f loat F = kGravityConstant ∗ mass ∗

other−>mass

/ ( d i s t ∗ d i s t +

kDampeningFactor ) ;

other−>f o r c e x += F∗dx / d i s t ;

other−>f o r c e y += F∗dy / d i s t ;

}
}

device void Body : : update ( ) {
v e l x += f o r c e x ∗kDt / mass ;

v e l y += f o r c e y ∗kDt / mass ;

pos x += ve l x ∗kDt ;

pos y += ve l y ∗kDt ;

i f ( pos x < −1 | | pos x > 1) {
v e l x = −v e l x ;

}

i f ( pos y < −1 | | pos y > 1) {
v e l y = −v e l y ;

}
}

Listing 3 “ device ” keywords before

function declarations in an N-Body simulation.

2. 3 Foreign function interface

Foreign function interface is a mechanism used to

call functions written in another language. Sana-

jeh uses CFFI [9], which is a Python library, to

call C++ function from Python. We choose the

“in-line”, “ABI mode” provided by the CFFI li-

brary. Listing 4 shows a example of using CFFI.

Declarations like function prototypes are written in

“C − likedeclarations”, and the path of the com-

piled shared library (in Sanajeh, a “.so” file) is writ-

ten in “libpath”. By this, users can call C++ func-

tion directly through “lib.function name”.

Sanajeh first compiles Python device code into

C++/CUDA code, then the code is called through

CFFI. Details for using CFFI are hidden by Sanajeh

API (section 4) so users does not need to write such

code.
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import c f f i

f f i = c f f i . FFI ( )

f f i . cde f ( ”C− l i k e d e c l a r a t i o n s ” )

l i b = f f i . dlopen ( ” l i bpa th ” )

Listing 4 Example of using CFFI, “in-line”.

“ABI mode”

3 Overview

In this section, we discuss two challenges in Sana-

jeh.

3. 1 Distinct host code and device code

In Sanajeh, code also includes host code and

device code (2. 2). Host code in Sanajeh is exe-

cuted directly by the Python interpreter, but de-

vice code needs to be compiled into C++/CUDA

(3. 2). Sanajeh is designed to free users from ex-

plicitly specifying device data by writing code with

extra syntax like the ” device ” keywords in List-

ing 3. The recognition of device code is an issue in

Sanajeh.

We use CallGraphAnalyzer to solve this issue.

CallGraphAnalyzer tracks all code related to de-

vice classes and marks them as device code. It

only requires the specifications of device classes.

CallGraphAnalyzer will be described in section 5.

3. 2 Compile device code

Python is a highly abstracted language. In order

to gain high performance in SMMO applications,

we have to use a low-level programming language.

In Sanajeh, device code is compiled into

C++/CUDA by Ahead-Of-Time compilation. The

compiled code includes DynaSOAr syntax for call-

ing DynaSOAr API to do memory allocation. As

shown in Listing 1 and Listing 2, DynaSOAr’s syn-

tax is different from those in usual programming

style. Fields in device classes need to be pre-

declared through DynaSOAr syntax, which is de-

fined using C++ templates.

It is obvious that DynaSOAr’s syntax makes pro-

grams more complex. Sanajeh users can write de-

vice code in normal programming style in Python.

We uses a compiler called Py2Cpp to do the compi-

lation from Python to C++/CUDA. It is described

in section 6. We then compiles those C++/CUDA

code generated by Py2Cpp into a shard library us-

ing the Nvidia CUDA Compiler (NVCC), and calls

them through FFI (section 2. 3)

4 Sanajeh’s API

Sanajeh provides API separately for device code

and host code.

4. 1 Device API

Device code is not run by the Python inter-

preter, instead they are compiled into according

C++/CUDA code by Py2Cpp. Therefore API for

device code is only used for recognizing purpose.

The current API for device code is shown below:

• device do(cls, func, *args): Run function

func on all objects of class cls sequentially

with the arguments of func. Here func has to

be a function declared in the device classes.

• Random API: Random API is provided

for random number generation, for example

the rand init function and the rand uniform

function. Corresponding to the cuRAND li-

brary.

• Math API: Math API is provided for Math

computation, for example the sqrt function.

Corresponding to the CUDA Math API.

4. 2 Host API

Host code is executed by the Python interpreter.

Sanajeh provides the following host API:

• initialize(): Load the above shared library

to Python FFI module.

• device class(*clss): Specify the device

classes through variadic arguments *clss.

• parallel do(cls, func, *args): Run func-

tion func on all objects of class cls parallelly

with the arguments of func. Here func has

to be a function declared in the device classes.

Notice that there is no parallel do API in de-

vice API (section 4. 1), since device code is ex-

ecuted in units of one thread and parallelism

cannot be applied further more.

• parallel new(cls, object num): Create ob-

jects of a class cls on device memory with a

number of object num.

• do all(cls, func): Run function func on

copies of all objects of class cls sequentially.
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Here func is a function which receives an ob-

ject as an argument. The object is a copy of an

object of class cls. Functions like print can

be used in func.

5 CallGraphAnalyzer

CallGraphAnalyzer is designed to free users of

Sanajeh from explicitly specifying all host code and

device code. It uses the abstract syntax tree (AST)

of Python source code as input, tracks calling rela-

tionships between functions and using of variables,

then creates a CallGraph data structure (section

5. 2). After user specifies the device classes, by

analyzing the CallGraph, all device code will be

marked.

5. 1 Definition of Sanajeh’s device code

Here are the definitions of Sanajeh device code:

1. Declarations of the device classes is device

code. These are specified by users.

2. Declarations for the functions and variables

called/used in those classes are device code.

3. Declarations for the functions and variables

called/used in above functions are device code.

This is applied recursively.

5. 2 CallGraph data structure

CallGraph is a data structure which has three

kinds of nodes: ClassNode, FunctionNode and

VariableNode:

• ClassNode: Represents a class. There are

four sets in this node, each stores functions de-

clared in that class, functions called in that

class, variables declared in that class and vari-

able used in that class. Each element in

these sets is stored as either FunctionNode

or VariableNode. Sanajeh does not support

nested class.

• FunctionNode: Represents a function. Sim-

ilar to ClassNode, FunctionNode has sets to

stores variables declared and used in the func-

tion. Sanajeh does not support nested func-

tions too.

• VariableNode: Represents a variable. Name

and type of the variable is stored in

VariableNode. Notice a global variable can not

be used both in device and host code.

Fig.1 showed an example of the CallGraph struc-

ture for the code in Listing 5. For illustration

g l oba l 1 : int = 5

g loba l 2 : int = 10

g l oba l 3 : int = 15

class HostClass :

def HostFunction ( s e l f ) −> None :

Function3 ( )

class DeviceClass :

def DeviceFunction ( s e l f ) −> None :

s e l f . f i e l d 1 = g loba l 1 + 1

s e l f . f i e l d 2 = Function1 ( )

def Function1 ( ) −> int :

Function2 ( )

return 0

def Function2 ( ) −> None :

global g l oba l 3

l o c a l 1 = 0

g l oba l 3 += l o c a l 1

def Function3 ( ) −> None :

l o c a l 2 = 1

global g l oba l 2

g l oba l 2 += l o c a l 2

Listing 5 A Sanajeh sample program

purpose we do not mark all calling/using relation-

ships between nodes but only those between device

nodes.

5. 3 Marking of device data

After the CallGraph structure is created, devices

code will be marked by tracking the declaration,

calling and using relationships between the nodes.

As shown in Fig.1, since B is a device class, by

tracking the declarations in class B: B F, field1 and

field1 are marked. During the marking, functions

called and variables used in those nodes are also

marked. In this example, Function1 is called in

B F so it was marked. Recursively, Function2 is

marked. Then since local1 is declared and used

in Function2, global variable global3 is used in

Function2 , they are marked as well. global1 is

also marked because it was used in B F.

6 Py2Cpp

Py2Cpp is a compiler which compiles Python de-

vice code to C++/CUDA code. It uses the check

result of CallGraphAnalyzer (section 5) to trans-
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global3

HostFunction
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Variable

Declaration

Calling/Usingglobal2

Fig. 1 CallGraph of Listing 5

form the Python AST of device code to C++ AST

code (section 6. 1). Then C++ code will be builded

from C++ AST (section 6. 2)

6. 1 Transform Python AST to C++ AST

The traversing uses the Python ast library. The

library provides is designed following Visitor Pat-

tern. There is a visitor function for every kind of

node in the AST. Behavior when visiting the node

is defined in it. Py2Cpp checks the mark results

of CallGraphAnalyzer when visiting class, function

and variable nodes. If the related CallGraph node

of a Python AST node is marked as device, all child

node of that node will be transformed into C++

AST nodes. Finally a C++ AST of all device code

is constructed.

Data types is an important issue during the

transformation. Type annotations are supported

from Python 3.6. Although Python runtime does

not enforce function and variable type annotations,

since type information is important for memory al-

location, Sanajeh requires users to explicitly write

type hints for device data (as shown in Listing 5).

There is a type converter in Py2Cpp. For now it only

supports bool, int and float data types, but we

are going to extend it to support other data types

in the future, for example arrays.

6. 2 Build C++ code

After C++ AST is generated, C++ code will be

generated from the C++ AST. We generate two

files from C++ AST, one is “.h” header file and an-

other is “.cu” source file. The “ device ” keyword

and other syntax will be add during this process.

Other syntax includes:

• Pre-declarations of fields:

Pre-declarations of fields are generated from

class AST nodes in C++ AST. code in List-

ing 1 can be generated automatically.

• code for API callings:

API calling in DynaSOAr uses C++ templates

to pass argument like class and function. Al-

though Python has mechanism to pass class

and function as an argument, templates can-

not be called through FFI (section 2. 3) except

for functions. We generate a function for each

class. The function includes C++ template,

which is used to call DynaSOAr API. For ex-

ample, Listing 6 shows this the function for

calling parallel new on class Body.

• code for callback:

In Sanajeh’s API (section 4), there is a do all

function. This function receives a Python func-

tion, say PF, while PF receives an Python ob-

ject as a parameter. The constructor function

of the class, say CF, will be included together
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extern ”C” int para l l e l new Body ( int

object num ) {
a l l o c a t o r hand l e−>para l l e l n ew<

Body>(object num ) ;

return 0 ;

}

Listing 6 Function for calling parallel new on

class Body

void Body : : do (void (∗ l ) ( f loat , f loat ,

f loat , f loat , f loat , f loat , f loat ) ) {
l ( this−>pos x , this−>pos y , this

−>ve l x , this−>ve l y , this−>
f o r c e x , this−>f o r c e y , this

−>mass ) ;

}

extern ”C” int Body do a l l (void (∗ l ) (

f loat , f loat , f loat , f loat , f loat ,

f loat , f loat ) ) {
a l l o c a t o r hand l e−>template

device do<Body>(&Body : : do ,

l ) ;

return 0 ;

}

Listing 7 do and do all function of class Body

with PF in such an lambda expression:

lambda{∗args} : PF (CF ({∗args}))
{∗args} is the fields of the device class. This

lambda expression, say lexp, is passed to C++

as a callback function. In c++, there is a

do all function for every class that receives

lexp, and passes it to another function do us-

ing DynaSOAr API. In do function, all fields

of the class is passed to lexp. As a result, lexp

is called multiple times in C++ territory un-

til copies of all device objects are created by CF

and passed to F. Finally, the fields of those copy

objects are accessed in F. Example code for do

and do all is shown in Listing 7. Py2Cpp col-

lects the information of fields of device classes

then generates such code automatically.

7 Performance Evaluation

To see how calling device code through FFI mod-

ule affects overall performance, we evaluated the

performance of Sanajeh compared to DynaSOAr by

an N-Body simulation program.

N-Body is a 2D particle simulation. It simulates

movements of a large number of bodies. Each body

has position, velocity and mass. Every iteration of

the simulation computes force between every two

bodies according to Newton’s theory of gravity,

by advancing the simulation by a small period of

time, the new velocity and position of the bodies

are updated accordingly.

We measured the overall execution time of N-

Body simulation with 100 iterations for different

number of objects in Sanajeh and DynaSOAr on

NVIDIA TITAN Xp GPU (12 GB device memory).

We compiled the device code with NVCC (-O3)

from the CUDA Toolkit 10.1 on Ubuntu 18.04.4.

Host code was run with Python 3.7.4. Fig.2 shows

the result of the execution time. The vertical axis is

execution time in seconds, and the horizontal axis

is the number of bodies.

In conclusion, the execution time of each itera-

tion in Sanajeh and DynaSOAr has no much differ-

ence. The increase percentage of execution time

from Sanajeh’s to DynaSOAr’s is no more than

1.5%. It is conceivable that this extra time is the

execution time of FFI module. It does not influence

much on overall performance.

We measured the compile time spent by Py2Cpp.

Py2Cpp spent an average time of 0.006s to compile

N-Body’s Python code into C++/CUDA ones. It

will take up less and less up proportion of overall

execution time when body objects increases.

8 Related work

There have been high-level DSLs for GPGPU

programming. Such as SPOC [2], which uses

stream processing with Ocaml, and Ikra [5], which

is a data-parallel extension to Ruby. In Python,

Klöckner et al. designed PyCUDA and PyOpenCL

[4], two Python libraries for GPU computing based

on CUDA. They are designed for experienced

CUDA users and require users to write code in

CUDA syntax as a string. This is not friendly

to a Python programmer who doe not understand

C++/CUDA syntax. Another library for GPU

computing is called CUPY [6]. Its syntax is close to

NumPy [7], a widely-used Python library for data

computing. It provides the same functionality as
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Fig. 2 Execution time of N-Body simulation with 100 iterations

NumPy, but executes on a GPU.

Although the above libraries have good perfor-

mance in most of the cases in GPGPU program-

ming by Python, they are not designed and op-

timized for OOP. In Python, a list of objects is

stored as an Array of Structures (AOS) [3] [8]. Pre-

vious works [1] [10] [13] have shown that switching to

a Structure of Arrays (SOA) data layout can speed

up HPC applications by several factors compared to

a traditional AOS layout. Therefore, Python’s im-

plementation of a list of objects is not a good choice

for GPU programs. Our work uses DynaSOAr [12]

as memory allocator, which allocates memory dy-

namically with SoA performance characteristics.

9 Conclusion

We proposed a DSL for GPGPU programming

with Python objects called Sanajeh. Sanajeh pro-

vides API for users to write SMMO applications.

By compiling device code to C++/CUDA code

automatically, Sanajeh users can write GPGPU

in OOP style using a high abstracted language,

Python, in the meanwhile without losing perfor-

mance.
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