
日本ソフトウェア科学会第 39 回大会 (2022 年度) 講演論文集

Visual Debugger with a Customizable View

Rifqi Adlan Apriyadi, Hidehiko Masuhara, Youyou Cong

Visual debuggers provide more concrete representations of program behavior than what might normally

still be abstract. For object-oriented languages, their object-centric components, such as objects and their

relationships, are the information their visual debuggers aim to concretize. However, none of such de-

buggers provide the capability to customize their graphical view. Customization ought to facilitate better

comprehensibility of the program behavior, which consequently aids in bug discovery, by allowing for a

more focused program state view. This can be achieved by customizing the representation of objects of

a class in accordance with the theoretical concept, or by abstracting away unnecessary information. This

research proposes a visual debugger for Java with customization features for its graphical view that allows

users to customize the visual representation of the program state through customization specifications. To

provide flexible customizability, the proposed system would provide customization elements that function

as building blocks for users to use in their specifications.

1 Introduction

The main goal of visual debuggers is to enhance

program state understanding, and consequently,

that of the program behavior. Visual debuggers

display relevant information graphically to facili-

tate this purpose. This is fueled by the fact that

visualizations of abstract information concretize it

by displaying relationships and patterns [5].

For object-oriented languages, understanding the

behavior of a program is significantly more diffi-

cult than understanding its structure or design [3].

Therefore, it is important to display the object-

centric information of program states — the state

of the program at a point in time or in program sus-

pension — whilst debugging [4]. This includes the

values of variables of objects and their relationships

Visual Debugger with a Customizable View

Rifqi Adlan Apriyadi, Hidehiko Masuhara, Youyou

Cong, School of Computing, Department of Mathe-

matical and Computing Science, Tokyo Institute of

Technology.

with other objects with regards to their references.

Moreover, this view is frequently displayed as a

tree of objects where referenced objects are lower

in the tree as their children. Tree structures de-

pict items that could have children which could also

have children of their own. However, each item

could at most only have one parent and children

of an item could not include any of the its parents.

This means that a tree structure is not the most ac-

curate nor concrete depictions of these relationships

as objects could be referenced by multiple different

objects while the referenced ones could, in turn, do

the same to more, even the ones higher up in the

tree.

To those efforts, visualizations are often in the

form of object diagrams — or their variants — to

show the aforementioned relationships between ob-

jects [11] [8] [7] [9]. In an object diagram, an object

is a node or vertex and their references to other ob-

jects are represented by directed edges to the them.

An simple example of an object diagram could be

owner

Laptop

itemId (int): 1001

modelId (int): 256

article

contact

Repair

type (RepairType): BAT_REP

Customer

name (String): John

cusId (int): 3018

phone (String): "0987654"

図 1 Example of an Object Diagram

seen in Figure 1, which shows a Repair object rep-

resenting a repair order which has variables article

and contact which reference a registered item and

a customer, respectively.

However, although the main purpose of visual

debuggers is to facilitate program understanding,

they often come short in reaching this goal in some

situations. Large program states often manifest

this shortcoming by cluttering the debugger view

with a large object diagram, even for modestly sized

programs [4] [12]. Though some of these projects

provide workarounds by allowing users to prune ob-

ject nodes from the view to simplify it, this solu-

tion merely removes information relating to these

objects completely when some parts of it might still

be relevant [8].

Furthermore, it is not uncommon to have imple-

mentations of a concept to be different from how

they are portrayed in theory. An example of this

is the internal representation of lists when writing

a heap sort algorithm. A visual debugger will nor-

mally display lists the way they are represented in-

ternally, which greatly impedes the programmer in

understanding the current program state while de-

bugging, given that they would most likely need

to visually observe the behavior of their program

working on a heap structure. Even though the pur-

pose of the visualization is to facilitate the under-

standing of concepts and their behaviors [10] [6] as

represented by the visualized objects, they are un-

equipped to cover this practice, causing the process

to become counter-intuitive.

Given this, the main problem causing these two

shortcomings is the rigidity of the graphical views

in terms of how they display program states. Users

cannot control the visualization of their program

states to match their situations, harming users’ un-

derstanding of program states.

To alleviate this problem, this research proposes

a visual debugger for a chosen object-oriented pro-

gramming language, Java, where users are able to

customize the object diagram view by means of

a customization specification to fit their current

needs. The proposed system is to be built on Visual

Studio Code utilizing its various available APIs. A

comparative experiment is to be conducted to ver-

ify the effectiveness of the debugger with regard to

the problem it aims to solve.

The aim of this research is to investigate an ap-

proach to the development of a visual debugger

with a feature that allows for flexibility in display-

ing these program states. Section 2 details the pro-

posal and key features relevant to the problem at

hand. Furthermore, Section 3 presents the specifics

of the implementation of the prototype of the tool

aimed to represent this research whose success is to

be validated as described in Section 4. Finally, sim-

ilar work will be mentioned in Section 5 followed by

this paper’s conclusion in Section 6.

2 Proposal

This research proposes a visual debugger with

customization features in its graphical view.

Among other things, these features ought to cover

the aforementioned common flaws present visual

debuggers for object-oriented languages. This

section first describes the customization features

which will then be followed by the description of

how customization is a potential solution.

Though the purpose of the customization feature

is to avoid rigidity, it is also important for the fea-

ture itself to not stumble onto the same pitfall. In

this effort, the debugger provides users with cus-

tomization elements that act as building blocks.

With these building blocks, the users should be able

to specify their own customizations to the debugger

view in various components of the language, such as

for a specific class, class field, method, method pa-

rameter, etc. Through a specification, the debugger

view will display program states accordingly once

debugging starts.

Types of customization elements include:

(a) Invisible Edge: The removal of an edge re-

lating two object nodes from the view

(b) Imaginary Edge: The addition of an edge

relating two object nodes to the view

(c) Invisible Object: The removal of an object

node and all its incoming and outgoing edges

from the view

(d) Imaginary Object: The addition of an object

node to the view

(e) Node Description: Allows each object to

have their own descriptions which could tailor

to its current state.

For example, Figures 2 and 3 show sample mock-

up object diagrams of the visual debugger. Both

subfigures display a Single object — representing

a Single move made by a player involving only one

card in a card game — that has variables moveMaker

of class Player and card of class Card representing

the player making the Single move and the card

within the move, respectively. Figure 2 shows the

uncustomized view and Figure 3 shows it with some

customizations applied. The customizations used

in Figure 3 are:

• Declaring the Card class as an invisible node

• Declaring the card variable in the Single class

to be an invisible edge

• Adding a custom description to object nodes

of the Single class to show the description of

moveMaker card

Single

Player

name (String): "Walt"

Card

rank (int): 5

suit (Suit): SPADES

図 2 Uncustomized

moveMaker

Single

card (Card): 5♠

Player

name (String): "Walt"

図 3 Customized

the card variable.

Furthermore, it is anticipated that it would be

useful for customizations to be accompanied by op-

tional conditions which allow users to specify when

a customization is applied. For example, to specify

the list to heap customization as discussed in the

previous section, conditions would prove useful to

indicate where to create imaginary edges and where

to remove ones that would normally exist. It is

also envisioned that some combinations of these el-

ements will be used frequently for higher-level cus-

tomizations, such as in the use case of merging two

nodes of objects where one wraps the other in the

implementation side. Therefore, a few higher-level

customization elements that are predicted to be of

frequent use that serve as shorthands for combina-

tions of the building block customization elements

shall be provided as well. In addition to specifying

the customization before debugging, the debugger

would also allow for the user to customize the view

while debugging, which would serve as a quality-of-

life feature for small customizations or to preview

how the customization that the users have in mind.

For the case of the inconsistency between the con-

cept and its representation in runtime, users could

customize the view to closer resemble the represen-

tation of the concept in theory despite how the data

is actually stored internally. For example, users

could customize the view to show a node with a

textual description of a matrix instead of showing

an array that refers to more arrays, the former al-

lowing for a more comprehensible view.

On the other hand, for the case of visual clut-

ter, users could specify customizations to the view

that abstract information that is irrelevant to the

current situation [13]. For instance, users could re-

duce visual clutter by making immutable objects of

a class as node elements of objects that have them

as reference and removing any of their nodes from

the view completely, if the behavior of this class is

currently of no importance.

3 Implementation

The tool is to be developed as a debugger for Java

due the support it is given by the software used for

the development. Furthermore, it is a convenient

choice given that most research projects taken as

reference for this research [7] [8] [9] [1] build their

tools for Java, as well.

3. 1 Visual Debugger User Interface

The UI of the debugger will be implemented as an

extension for Visual Studio Code, hereafter referred

to as VSCode. WebView [2] will be used to display

the UI due to the fact that extensive flexibility in

designing the UI is provided and that VSCode has

its own dedicated API for it. This flexibility will

also allow for the development to be facilitated by

a visualization library that lies in abundance. The

UI would extend the debugger UI of VSCode. In

either case, the architecture of the tool to be built

VSCode WebView API

WebView UI

VSCode Extension API

VSCode

Debug Adapter Protocol

Debugger Extension

Debug Adapter

Concrete Debugger

図 4 The Architecture of the Visual Debugger

can be seen in Figure 4 and is described as follows:

• The user interacts with the WebView UI

• The WebView UI exchanges information with

VSCode using the VSCode WebView API

• VSCode communicates the visual debugger

extension that is to be built using the VSCode

Extension API

• The extension manages the debugger by com-

municating with VSCode’s Debug Adapter

(DA) for Java through the Debug Adapter Pro-

tocol (DAP)

• The DA handles the communication with

Java’s concrete debugger.

3. 2 Debug View Customizability

The main concerns in the implementation of the

view customization features of the visual debug-

gers are how users would specify their customiza-

tions and how the visual debugger would under-

stand them. For the former, there are a few options

available.

One option would be to provide a dedicated Do-

main Specific Language (DSL) that users would use

to write in to specify their customizations in a sepa-

rate file. Requiring users to specify their customiza-

tions in a separate file allows them to be as expres-

sive as need to be in their customization specifica-

tion. However, this would require them to specify

which customization applies to which part of the

program, which might involve cumbersome identi-

fication. This is especially troublesome for large

projects where paths to classes are often long.

Another option would be to provide annotations

users could use in different parts of the program,

which would also require a DSL, albeit not nec-

essarily one as expressive as the previous option.

Users would have greater convenience in specifying

which customization applies to which parts of the

program given that annotations could generally be

placed on virtually most of the language’s compo-

nents, resolving the identification problem from the

previous option. However, as specifications along

with their conditions would be made in these an-

notations, it is questionable how expressive these

specifications could be given that heavily expressive

specifications may litter the file. Additionally, this

option would not allow users to write customiza-

tions on parts of the program in read-only files.

Finally, the third option is to incorporate both

of the previous options, taking the best of both

worlds. If the user is not to provide lengthy specifi-

cations for each annotation or if they are not to be

written in a read-only file, then these annotations

could remain and would not disarrange the pro-

gram file. Otherwise, they could be made written

into a separate file. The downside to this option is

the development effort required to implement both

of these functionalities.

Regardless of the specification method option

chosen, specifications are to be compiled into an

XML file, which the debugger could more easily

parse and create its internal representation from.

4 Validation

The main aspect to be validated in this research

is how much the use of view customization in a

visual debugger improves the understandability of

program behavior, or lack thereof. Since the view of

the visual debugger will be a variant of an object

diagram, the component whose understandability

is to be measured is the object diagram in the view

and certainly not the code used for the validation

itself. However, although there are already stud-

ies on measuring understandability of code, there

is yet to be a devised metric for the measurement

of diagram understandability.

Therefore, a comparative experiment ought to be

conducted which aims to compare the average time

it takes for participants to understand the behav-

ior of provided programs in two different settings.

The control group would be tasked to understand

the behavior of programs using the visual debugger

without any customizations applied on the debug-

ger view. In other words, this group would only

use the basic view of the debugger. The treatment

group would be tasked to do the same with the

same set of programs provided, except they will be

using the visual debugger with customizations al-

ready applied. To have the provided tools be uni-

form to all participants in the treatment group, the

customization specification will already be provided

for them. For both groups, they will be asked to do

their tasks using the debugger as much as possible.

It is expected that the average time taken to un-

derstand each program in the treatment group to

be smaller than that of the control group.

This experiment will certainly have extraneous

variables present that may influence the results of

each participant. The biggest of these variables

would be the amount of experience and knowledge

participants already have in the experimentation

environment. A participant may have more expe-

Survey

Control Group

Results

Treatment Group

Code Code

Specifications

Evaluation

図 5 Flow of the Experiment

rience in the programming language, in program

comprehension and debugging, or in the theory the

programs emulate. Though these variables could

not be avoided, they should have the capacity to

be minimized through careful distribution of par-

ticipants. For example, the distributions of the two

groups could be done in such a way that the groups

are balanced in terms of their participants’ experi-

ence and knowledge, the information of which could

be obtained by a survey some time before the ex-

periment is conducted. Figure 5 illustrates the flow

of the experiment.

5 Related Work

This section discussed the more well-known tools

for program visualizations. Though not all of them

have the same concept as the visual debugger dis-

cussed in this paper, they all provide visualizations

aimed at concretizing program behavior compared

to their predecessors.

Java Interactive Visualization Environment (JIVE)

[8] is a visual debugger built as a plug-in for the

Eclipse Java debugger. It features an object dia-

gram view, a sequence diagram view, backwards

stepping, and query-based debugging — though

without the flexibility this research aims to achieve.

BlueJ [7] is an integrated Java development en-

vironment designed for introductory teaching to

object-oriented programming. Its main property

is its simplicity and pedagogy. BlueJ provides an

interactive environment in which students could in-

teract directly with classes and objects, allowing

them to learn the behavior of the object-oriented

programming paradigm.

Similarly, Jeliot3 [9] is a pedagogic tool aimed

also at novice students for object-oriented program-

ming, as well. It provides a fully or semi-automatic

visualization of the data and control flows of the

program. In addition to supporting visualizations

of object instances and inheritance, this version of

Jeliot also introduces object-oriented concepts.

Velázquez-Iturbide et al. [13] developed Win-

HIPE, an environment providing students the ca-

pability of customizing the visualization of expres-

sions. The customization areas it provides are in

the choice between textual or graphical visualiza-

tions, or a mixture of both, the typographic styles

used, and visualization simplification.

6 Conclusion

Though the addition of visual debuggers and sim-

ilar tools has been acclaimed, the very nature of

visualizations is that they mirror abstract infor-

mation in a finite space, leading to rigidity. The

research this paper describes aims to discover the

methods, considerations, and results of developing

a visual debugger that overcomes the trap of rigid-

ity through customizability.

The visual debugger proposed is to allow users

to specify their customizations which will be auto-

matically applied once they start debugging. Basic

customization elements are provided that serve as

building blocks for any customization. The debug-

ger will be developed as an extension to Visual Stu-

dio Code due to the fact that it provides convenient

APIs for the view, the extension development, and

the debugger back-end.

The validation of the success of the tool is

planned to be done by means of a comparative ex-

periment, where participants are to be separated

into control and treatment groups. They are to be

separated accordingly such that the programming

experience and proficiency of the two groups are

as balanced as possible. This is important given

the fact that the rate in which participants can un-

derstand program behavior through the use of the

tool is the variable of interest, which may vary im-

mensely.

参 考 文 献
[1] Cardillo, G., Schürmann, P., and Lagadec,

A.: Visual OO Debugger, PhD Thesis, OST

Ostschweizer Fachhochschule, 2022.

[2] Cockburn, A., Greenberg, S., McKenzie, B., Ja-

sonsmith, M., and Kaasten, S.: WebView: A graph-

ical aid for revisiting Web pages, Proceedings of the

OZCHI, Vol. 99, 1999, pp. 15–22.

[3] De Pauw, W., Lorenz, D. H., Vlissides, J. M.,

and Wegman, M. N.: Execution Patterns in Object-

Oriented Visualization., COOTS, Vol. 98, 1998,

pp. 16–16.

[4] Gestwicki, P. and Jayaraman, B.: Interactive

visualization of Java programs, Proceedings IEEE

2002 Symposia on Human Centric Computing Lan-

guages and Environments, IEEE, 2002, pp. 226–

235.

[5] Ho, S. Y.: Seeing the value of visualization,

(2010).

[6] Keahey, T. A. et al.: Using visualization to

understand big data, IBM Business Analytics Ad-

vanced Visualisation, Vol. 16(2013).

[7] Kölling, M., Quig, B., Patterson, A., and Rosen-

berg, J.: The BlueJ system and its pedagogy,

Computer Science Education, Vol. 13, No. 4(2003),

pp. 249–268.

[8] Lessa, D., Czyz, J. K., and Jayaraman, B.:

JIVE: A pedagogic tool for visualizing the execu-

tion of Java programs, Bericht, Univ. of New York,

Buffalo, (2010).

[9] Moreno, A., Myller, N., Sutinen, E., and Ben-

Ari, M.: Visualizing programs with Jeliot 3, Pro-

ceedings of the working conference on Advanced vi-

sual interfaces, 2004, pp. 373–376.

[10] Naps, T., Cooper, S., Koldehofe, B., Leska, C.,

Rößling, G., Dann, W., Korhonen, A., Malmi, L.,

Rantakokko, J., Ross, R. J., et al.: Evaluating the

educational impact of visualization, Acm sigcse bul-

letin, Vol. 35, No. 4(2003), pp. 124–136.

[11] Oechsle, R. and Schmitt, T.: Javavis: Au-

tomatic program visualization with object and

sequence diagrams using the java debug inter-

face (jdi), Software visualization, Springer, 2002,

pp. 176–190.

[12] Sinha, V., Karger, D., and Miller, R.: Relo:

Helping users manage context during interactive

exploratory visualization of large codebases, Vi-

sual Languages and Human-Centric Computing

(VL/HCC’06), IEEE, 2006, pp. 187–194.

[13] Velázquez-Iturbide, J. Á. and Presa-Vázquez,

A.: Customization of visualizations in a func-

tional programming environment, FIE’99 Frontiers

in Education. 29th Annual Frontiers in Educa-

tion Conference. Designing the Future of Science

and Engineering Education. Conference Proceed-

ings (IEEE Cat. No. 99CH37011, Vol. 2, IEEE,

1999, pp. 12B3–22.

