
日本ソフトウェア科学会第 39 回大会 (2022 年度) 講演論文集

Supporting Multiple Inheritance in an

Object-Oriented DSL for GPGPU by Class

Hierarchy Transformation

Fathul Asrar Alfansuri, Hidehiko Masuhara,

Luthfan Lubis, Youyou Cong

Object-support in GPGPU domain specific languages (DSL) enables highly parallel object-oriented program-

ming on GPUs. This paper improves object-support in Sanajeh, a Python DSL for GPGPU, by adding a

multiple inheritance feature. Existing Sanajeh is restricted to single inheritance, which has limited flexibil-

ity. This restriction is due to its backend library which is not trivial to be extended. The limitation makes

it difficult for Sanajeh to represent multiple classes that share common behaviors but belong to different

class hierarchies. Our approach transforms a multiple inheritance class hierarchy into a single inheritance

class hierarchy through mixin linearization, class duplication and wrapper functions at the Python level. We

evaluate this work by rewriting agent-based modeling simulation program. We then compare the original

and rewritten version with respect to their execution result and code effectiveness. The execution time is

2% slower than the original code.

1 Introduction

Ease-of-use for General Programming for Graphi-

cal Processing Unit (GPGPU) is an active research

topic in parallel programming. One approach to

make GPGPU easier to use is to implement Object-

Oriented Programming (OOP).

One feature of OOP is multiple inheritance. This

feature offers flexibility an code reuse. Due to

its complexity however, it is interpreted and im-

plemented differently for each of OOP-based lan-

guages.

Sanajeh [3] is a Python DSL GPGPU. While

Python itself supports multiple inheritance, Sana-

jeh is restricted to only support single inheritance.

Fathul Asrar Alfansuri, Hidehiko Masuhara, Luth-

fan Lubis, Youyou Cong, School of Computing, De-

partment of Mathematical and Computing Science,

Tokyo Institute of Technology.

This restriction is due to the DSL using a custom

framework for CUDA/C++ called DynaSOAr [8],

which only supports single inheritance.

This study describes an implementation of mul-

tiple inheritance for Sanajeh. The multiple inher-

itance in this study is a mixin-like inheritance [2],

which differs from Python’s own multiple inheri-

tance. The implementation is done through code

transformation that converts a multiple inheritance

class hierarchy to a single inheritance class hier-

archy. The transformation algorithm is similar to

hierarchy linearization in mixin.

The rest of the paper is organized as follows.

Section 2 explains about Sanajeh and its back-

end framework, DynaSOAr. We then discuss the

problem in implementing multiple inheritance on

Sanajeh in Section 3. In Section 4, we describe

the code transformation and its implementation de-

tails. Section 5 shows our testing of the transfor-



mation, its results, and the discussion. Section 6

discuss works related to this study. Finally we con-

clude the paper in section 7.

2 Background

2. 1 Sanajeh and DynaSOAr

Sanajeh is a Python DSL for GPGPU. This DSL

utilizes DynaSOAr, a CUDA/C++ framework for

GPGPU, as its backend to execute GPU code. As

a result, Sanajeh uses ahead-of-time compilation to

run its programs instead of using interpreter. Dur-

ing compilation, the DSL splits user code into two:

host code and device code. Host code remains as

Python code, while device code is converted into

DynaSOAr code and compiled into shared library.

Upon runtime, Sanajeh uses Python FFI to inter-

act with compiled shared library in order to execute

the GPU code.

DynaSOAr is a CUDA/C++ framework for

GPGPU. This framework uses custom memory lay-

out in order to optimize memory coalescing. The

framework also supports dynamic object allocation

and deallocation, in which allocated objects are

given a fake pointer to access its members. Dy-

naSOAr only supports single inheritance, which in

turn limits Sanajeh to also supports single inheri-

tance only.

2. 2 DynaSOAr memory layout

DynaSOAr uses a custom Structure-of-Array

(SoA) memory layout in order to optimize mem-

ory coalescing. This framework creates a memory

heap which is converted into blocks with fixed size

(figure 1a). Each blocks may only be allocated for

one class type, which may vary in size. Therefore,

the block varies in the maximum number of objects

it can contain, depending on the size of the class it

currently designated to (figure 1b and 1c). This

number is known at compile time. Objects stored

within the blocks are arranged in SoA layout.

Agent (empty) Shark

age[0:7] pos[0:7]

age[0:4] pos[0:4] hungerCtr[0:4]

Class Agent, N=8

int age, int pos 

Class Shark, N=5

int age, int pos, int hungerCtr

(empty) (empty) Shark
... ... ...

(a)

(b)

(c)

Figure 1 DynaSOAr custom memory layout.

(a) Memory heap is split into blocks of fixed

size. (b) Block layout for Class Agent. (c)

Block layout of Class Shark.

2. 3 DynaSOAr fake pointer

DynaSOAr enables dynamic allocation and deal-

locations at runtime. During allocation, this frame-

work provides fake pointer as reference to the ob-

ject. The fake pointer contains the pointer of the

block containing the object and the object’s index

within the block. Field access for the object is cal-

culated by using these 2 values.

For example, consider the following code:

class Agent { int age; int pos; };

A *a;

a->pos = 10;

The block that contains class Agent is arranged

as illustrated in figure 2. During allocation, object

a is assigned into a block with address (*P) and it

is the 4-th object in the block (I). These two infor-

mation are stored within the object’s fake pointer.

Meanwhile, the maximum number of objects (N) is

known at compile time, and obtained as a constant.



*P

N=8 I=4

*a->age *a->pos

Figure 2 How the block stores member fields

of object a of class Agent.

Therefore, field access of a->pos is then calculated

as:

a->pos = *P

+ N * sizeof(age)

+ I * sizeof(pos)

3 Problem

It is not trivial to implement multiple inheritance

directly on DynaSOAr. The difficulty comes from

the fake pointer mechanism described in Section

2. 3. Simply reusing that mechanism to extend into

multiple inheritance would lead to incorrect result.

On the other hand, recreating another mechanism

for the pointer operation could significantly make

memory access slower.

To illustrate the problem, consider the following

code:

class Breed { int eggCtr; }

class Agent { int age; int pos; };

class Shark : Agent { int hungerCtr; };

class NewShark: Breed , Agent {

int hungerCtr;

};

Agent *a; Shark *b; NewShark *c;

a->pos = 10;

b->pos = 11;

c->pos = 12;

The block layout for class A, B, and C is illus-

trated in figure 3. As such, field access for a->pos

is calculated as:

a->pos = *Pa

+ Na * sizeof(age)

+ Ia * sizeof(age);

*P

N=8 I=4

*a->age *a->pos

*Pb 

N=5 I=4

*b->age *b->pos *b->hungerCtr

*Pc

sizeof

(Breed)
I=4

*c->age

*c->pos

*c->hungerCtr

*c->eggCtr

N=4

(a)

(b)

(c)

Figure 3 Block layouts for (a) Class Agent,

(B) Class Shark, and (C) Class NewShark.

Due to the layout similarity between A and B,

field access for b->pos is calculated the same way:

b->pos = *Pb

+ Nb * sizeof(age)

+ Ib * sizeof(age);

From this fact, it can be said that DynaSOAr

supports single inheritance. On the other hand,

field access for c->pos would be calculated as:

c->pos = *Pc

+ Nc * sizeof(Breed)

+ Nc * sizeof(age)

+ Ic * sizeof(age)

Field access of pos leads to ambiguous result.

The calculation of pos for class NewShark objects

is different from class Agent objects. On the other

hand, C is a subtype of A: variable of type C may

contain either A or C objects at runtime. This leads

to a situation where it may be unknown which field

access calculation should be used at runtime, thus



Agent

Fish Shark

Breeding
Behavior


Agent

Fish Shark

Breeding
Behavior


Figure 4 An example of hierarchy

transformation.

(a) Original class hierarchy. (b) Transformed

class hierarchy

produces an incorrect result.

We also considered to put additional informa-

tion on the fake pointer in order to set a generic

field access calculation through dynamic dispatch-

ing. However, access speed is a top priority: us-

ing dynamic dispatch to select proper calculation

would lower the field access.

4 Hierarchy transformation algorithm

Our solution to support multiple inheritance is

to add hierarchy transformation algorithm before

Sanajeh’s own compilation process. The algorithm

transforms user code which has multiple inheri-

tance hierarchy into intermediate code which uses

only single inheritance hierarchy (Figure 4). The

intermediate code is then further compiled by ex-

isting Sanajeh implementation.

The transformation algorithm takes the following

4 steps: remove non-primary parents, reinsert non-

primary parents, resolve duplicated classes, and

make super calls explicit. The algorithm is illus-

trated in figure 5.

4. 1 Remove non-primary parents

The first step removes non-primary parents from

the given class hierarchy. A primary parent of a

class is the parent which has the most priority of

preserving its relationship. Users can think of pri-

mary parent as the parent that the inheriting class

is most resembled to. Users define which of the

parent classes is the primary parent by putting it

first on the parents list.

In figure 5, class Agent is defined as primary par-

ent for both Fish and Shark (5a). After the removal

of non-primary parent (BreedBehavior class), the

resulting hierarchy uses only single inheritance

(5b).

4. 2 Reinsert non-primary parents

The next step inserts back removed classes into

the hierarchy (figure 5c). It reinserts the re-

moved non-primary parent (BreedBehavior) in be-

tween the target class (Fish) and its primary parent

(Agent). If the same class would be reinserted into

2 different child classes, it may be duplicated as

necessary.

A more complex hierarchy may have a class with

more than one non-primary parents (Figure 6). In

this case, this step linearize the non-primary par-

ents by creating a chain of parent-child relations

between them (this process also known as mixin

linearization). This chain is then inserted in be-

tween the target class and its primary parent.

After this step, we obtain a linearized single in-

heritance hierarchy, with possible duplicate classes.

4. 3 Resolve duplicated classes

This step attempts to merge duplicated classes

to simplify the hierarchy. Duplicated classes are

merged if both has the same parent. In our simple

example, the BreedBehavior class which got dupli-

cated in previous step is able to be merged (figure

5d).

There are some hierarchies where the duplicated

class cannot be merged (figure 7a). Both Breed-

Behavior classes cannot be merged since they do

not have a common parent. Furthermore, there are

two cases within this type of hierarchy, based on

whether the duplicated class is used as variable type

or not (e.g. BreedBehavior breed). For the dupli-



Agent

Fish Shark

Breeding
Behavior
 Agent

Fish Shark

Breeding
Behavior


Agent

Fish Shark

Breeding
Behavior


Breeding
Behavior


Agent

Fish Shark

Breeding
Behavior


(a) (b)

(c) (d)

Figure 5 Hierarchy transformation algorithm for a simple multiple inheritance hierarchy.

Agent

Fish

Breeding
Behavior


Disease
Behavior


Agent

Fish

Breeding
Behavior


Disease
Behavior


Fish non-primary parents

(a) (b)

Figure 6 Hierarchy transformation where a class (Fish) has more than one non-primary parents

(BreedBehavior and DiseaseBehavior).

cated classes that are not used as variable type, we

can leave them as is (figure 7b).

If the duplicated class is used as variable type,

this is resolved by using common ancestor method

(figure 7c). First, create a new super class named

SanajehBaseClass, and make this class as the par-

ent of every class that does not have a parent yet.

Next, replace variable type of all duplicated classes

(BreedBehavior) into SanajehBaseClass. Finally,

set up wrapper functions and up-castings for vari-

able assignments or accesses to dynamically dis-

patch into its proper type.



Agent

Fish Shark

Breeding
Behavior


Agent

Fish Shark

Breeding
Behavior2


Breeding
Behavior1


duplicated

Agent

Fish Shark

Breeding
Behavior2


Breeding
Behavior1


Sanajeh

BaseClass

(c)(b)(a)

Figure 7 Hierarchy transformation where a duplicated class (BreedBehavior) cannot be merged.

4. 4 Make super-calls explicit

The final step adjusts super calls to its appro-

priate functions. A class (e.g. Fish) in the modi-

fied hierarchy (figure 5d) may have different parent

compared to the original hierarchy (figure 5a). For

each class that has its parent changed, any super

call functions will be replaced into its direct func-

tion reference.

5 Results & Discussion

Aspect
Single

Inheritance

Multiple

Inheritance

Execution time

(seconds)
17.644 18.018

Source code size

(lines of code)
309 330

Table 1 Execution results.

We tested our implementation as follows. First,

we write a benchmark application for DynaSOAr

named Wa-Tor in both single inheritance and mul-

tiple inheritance version. Next, we run both ver-

sions in render mode to check its visual output.

After that, we re-run the execution in no-render

mode to record their execution times. Finally, we

compare both versions in terms of execution time

and code length.

We run the simulation using a machine with

12GB memory NVIDIA TITAN Xp GPU. The Wa-

Tor simulation parameters are 100x100 cell size and

100 steps for each run.

Our test results are as presented in table 1. The

render mode execution showed that both version

yields expected result. The no-render test showed

that the multiple inheritance version is 2% slower

compared to single inheritance version. Source

code inspection showed that the multiple inheri-

tance version has more line of code compared to

single inheritance version.

The multiple inheritance version is unexpectedly

slower than the single inheritance version. We

take a look at the intermediary code, and we sus-

pect that the dynamic dispatch increases the execu-

tion time. Dynamic dispatch introduces branching,

which is discouraged in GPGPU.

The longer source code is within our expectation.

Since Wa-Tor has a small hierarchy, the new classes

introduces code overhead yet is not being reused



optimally. We estimated that if we add more types

of agent in this simulation, those new agents will

benefit from code reuse, thus will have smaller code

length compared to single inheritance version.

6 Related works

There are several projects for expanding GPGPU

into high-level languages that supports OOP. Ikra

[5] is a GPGPU extension for Ruby, in which an-

other study provides object-support for it [7].

In Python, CUPY [6] and PyCUDA [4] allows

GPU utilization. These two libraries uses stan-

dard CUDA implementation, as opposed to Sana-

jeh which uses DynaSOAr, an optimized CUDA

framework.

Concord [1] is a heterogeneous C++ program-

ming framework for processors with integrated

GPUs designed for general purpose object-oriented

programming. It enables GPU execution by using

C++, which includes multiple inheritance support.

Concord uses native memory allocation which is not

optimized for better GPU execution.

Modular Class-based Reuse Mechanisms [9] de-

fines a modular meta-level runtime architecture

that converts several code reuse mechanism into

single inheritance environment. However, this work

is tailored for targeting a Virtual Machine.

7 Conclusion

We presented an implementation of multiple in-

heritance in Sanajeh, a Python DSL for GPGPU

through hierarchy transformation algorithm. This

support extends Sanajeh’s capabilities for multiple

inheritance flexibilities, such as better code reuse

and maintainability. However, there is a trade-off

between those advantages and execution times.

One area of improvement is the expected out-

put of our algorithm. We designed the transfor-

mation algorithm according to mixin linearization.

However, in some complex hierarchies, the mod-

ified hierarchy may be different than the output

of Python’s own C3 linearization. Further studies

may improve this algorithm by utilizing Python’s

built-in linearization to determine the parents of a

class.

References

[1] Barik, R., Kaleem, R., Majeti, D., Lewis, B. T.,

Shpeisman, T., Hu, C., Ni, Y., and Adl-Tabatabai,

A.-R.: Efficient mapping of irregular C++ applica-

tions to integrated GPUs, Proceedings of Annual

IEEE/ACM International Symposium on Code

Generation and Optimization, 2014, pp. 33–43.

[2] Bracha, G. and Cook, W.: Mixin-based inheri-

tance, ACM Sigplan Notices, Vol. 25, No. 10(1990),

pp. 303–311.

[3] Jizhe, C., Springer, M., Masuhara, H., and Cong,

Y.: Sanajeh: A DSL for GPGPU programming with

Python objects.

[4] Klöckner, A., Pinto, N., Lee, Y., Catanzaro,

B., Ivanov, P., and Fasih, A.: PyCUDA and Py-

OpenCL: A scripting-based approach to GPU run-

time code generation, Parallel Computing, Vol. 38,

No. 3(2012), pp. 157–174.

[5] Masuhara, H. and Nishiguchi, Y.: A data-parallel

extension to ruby for GPGPU: toward a frame-

work for implementing domain-specific optimiza-

tions, Proceedings of the 9th ECOOP Workshop on

Reflection, AOP, and Meta-Data for Software Evo-

lution, 2012, pp. 3–6.

[6] Nishino, R. and Loomis, S. H. C.: CuPy: A

NumPy-compatible Library for NVIDIA GPU Cal-

culations, 31st confernce on neural information

processing systems, Vol. 151(2017).

[7] Springer, M. and Masuhara, H.: Object support

in an array-based GPGPU extension for Ruby, Pro-

ceedings of the 3rd ACM SIGPLAN International

Workshop on Libraries, Languages, and Compilers

for Array Programming, 2016, pp. 25–31.

[8] Springer, M. and Masuhara, H.: DynaSOAr: a

parallel memory allocator for object-oriented pro-

gramming on GPUs with efficient memory access,

arXiv preprint arXiv:1810.11765, (2018).

[9] Tesone, P., Polito, G., Fabresse, L., Bouraqadi,

N., and Ducasse, S.: Implementing modular class-

based reuse mechanisms on top of a single inher-

itance VM, Proceedings of the 33rd Annual ACM

Symposium on Applied Computing, 2018, pp. 1030–

1037.


