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Abstract: Context-oriented programming (COP) languages provide a modularization mechanism called a layer,
which modularizes behaviors that are executable under specific contexts, and specify a way to dynamically switch
behaviors. However, the correspondence between real-world contexts and units of behavioral variations is not simple.
Thus, in existing COP languages, context-related concerns can easily be tangled within a piece of layer activation
code. In this paper, we address this problem by introducing a new construct called a composite layer, which declares
a proposition in which ground terms are given other layer names (true when active). A composite layer is active only
when the proposition is true. We introduce this construct into EventCJ, out COP language, and verify this approach by
conducting two case studies involving a context-aware Twitter client and a program editor. The results obtained in our
approach show that the layer activation code is simple and free from tangled context-related concerns. We also discuss
the efficient implementation of this mechanism in EventCJ.
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1. Introduction

Context-oriented programming (COP) [11] is a research topic
that is becoming more intensively studied, as it modularizes vari-
ations of behavior that depend on context. A context is an envi-
ronment in which (a part of) a program is executed, including the
external environment of the executing machine, and the states of
other parts of the program. For example, in the case of a pedes-
trian navigation system running on a mobile terminal, the situa-
tion can be regarded as a context since the the user is either out-
doors or indoors; cases where the remaining battery charge is not
low (normal) or low (energy-saving mode) are also considered as
contextual information. Several COP languages provide linguis-
tic constructs that modularize variations of behavior that depend
on contexts using layers and to activate/deactivate them accord-
ing to the executing contexts [2], [4], [6], [12]. In this paper, we
refer to such languages as layer-based COP languages.

There are several advantages to layer-based COP languages.
First, they enable the separation of crosscutting concerns, as they
modularize variations of context-dependent behavior that cross-
cut existing modules, such as classes, using a layer. Second,
they enable the disciplined control of layer activation/deactiva-
tion. For example, ContextJ [2] and JCop [4] limit the activation
of layers under the control flow starting from the specified block
(or method call), which makes it easy to avoid accidental conflicts
between variations of behavior. EventCJ [12] provides a mecha-
nism for controlling layer activation based on a state transition
model. Thus, it also makes it easy to avoid the accidental con-
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flicts between layers, and it enables the control of layer activation,
which is not limited under the specific control flows.

Until now, in layer-based COP languages, it is assumed that a
unit of behavior modularized using a layer depends on one con-
text. We can observe this assumption from the fact that, in their
layer activation control mechanisms, we explicitly specify acti-
vating/deactivating layers when contexts change.

However, since the unit of behavior modularized using a layer
does not always correspond to a single context, there is the fol-
lowing problem in the existing layer-based COP languages. From
the viewpoint of maintainability, when we model how the con-
texts change and when this change occurs in the real world, it is
desirable that the program separately describes each variation of
behavior depending on a context. However, there exist some units
of behavior that are executable only under a combination of spe-
cific contexts. Thus, in the existing layer-based COP languages,
the specifications about which layer is activated and when this ac-
tivation occurs become complex, and several concerns regarding
contexts exist in the layer activation code in a tangled manner.

This paper proposes a new linguistic mechanism compos-

ite layer and demonstrates how the aforementioned problem is
solved by using this mechanism. A composite layer is a layer that
depends on the activation of other layers, and declares a propo-
sition in which the ground terms are names of other layers (true
when active). A composite layer is active only when this propo-
sition is true.

This paper also proposes how to introduce composite layers
into EventCJ, and validates their effectiveness using two case
studies: a Twitter client and a program editor [3]. Both case stud-
ies show that the use of composite layers simplifies the layer ac-

Preliminary ideas for the language design were published at the COP’12
workshop [13]. This paper extends the given paper by describing an im-
plementation strategy for the proposed method.
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tivation code when compared with the case where they are not
used, and concerns regarding contexts are not tangled within the
layer activation code.

Furthermore, this paper proposes an implementation strategy
for EventCJ with composite layers. In this strategy, the extension
of EventCJ with composite layers is translated into (the original
version of) EventCJ, which does not have composite layers. Thus,
we can implement the proposed extension as preprocessing that
does not change the existing EventCJ compiler.

This paper is organized as follows. Section 2 describes the ex-
ample used throughout this paper. It also describes the existing
layer-based COP languages and their problems. Section 3 ex-
plains composite layers. Section 4 demonstrates how the afore-
mentioned problems are treated by introducing composite layers
into EventCJ. Section 5 discusses how to implement the proposed
method. Section 6 describes related work. Finally, Section 7 con-
cludes this paper.

2. Problem Statement

2.1 Example: A Twitter Client
In this section, we describe the problems addressed in this pa-

per using the example of a Twitter client. This system is equipped
with multiple tabs, and each tab displays a timeline (a temporal
sequence of tweets submitted by the followed users). The sys-
tem only displays the timeline on the currently-selected tab, and
the timelines on other unselected tabs are hidden beneath the se-
lected tab. We cannot select multiple tabs at a time. The timeline
on the selected tab is frequently updated; for the effective use of
resources, other timelines are infrequently updated. Furthermore,
when the machine’s power supply is on the verge of running out,
the timelines on all tabs are infrequently updated.

There are two kinds of context changes in this system. The
first one pertains to the states of the tab, and the other to the re-
maining battery charge. We may elicit such contexts by using re-
quirements engineering methods (such as [17]), which is outside
of the scope of this paper. In Fig. 1, we show context changes in
the Twitter client described in a state transition diagram. Below,
we use round-cornered rectangles to represent states. We use a
state with an empty label to represent an initial state.

The behavior of the Twitter client changes with respect to con-
texts. The variations of behavior that switch with respect to con-
texts are “frequent update of timeline” and “infrequent update of
timeline,” as stated above*1. In Fig. 2, we show the correspon-
dence between contexts and behavioral variations. We observe
that these two variations do not depend only on the individual
state of each state transition diagram, but also on their combina-
tions.

2.2 Layer-based COP Languages
Most layer-based COP languages modularize variations of be-

havior by using layers.

*1 In practice, there are other behavioral variations such as the display of an
alert icon to indicate that the remaining battery charge is low, and stop-
ping the display of a user’s icon (an image) when the system is running in
the energy-saving mode. In general, such context-dependent variations
of behavior are crosscutting concerns. However, in this paper, we do not
mention this fact for simplicity.

Fig. 1 Context changes in the Twitter client.

Fig. 2 Correspondence between contexts and variations of behavior.

Fig. 3 Relationship between layers and classes.

Figure 3 represents how the variations “frequent update of
timeline” and “infrequent update of timeline” are separated using
a class diagram; this separation uses layers TabIsActive and
TabIsInactive for each variation, respectively. In this paper,
we represent a layer by a container stereotyped with <<Layer>>,
which is a notation proposed by Ref. [16]. Within a layer, we
declare partial methods (in Fig. 3, we represent a set of partial
methods as a class stereotyped with <<partial class>>). A
partial method is executable only when the enclosing layer is
active, and it changes the behavior of the class to which the
layer is applied (i.e., the class at the target of the dashed ar-
row in Fig. 3). For example, when TabIsActive is active, at
the call of Controller.getSleepTime(), the partial method
getSleepTime declared in TabIsActive is called, instead of
the original method*2.

Several methods have been proposed for the control of layer
activation, such as the specification of a dynamic scope enclosed
with a with-block [2], [6], and layer activation that is based on
events and layer transition rules [12]. Below, we describe the
layer activation in EventCJ. In EventCJ, we specify when lay-
ers are switched, and on which objects this switching occurs by
using the following event declaration:

event TabIsFocused(ChangeEvent e)

:after execution(void TabListener.stateChanged(*))

&&args(e)

:sendTo(e.getSrc().getSelected().controller());

*2 We may declare a partial method with the modifier before or after. In
this case, the partial method is called just before or after the call of the
original method, respectively.
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This event declaration specifies when the event TabIsFocused
is generated by using the pointcut designators provided by
AspectJ [15], which is just after the execution of the void
TabListener.stateChanged method. The sendTo clause fol-
lowed by the pointcut specifies the objects to which the event is
sent.

When the object receives the event, it changes the active layers
as specified by the layer transition rules, where we directly spec-
ify layers to be activated/deactivated using the names of layers.
We show an example of a layer transition rule upon the genera-
tion of TabIsFocused as follows:

transition TabIsFocused:

TabIsUnfocused ? TabIsUnfocused -> TabIsFocused

| -> TabIsFocused

This rule concatenates two subrules using the | operator. Each
subrule is written in the form of “Guard?Layers1-> Layers2.” In
Guard, we list the names of layers, each of which is interpreted as
true when this layer is active. In Layer1, we list the layers to be
deactivated. In Layer2, we list the layers to be activated. When
there are no layers to be specified, we leave the corresponding
parts empty. The guards in subrules concatenated by | are eval-
uated from left to right, and only the left-most applicable rule is
selected. Thus, the above rule is read as “if TabIsUnfocused
is active, then it is deactivated and TabIsFocused is activated;
otherwise, just TabIsFocused is activated.”

Note that we also directly specify the names of layers to be
activated in other layer-based COP languages. For example, in
ContextJ [2], we specify the layers to be activated within the dy-
namic scope of the specified block by using the following with-
statement:

with(TabIsFocused) { .. }

2.3 Problem with the Existing Layer-based COP Languages
As mentioned above, the activation of layers depends on the

state changes of multiple contexts in the real world. On the other
hand, in the existing layer-based COP languages, we have to
explicitly specify layers to be activated when contexts change.
Thus, a layer depends on multiple contexts. Thus, in these lan-
guages, the specifications about which layers are activated and
when this activation occurs become complex. Furthermore, sev-
eral concerns regarding contexts exist in the layer activation code
in a tangled manner. We explain this problem using the case in
which we implement the Twitter client using EventCJ.

In EventCJ, we identify the execution point when contexts
change by using events. The name of the event corresponds to
the label of the edge in Fig. 1; we identify events TabIsFocused
and TabIsUnfocused, which change the selection of the tab, and
BatteryLow and ACConnected, which change the status of the
battery charge. These events change the activation of layers.

Note that changes in layer activation do not correspond to those
in the contexts. For example, when TabIsFocused is generated,
the context always changes to TabIsFocused; however, the layer
TabIsActive becomes active only when the system is not in En-
ergySaved. Thus, in EventCJ, we need to declare TabIsFocused

as an event that depends on the status of battery charge. For ex-
ample, assuming that we have a method isBatteryLow that in-
spects the status of battery charge, we can declare an event that
is generated when the result of isBatteryLow is true, by using
the if pointcut:

event TabIsFocused(ChangeEvent e)

:after execution(void TabListener.stateChanged(*))

&&args(e)&&if(!Env.isBatteryLow())

:sendTo(e.getSrc().getSelected().controller());

There are two disadvantages of this method. First, the model
of the real world is not directly reflected in the program. Thus,
the information identified in the model is modified. For exam-
ple, the meaning of TabIsFocused in Fig. 1 is altered in the
above event declaration, which makes it difficult to maintain the
program when the model is modified. Second, this approach
makes the source code complex. For example, in the case where
ACConnected is generated, the required transition rule differs ac-
cording to the state of the tab: TabIsFocused or the initial state.
Thus, we need to declare different events for each case, and to
declare transition rules for each event, which requires additional
lines of code.

3. A Proposal of Composite Layers

To tackle the aforementioned problem, we propose the use of
composite layers. A composite layer is a layer whose activation
depends on the activation of other layers, and declares a propo-
sition where ground terms are names of other layers (true when
active). A composite layer is active only when the proposition is
true. In this paper, a layer that is not a composite layer (i.e., a
layer in the existing layer-based COP languages) is referred to an
atomic layer.

3.1 Atomic Layers
An atomic layer has a one-to-one correspondence for each state

of context changes. In other words, an atomic layer represents a
context. If there is a variation of behavior that depends only on
the state of context changes (i.e., that does not depend on other
states of context changes), we can modularize such a variation
using an atomic layer. Since there are no such variations in the
example of the Twitter client, we declare every atomic layer with
an empty body. In most layer-based COP languages, we declare
layers using the keyword layer as follows:

layer TabIsFocused {}

layer TabIsUnfocused {}

layer EnergySaved {}

We can distinguish the atomic layers from composite layers,
because the former do not have a when clause (explained in the
next section). Only atomic layers can be directly controlled using
layer transition rules and with-blocks.

3.2 Composite Layers
A composite layer is used to modularize a variation of behav-

ior that depends on a combination of multiple contexts. In the
example of the Twitter client, we declare the behavior of frequent
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updates of the timeline and infrequent updates of the timeline by
using composite layers. Each composite layer declares a condi-
tion when the layer is active by using a proposition as follows:

layer TabIsActive

when TabIsFocused && !EnergySaved {

/* Frequent updates of timeline */

}

layer TabIsInactive

when TabIsUnfocused || EnergySaved {

/* Infrequent updates of timeline */

}

The newly introduced syntax is the when clause, which spec-
ifies the condition when the layer is active. Within the when
clause, we use the names of layers, each of which is inter-
preted as true when the corresponding layer is active. Thus,
TabIsActive is active only when TabIsFocused is true and
EnergySaved is false. Similarly, TabIsInactive is active only
when TabIsUnfocused or EnergySaved is true. We cannot ex-
plicitly activate composite layers (by using with-blocks or layer
transition rules).

4. Introducing Composite Layers into
EventCJ and Its Evaluation

We show how the problem described in Section 2 is tackled by
introducing composite layers into EventCJ.

First, by specifying only atomic layers in layer transition rules,
the model of the real world becomes directly reflected in the pro-
gram. Figure 4 is an example of the layer transition rules trans-
lated from the state transition diagram shown in Fig. 1. Since each
atomic layer corresponds to each state of the state transition dia-
gram, each transition rule corresponds only to one state transition.
Thus, there are no such problems, which specified that multiple
state transitions are tangled into one layer transition rule. Further-
more, we do not have to use the if pointcut to inspect the state of
transitions, because we can declare events that have one-to-one
correspondence to each label of the state transitions. Thus, we do
not have to provide different event declarations and layer transi-
tion rules for each state, TabIsFocused or the initial state, of the
tab. Each variation of the behavior regarding the frequency of up-
dates of the timeline is described in the aforementioned compos-
ite layers TabIsActive and TabIsInactive, and is implicitly
activated according to the condition specified by the when clause.

In Table 1, we show (1) the number of event declarations, (2)
the number of subrules of layer transition rules, and (3) the num-
ber of layer transition rules where multiple context changes are
tangled, for each case where we use composite layers to imple-
ment the Twitter client (for the number of tangled rules, we also
count the case when an event corresponding to a layer transition
rule depends on multiple context changes), and where we do not
use them. All comparisons show that the number is smaller when
we use composite layers, which indicates that the program has
been simplified. Furthermore, there are no layer transition rules
where multiple context changes are tangled, which implies that
the descriptions separated in the model of the real world are also
separated in the program.

1 transition TabIsFocused:
2 TabIsUnfocused ? TabIsUnfocused -> TabIsFocused

3 | -> TabIsFocused;

5 transition TabIsUnfocused:
6 TabIsFocused ? TabIsFocused -> TabIsUnfocused

7 | -> TabIsUnfocused;

9 transition BatteryLevelLow: -> EnergySaved;

11 transition ACConnected: EnergySaved ->;

Fig. 4 Layer transition rules after introducing composite layers.

Table 1 Comparison between the existing approach and the proposed ap-
proach for the Twitter client.

w/o comp. layers w/ comp. layers
# of event decl. 5 4
# of subrules 9 6
# of tangling rules 5 0

Fig. 5 Context changes on CJEdit.

4.1 Example 2: A Program Editor
We validate the effectiveness of composite layers by using an-

other example. CJEdit [3] is a program editor that enhances the
readability of programs by applying different formatting methods
for code editing parts and comment editing parts. Code editing
parts are displayed in the type-writer format with syntax high-
lighting. Comment editing parts are displayed in rich text format
(RTF), and we can use several fonts, text sizes, decorations, and
alignments. Furthermore, the arrangement of GUI components
such as the menu bar and text blocks changes according to the
position of the cursor (in code editing parts or in comment edit-
ing parts).

In CJEdit, we can identify two kinds of context changes with
respect to the cursor position and rendering text regions; there is
a state for each situation where the cursor is on code (CursorOn-
Code) or on comments (CursorOnComments), and each situation
where the code is rendered (RenderingCode) or comments are
rendered (RenderingComments), respectively. Figure 5 shows
context changes in CJEdit described in a state transition diagram.

The behavior of CJEdit changes according to changes of con-
texts. We show context-dependent variations of behavior in
CJEdit as follows. Since these variations are modularized into
layers, the names of the respective layers in each parenthesis are
also displayed.
• To display GUI components for code editing functions (such

as an outline view of program structure) when the cursor is
on code (CursorOnCode)

• To display GUI components for comment editing functions
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Fig. 6 Correspondence between layers and variations of behaviors on
CJEdit.

(such as the menu and tools for specifying fonts, text sizes,
decorations, and alignments) when the cursor is on com-
ments (CursorOnComments)

• To display the code with syntax highlighting when the cursor
is on code (RenderWithHighlighting)

• To display the code without syntax highlighting when the
cursor is on comments (RenderWithoutHighlighting)

• To display comments with RTF (RenderComments)
The variations that are selected for execution depend on the

states of two state transitions, as in the case of the Twit-
ter client. We show the correspondence between contexts
and variations of behavior (layer) in Fig. 6. Although each
of the three layers CursorOnCode, CursorOnComments, and
RenderingComments corresponds to each of the contexts Cur-
sorOnCode, CursorOnComments, and RenderingComments, re-
spectively, the remaining two layers depend on two states in the
state transition diagram.

The implementation of the CJEdit using EventCJ with com-
posite layers is as follows*3. First, we declare three layers that
have one-to-one correspondence with the contexts as atomic lay-
ers containing definitions of behavior:

layer CursorOnCode {

/* partial methods implementing the

code editing features */ }

layer CursorOnComments {

/* partial methods implementing the

comment editing features */ }

layer RenderingComments {

/* partial methods for the RTF display */ }

On the other hand, we declare the context RenderingCode that
does not have any one-to-one correspondence to behavior as an
atomic layer with an empty body:

layer RenderingCode {}

We implement the remaining layers as composite layers by us-
ing the abovementioned atomic layers:

layer RenderWithHighlighting

when RenderingCode && CursorOnCode {

/* partial methods for displaying source

code with syntax highlighting */

}

layer RenderWithoutHighlighting

when RenderingCode && CursorOnComments {

/* partial methods for displaying source

code without syntax highlighting */

}

*3 The case of using EventCJ without composite layers is described in
Ref. [14].

1 transition MoveOnCode:
2 CursorOnComments ? CursorOnComments -> CursorOnCode

3 | -> CursorOnCode;

5 transition MoveOnComments:
6 CursorOnCode ? CursorOnCode -> CursorOnComments

7 | -> CursorOnComments;

9 transition StartCodeRendering
10 RenderingComments ? RenderingComments -> RenderingCode

11 | -> RenderingCode;

13 transition StartCommentRendering
14 RenderingCode ? RenderingCode -> RenderingComments

15 | -> RenderingComments;

Fig. 7 Layer transition rules for CJEdit after introducing composite layers.

Table 2 A comparison between the existing approach and the proposed ap-
proach for the program editor.

w/o comp. layers w/ comp. layers
# of event decl. 4 4
# of subrules 11 8
# of tangling rules 4 0

Figure 7 is an example of layer transition rules translated from
the state transition diagram shown in Fig. 5. As in the case of
the Twitter client, there are no such problems, which specified
that multiple state transitions are tangled into one layer transition
rule, because we specify the activation of only atomic layers in
layer transition rules.

Table 2 shows the number of event declarations, that of sub-
rules of layer transition rules, and that of layer transition rules
where multiple context changes are tangled, for each scenario
whether we use composite layers to implement CJEdit. Although
there are no changes in the number of event declarations, the
number of subrules is smaller when we use composite layers,
which indicates that the program has been simplified. As in the
case of Twitter client, there are no layer transition rules where
multiple context changes are tangled, which implies that the de-
scriptions separated in the model of the real world are also sepa-
rated in the program.

5. Discussion on Implementation

We can translate EventCJ with composite layers into the orig-
inal version of EventCJ without composite layers. The key prin-
ciple for this translation is to convert composite layers and the
control of their activation into layers without when clauses and
layer transition rules, respectively, and to execute the converted
layer transition rules by using existing events and layer transition
rules specified by using atomic layers*4. The translation from
composite layers into layer transition rules proceeds as described
in the following steps.

5.1 Translation from State Changes of Contexts into Those
of Layers

First, it creates a parallel composition of independent context
changes. Figure 8 shows a parallel composition of the state tran-

*4 In EventCJ, all the applicable layer transition rules are simultaneously
applied when multiple events are declared on the same join point
shadow [10], and/or when there are multiple layer transition rules on the
same event [1].
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Fig. 8 Parallel-composed state transition diagram.

sition diagram shown in Fig. 1. In this composition, each state is
a product of states of the transitions before composition.

Next, for each state, it assigns composite layers that become
active at that state (in general, there can be several such com-
posite layers). More precisely, it assigns composite layers whose
when clauses become true at that state. In the following trans-
lation process, these composite layers are respectively converted
into layers controlled by layer transition rules by removing the
when clauses. Below, we call them layers when we do not have
to distinguish them before and after the translation. We show the
result of layer assignment for Fig. 8 as follows:

layer node

TabIsActive TabIsFocused
TabIsInactive TabIsUnfocused
TabIsInactive EnergySaved
TabIsInactive TabIsFocused,EnergySaved
TabIsInactive TabIsUnfocused,EnergySaved

Finally, it constructs the transitions of layers as follows. First,
it merges states that are assigned the same layers into one state*5.
Next, it constructs transitions as transition relations between cor-
responding “merged states.” In this construction, it assigns the
condition unless L1 ∨ L2 ∨ · · · ∨ Ln (where L1 · · · Ln are the names
of contexts that are inactive at the source of the transition) to the
labels of the transitions. These contexts are the set differences of
the contexts, which can be active when the layer transition trig-
gered by the specified event occurs from the contexts that can be
active upon the occurrence of the context transition triggered by
that event.

We formalize this merging process as follows. Let E be the
set of events that appear in the program before the translation,
let C be the set of atomic layers, and let L be the set of com-
posite layers. The parallel-composed state transitions are defined
as a quadruplet (St,R, st, l), where St ⊂ P(C) is the set of states
(where P(C) is a powerset of C), R ⊂ St × St is the set of tran-
sition relations, st ∈ St is the initial state, and l : P(E) → P(R)
is the labeling function*6. The transitions of layers are defined as
a quadruplet (St′,R′, st′, l′), where St′ ⊂ P(L) is the set of states,
R′ ⊂ St′ × St′ is the set of transition relations, st′ ∈ St′ is the
initial state, and l′ : P(E) × Gd → P(R′) is the labeling func-
tion (where Gd ⊂ P(C) is a guard corresponding to the unless
clauses in Fig. 9; i.e., if at least one of the contexts contained in
Gd is active, the transition specified by l′ does not occur). Let
layer : St → St′ be a function that performs the layer assignment

*5 States with no assigned layers are merged into the initial state.
*6 As mentioned above, in EventCJ, we can declare multiple events on the

same join point shadow; in this case, multiple layer transition rules cor-
responding to those events are simultaneously applied. Thus, in general,
transitions of contexts and layers are modeled as transitions between sets
of layers (contexts), and each of them is labeled by a set of events.

Fig. 9 State transition diagram of the merged layers.

1 St ′ := φ
2 R ′ := φ
3 l′ := φ
4 for each e in P(E) {
5 Gd := φ
6 for each (si, s j) in l(e)
7 Gd := Gd ∪ si

8 for each (si, s j) in l(e) {
9 if (layer(si) � layer(s j)) {

10 St ′ := St ′ ∪ {layer(si)} ∪ {layer(s j)}
11 R′ := R′ ∪ {(layer(si), layer(s j))}
12 I :=

⋃
tk for all tk ∈ equiv(si)

13 l′ := l′ ∪ {(e, (Gd − si) ∩ I) 
→ (layer(si), layer(s j))}
14 }

15 }

16 }

Fig. 10 The algorithm for merging of states.

explained above. We define the function equiv : St → P(St),
which calculates the equivalence classes for the equivalence rela-
tion s ∼ t

def
= layer(s) = layer(t) on S t as follows:

equiv(s) = {t ∈ St|layer(s) = layer(t)}

We show the algorithm for merging of states in Fig. 10. First, it
obtains the set of contexts that can be activated when the context
transition for the given event occurs (lines 6 and 7). Then, for
each transition relation (si, s j) for each event, it decides whether
this transition still remains after the merging of states (line 9);
if this transition remains, it populates St′ and R′ by adding cor-
responding elements (lines 10 and 11). Finally, it calculates the
guard and adds it to the labeling function (lines 12 and 13).

The state transition diagram shown in Fig. 8 is merged into the
state transition diagram shown in Fig. 9 (for simplicity, we also
merge the edges whose source and target are the same into an
edge where each label of the merged edges are listed). For ex-
ample, TabIsFocused is a label of the transition from TabIsIn-
active to TabIsActive, which corresponds to the transition from
TabIsUnfocused to TabIsFocused in Fig. 8; we have to distin-
guish it from two other TabIsFocuseds labeled on the transi-
tions between states placed at the lower part of the figure, which
are merged into the same state with TabIsUnfocused. The for-
mer TabIsFocused occurs only when the system is not in Ener-
gySaved; thus, we assign the condition unless EnergySaved.

If there is a large amount of states of context transitions, the
number of states after the parallel composition explodes, because
the latter is the product of the former. The parallel-composed
state transitions are used only during the translation; thus, the
number of states does not affect the runtime performance of the
program. However, a very large number of states makes the trans-
lation time consuming. We can avoid this state explosion by con-
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structing a parallel composition only for the state transitions of
contexts that are referred from the respective composite layer, in-
stead of performing parallel-composition of all state transitions.
In other words, a composite layer depending on a large amount
of contexts may make the translation time-consuming. Thus, a
programmer should design the program not to over populate the
when clause. For example, a composite layer that depends on a
large amount of contexts may be constructed from partial meth-
ods, each of which depends only on a subset of those contexts. In
this case, we may shrink the size of when clause by decomposing
the layer.

5.2 Adding Events
The condition on each edge of the state transition diagram

for layers indicates that, in addition to existing events, we need
events that contain such condition. We can obtain such events by
adding the if pointcut, inspecting whether the specified context
(= atomic layer) is active to the existing events. The following
event declaration is obtained from TabIsFocused by adding the
information about ¬EnergySaved:

event TabIsFocused_1(ChangeEvent e)

:after execution(void TabListener.stateChanged(*))

&&args(e)

&&if(!e.getSrc().getSelected().controller().

lm.isActive(EnergySaved.ID))

:sendTo(e.getSrc().getSelected().controller());

The symbol lm is a field that will be added by the EventCJ
compiler to bind the object that manages the sequence of active
layers. This object is equipped with the isActivemethod, which
returns true when the layer identified by the identifier given by
the parameter is active. By calling isActive with ID on the
EnergySaved layer, the condition ¬EnergySaved is confirmed.
Thus, we can declare TabIsFocused 1 as an event that is gener-
ated only when EnergySaved is not active.

Using event declarations that have been generated in that man-
ner, the state transition diagram shown in Fig. 9 is translated into
the following layer transition rules:

1 transition TabIsFocused_1:

2 TabIsInactive ? TabIsInactive -> TabIsActive

3 | -> TabIsActive;

5 transition TabIsUnfocused:

6 TabIsActive ? TabIsActive -> TabIsInactive

7 | -> TabIsInactive;

9 transition BatteryLow:

10 TabIsActive ? TabIsActive -> TabIsInactive

11 | -> TabIsInactive;

13 transition ACConnected_1:

14 TabIsInactive ? TabIsInactive -> TabIsActive

15 | -> TabIsActive;

17 transition ACConnected_2:

18 TabIsInactive ? TabIsInactive ->;

Finally, composite layers are converted into atomic layers by
removing the when clauses, which completes the translation from
composite layers into atomic layers and layer transition rules. The
translated code can be compiled by the existing EventCJ com-
piler.

6. Related Work

6.1 Non Layer-based COP Languages
Some COP languages do not use layers as units for the

modularization of context-dependent variations of behavior.
Subjective-C [8] is a COP language that extends Objective-C. In-
stead of declaring partial methods within a layer, in Subjective-C,
we specify the context when the method is executable by adding
the annotation #context to the method. A context is identified
by its name, and it is explicitly switched within the program.
Ambience [9] is a prototype-based COP language that changes
executable code according to the context object that is implic-
itly given at the method calls. Lambic [19] is a COP language
with the feature of conditional methods [7]. ContextErlang [18]
is an extension of Erlang, which enables asynchronous context
changes per-process.

These languages do not provide linguistic constructs for the
control of layer activation such as with-blocks and layer transi-
tion rules. Instead, most of them provide the implicit switching of
contexts according to the value of variables within the executing
program, or imperative operations that are explicitly stated within
the program to switch contexts (after the operation, the program
definitely stays in that context unless the next operation to switch
the context is triggered). Thus, in these languages, the problem
described in Section 2 is unlikely to occur; however, it is difficult
to model when, where, and how the context changes.

6.2 Implicit Activation of Layers
Costanza et al. proposed a method to analyze the dependency

between layers using feature diagrams [5]. In this method, each
feature corresponds to a layer. They also propose an extension of
ContextL [6] with composite layers (that correspond to composite
features). It shares some similarities with our approach; for exam-
ple, it provides layer composition operators that are as expressive
as compositions in feature diagrams (such as and-composition
and or-composition), and it provides implicit layer activation.
However, in Ref. [5], layers that are dependent on composite lay-
ers are implicitly activated, and the composite layers at the root
of the composition have to be explicitly activated. On the other
hand, in our approach, all atomic layers are explicitly activated
by layer transition rules, and all composite layers are implicitly
activated.

7. Conclusions

In this paper, we propose a composite layer, which is a new
linguistic construct for COP languages, and use it to extend
EventCJ. In the proposed method, only atomic layers are explic-
itly activated by layer transition rules. A composite layer declares
a condition when it is active as a proposition where the names of
layers are ground terms. It is active only when that condition
is true. By carrying out small case studies, we confirmed that
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the use of composite layers simplifies the program by reducing
the number of required events and subrules compared with the
case when we do not use them. With our approach, there are no
layer transition rules where multiple context changes are tangled.
Thus, our approach makes it possible to separate descriptions that
are separated in the model of the real world within the program.
Furthermore, we also show the steps for translating EventCJ with
composite layers into (the original version of) EventCJ without
composite layers. Therefore, in this paper, we solve the problems
associated with the existing layer-based COP languages, i.e., we
deal with the problem that the specification of which layer is acti-
vated and when this activation occurs becomes complex. Further-
more, we also address the case where the context changes that are
separated in the real world are tangled within the program.
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