
A Lightweight Optimization Technique
for Data Types à la Carte

Hirotada Kiriyama Tomoyuki Aotani Hidehiko Masuhara
Tokyo Institute of Technology, Japan

kiriyama.h.ab@m.titech.ac.jp aotani@is.titech.ac.jp masuhara@acm.org

Abstract
Data types à la carte (DTC) is a technique for adding new variants
to data types modularly. A drawback of DTC compared with simple
variant types, which are commonly used to define data types in
functional programming languages, is runtime inefficiency caused
by the destruction of these values.

In this paper, we propose a lightweight optimization technique
for functions that destruct the values of DTC data types. It makes
their execution as efficient as their non-DTC counterparts by just
(1) deriving non-extensible algebraic data types isomorphic to ex-
tensible data types defined in DTC fashion and (2) using them
within the type annotations that specify concrete data types using
the composition operator given in DTC. The approach is based on
an insight on the functions: the functions never depend on any con-
crete data types but merely constrain them.

We implemented functions that take an extensible data type
defined in DTC fashion and derive an isomorphic non-extensible
algebraic data type using Template Haskell. Our experimental re-
sults show that DTC functions using our approach run as efficiently
as their non-DTC counterparts and avoid performance slow down
even if the data types are extended multiple times.

General Terms Language,Performance

Keywords Expression problem, modularity, reusability

Categories and Subject Descriptors D.1.1 [Programming tech-
niques]: Applicative (Functional) Programming; D.3.3 [Program-
ming Languages]: Data Types and Structures

1. Introduction
Data types à la carte (DTC) [5] is a technique for achieving mod-
ularly extensible recursive data types. It can be seen as a solution
to the expression problem [6]: “The goal is to define a data type by
cases, where one can add new cases to the data type and new func-
tions over the data type, without recompiling existing code, and
while retaining static type safety (e.g., no casts).” We call programs
written in DTC fashion DTC programs in this paper.

From the data type definition point of view, DTC extends the
idea of two-level types[4] with coproduct and fixed point opera-

tors, namely ⊕ and Mu respectively, over structure operators. The
coproduct operator ⊕ builds a structure operator by composing
two structure operators. We call the resulting structure operators
composed structure operators and otherwise use the term non-
composed structure operator. The fixed point operator Mu takes a
structure operator, say F, and creates a recursive data type by feed-
ing Mu F to F. List and Maybe in Haskell are two examples of
non-composed structure operators.

Functions over such recursive data types are defined in DTC
using ad-hoc polymorphism and catamorphism. Suppose F and G
are structure operators. If function f is defined over F a and G a, f
is also defined over (F⊕G) a in DTC. Catamorphism lifts function
f over F a to Mu F. A function lifted by catamorphism (f :: F
a → a) is called algebra.

DTC also provides a binary constraint ≺ over structure opera-
tors. F ≺ G intuitively means that for all type a, values of type F a
can be used as values of type G a. A simple example is taking the
functor G as H⊕F in a relation of F ≺ G where H is some structure
operator. A binary constraint is used to define smart constructors,
which are functions that build values polymorphic over structure
operators. For example, the type of smart constructor f that just re-
turns a value built with data constructor FC of structure operator F
is s a rather than F a for any structure operator s satisfying F≺s.

Notably, DTC is ready to be used to develop extensible pro-
grams in today’s Haskell with respect to required language mecha-
nisms. In fact, we have (multi parameter) type classes for ad-hoc
polymorphism and type constraints for declaring types of smart
constructors. Moreover, there is a library [1] that generates the nec-
essary boilerplate code for DTC programs at compile time using
Template Haskell.

DTC is, however, not ready for practical use because it makes
programs inefficient with respect to runtime performance compared
with their non-DTC counterparts. This is because DTC forces us to
compose structure operators merely linearly as type-level lists. It
therefore takes linear time to decompose a value of a composed
structure operator, i.e., O(n) where n is the number of structure
operators composed with ⊕.

We propose a lightweight optimization technique for DTC pro-
grams as a solution to the problem. It makes DTC programs run
as efficiently as their non-DTC counterparts by merely (1) deriving
one non-composed structure operator isomorphic to the composed
structure operator from a given composed structure operator, and
(2) using it within the type annotations on functions. This tech-
nique reflects our insight that functions and values polymorphic
over structure operators never specify concrete structure operators.
Concrete structure operators merely appear in their type constraints
instead. In other words, our technique never changes the way to de-
fine functions and values polymorphic over structure operators in
DTC.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

MODULARITY Companion’16, March 14–17, 2016, Málaga, Spain
ACM. 978-1-4503-4033-5/16/03...$15.00
http://dx.doi.org/10.1145/2892664.2892677

86

data BaseExpF e = Lit Int | Add e e deriving Functor
data Mu f = Mu {unwrap :: f (Mu f)}

eval :: (Eval f, Functor f) ⇒ Mu f → Int
eval = fold evalAlgebra

fold :: Functor f ⇒ (f a → a) → Mu f → a
fold f = run

where run = f ◦ (fmap run) ◦ unwrap

class Eval f where
evalAlgebra :: f Int → Int

instance Eval BaseExpF where
evalAlgebra (Lit i) = i
evalAlgebra (Add x y) = x + y

Figure 1: Simple example of DTC

Using Template Haskell, we implement a code generator that
derives (1) non-composed structure operators from given composed
structure operators and (2) instances of type classes necessary to
use the non-composed structure operators instead of composed
structure operators. Using these functions, programmers do not
have to make additional efforts to make DTC programs efficient.

The rest of the paper is organized as follows. Section 2 is a brief
introduction of DTC using a simple interpreter as an example. In
Section 3, we discuss the problem of DTC programs with respect
to runtime efficiency and show our solution to the problem. In Sec-
tion 5, we explain our implementation of the functions deriving
non-composed structure operators from given composed structure
operators using Template Haskell. In Section 6, we show the per-
formance improvements achieved by our approach. In Section 7,
we discuss related work, and Section 8 concludes the paper.

2. Data Types à la Carte
In this section, we review DTC using an interpreter for simple arith-
metic expressions as an example. Suppose that the initial version
of our interpreter evaluates an expression that consists of integer
literals and the summation operator, and the second version adds
support for the inversion operator additionally as the syntax of the
expressions.

2.1 Initial Interpreter
Figure 1 shows an implementation of the abstract syntax and the
evaluation function eval in DTC. BaseExpF (line 1) is a functor
that implements the abstract syntax of our initial interpreter. The
type parameter e is the type of subexpressions used in the sum-
mation operator. Mu f (line 2) is a fixpoint of functor f. Note that
Mu BaseExpF is isomorphic to the standard implementation of the
abstract syntax:

data BaseExp = Lit Int | Add BaseExp BaseExp

eval recursively applies evalAlgebra to subexpressions of the
argument expression. evalAlgebra is polymorphic over functor f.
It takes an expression of type f Int and returns an integer, where
f is a functor. Lines 14 – 16 define evalAlgebra in the case that
the functor is BaseExpF. For example, we get 7 by evaluating the
following program that represents the arithmetic expression 3 + 4.

eval $ Mu $ Add (Mu $ Lit 3) (Mu $ Lit 4)

2.2 Extending the Interpreter
It is possible in DTC to extend the syntax of the expression
in our interpreter with the inversion operator without modifying

data InvExpF e = Inv e deriving Functor

instance Eval InvExpF where
evalAlgebra (Inv i) = -i

instance (Eval f, Eval g) ⇒ Eval (f ⊕ g) where
evalAlgebra (InL x) = evalAlgebra x
evalAlgebra (InR x) = evalAlgebra x

Figure 2: Simple example of DTC

class sub ≺ sup where
inj :: sub a → sup a

instance f ≺ f where
inj = id

instance f ≺ (f ⊕ g) where
inj = InL

instance (f ≺ g) ⇒ f ≺ (h ⊕ g) where
inj = InR ◦ inj

inject :: (f ≺ g) ⇒ f (Mu g) → Mu g
inject = Mu ◦ inj

Figure 3: Definition of injection relations

lit :: (BaseExpF ≺ f) ⇒ Int → Mu f
lit = inject ◦ Lit
add :: (BaseExpF ≺ f) ⇒ Mu f → Mu f → Mu f
add x y = inject (Add x y)
inv :: (InvExpF ≺ f) ⇒ Mu f → Mu f
inv = inject ◦ Inv

Figure 4: Smart constructors

BaseExpF. All programmers have to do is to define a new functor
that implements the new part of the extended abstract syntax, and
to define evalAlgebra for the case that the functor is InvExpF
and f⊕g for any functor f and g such that evalAlgebra is de-
fined, where ⊕ is the summation operator over functors defined as
follows:

infixr ⊕
data (f ⊕ g) e = InL (f e) | InR (g e)

Figure 2 shows the code for the extension. Functor InvExpF
implements only the new part of the extend abstract syntax and
thus evalAlgebra for InvExpF handles only one case.

The data type that implements the fully extended abstract syn-
tax is Mu (BaseExpF⊕InvExpF). Therefore, we need to define
evalAlgebra for functor BaseExpF⊕InvF. We define it more
generally in the last instance declaration of Figure 2.

Note that eval is polymorphic over functor f and is thus appli-
cable to expressions that consist of Lit, Add and Inv. For example,
we get 2 by evaluating the following program.

eval $ Mu $ InL $ Add (Mu $ InL $ Add (Mu $ InL $ Lit 3)
(Mu $ InL $ Lit 4))

(Mu $ InR $ Inv $ Mu $ InL $ Lit 5)

2.3 Constructing Reusable Expressions
It is also possible in DTC to build expressions that are reusable
in extended interpreters via smart constructors, which allow us to
avoid using data constructors Mu, InL, and InR explicitly.

87

data Exp’ = Add Exp’ Exp’ | Inv Exp’ | Lit Int
eval’ :: Exp’ → Int
eval’ (Add’ e1 e2) = eval’ e1 + eval’ e2
eval’ (Inv’ e) = - eval’ e
eval’ (Lit’ i) = i

Figure 5: Definitions of non-composed structure operator and eval’

Intuitively, smart constructors automatically apply Mu only
once and InL and InR as many times as necessary according to
the types of the constructed data. For example, the smart con-
structor lit takes an integer as Lit and applies Lit and Mu
to the integer if the desired type of the constructed data is Mu
BaseExpF, while it applies Lit, InL and Mu once if the type is
Mu (BaseExpF⊕InvExpF).

To this end, DTC uses the injection relation f ≺ g among the
functors defined in Figure 3. inj injects the data of type f a into
(f⊕h) a and (h⊕f) a by applying InL and InR, respectively,
for any functor h. The auxiliary function inject applies Mu after
applying InL and InR via inj.

Figure 4 shows smart constructors lit, add and inv. They
merely apply inject to the data constructed by Lit, Add and Inv.
Note that they are polymorphic over the functor f that satisfies each
constraints. For example, lit builds expressions of type Mu f if we
can get the data of type f a by applying only InL and InR zero or
more times to the data of type BaseExpF a.

Expressions built via smart constructors are polymorphic over
functors. For example, we can define an expression that consists of
integer literals and the summation operator and use it to build larger
expressions that contain the inversion operator as follows.
exp1 :: (BaseExpF ≺ f) ⇒ Mu f
exp1 = lit 3 ‘add‘ lit 4

exp2 :: (InvExpF ≺ f, BaseExpF ≺ f) ⇒ Mu f
exp2 = exp1 ‘add‘ inv exp1

It is important to notice that expressions need type annotations
when they are passed to eval as follows.
eval (exp2 :: Mu (BaseExpF ⊕ InvExpF))

DTC programs are extensible if we do not specify a concrete
data type. This is also the key point of our approach to the perfor-
mance problem.

3. Problem of DTC
One of the problems of using composed structure operators is
that they make programs run slower than those that use only non-
composed structure operators. This is because DTC programs com-
pose several data constructors using InL and InR repeatedly. In
other words, it is not possible for DTC programs to have one big
eval function that deals with all the cases of expression without
losing generality. Several steps are therefore necessary to reach the
Lit, Add and Inv cases. For example, when eval is applied to
exp2 as in Section 2, evalAlgebra is applied 16 times, half of
which are applied to InL x and InR x. If we use non-composed
structure operators and eval’ (Figure 5), eval’ is applied only six
times. The more functors we compose, the more significant the per-
formance issue becomes. For example, a term representing a math
expression using DTC can be written as the following form.
exp1 :: (f ≺ BaseExp) ⇒ Fix f
exp1 = add (lit 1) (lit 3)

exp1 is constructed by smart constructors. When the type f is
instantiated to F1 ⊕ BaseExpF, the actual representation of exp1
gets the following form.

data BaseInvF e = Lit’ Int | Add’ e e | Inv’ e
deriving Functor

instance Eval BaseInvF where
evalAlgebra (Lit’ x) = x
evalAlgebra (Add’ x y) = x + y
evalAlgebra (Inv’ x) = (- x)

instance BaseExpF ≺ BaseInvF where
inj (Lit x) = Lit’ x
inj (Add x y) = Add’ x y

instance InvExpF ≺ BaseInvF where
inj (Inv x) = Inv’ x

Figure 6: Compiled data types

exp1 :: Fix (F1 ⊕ BaseExpF)
exp1 = Fix (InR (Add (Fix (InR (Lit 1)))

(Fix (InR (Lit 3)))))

When extending this functor with F2, the number of constructors
of exp1 increases.

exp1 :: Fix (F2 ⊕ F1 ⊕ BaseExpF)
≡ Fix (InR (InR (Add (Fix (InR (InR (Lit 1)))))

(Fix (InR (InR (Lit 3))))))

We are faced with two problems. First, because applications of
not only Lit, Add and Inv but also InR and InL allocate mem-
ory, the program uses more memory than non-composed counter-
parts. More memory is allocated and thus more GC time required.
Second, the number of function applications is larger than in their
non-composed counterparts.

It could be a solution to reduce the number of applications
of evalAlgebra by composing functors as binary trees using
type families instead of type classes to define the injection rela-
tion ≺ among functors[1]. This however still causes significant
slow down when we compose many functors compared to non-
composed counterparts as we show in Section 6.

4. Our Approach
We solve the problem of DTC by changing data and function
implementations at compile time without any modification to an
existing program using DTC.

Our approach is fairly simple. It derives a functor F ′ from⊕
Fi. Functor F ′ is defined as a non-composed structure opera-

tor and provides all the data constructors available in Fi. It also
derives instances of the type classes of which

⊕
Fi is an in-

stance. For example, our approach derives functor BaseInvF from
BaseExpF⊕InvExpF and instances of Eval and ≺ as shown in
Figure 6. Lit’, Add’ and Inv’ are data constructors corresponding
to Lit, Add and Inv. evalAlgebra for BaseInvF is defined using
evalAlgebra for BaseExpF and InvExpF. The injection relations
are derived from BaseExpF to BaseInvF and from InvExpF to
BaseInvF.

One could derive another data type namely BaseInvExp that
does not have type parameters as follows.

data BaseInvExp = Lit’’ Int
| Add’’ BaseInvExp BaseInvExp
| Inv’’ BaseInvExp

This approach has, however, a significant disadvantage in that we
can neither apply eval to the data built by Lit’’, Add’’, and
Inv’’ nor use smart constructors to build them. In other words, we
need to define a specialized version of eval, namely eval’, and

88

replace every eval call with eval’. We also have to use the data
constructors Lit’’, Add’’ and Inv’’ directly instead of smart
constructors to build expressions. Effectively, we have to change
the entire program.

Our approach, in comparison, does not require any changes to
extensible parts of the programs. For example, we can build an
expression of type Mu BaseInvF using the smart constructors in
Figure 4 and evaluate it using eval in Figure 1 as follows.

eval (exp2 :: Mu BaseInvF)

Compared with the previous example in Section 2, only the type
annotation that specifies the concrete functor is different. Because
extensible programs do not specify any concrete functor, we can
use it without any modifications.

5. Automated Derivation
In this section, we explain the automatic compile time derivation of
non-composed structure operators and instances of Eval and ≺. As
shown in Figure 6, the derivation is straightforward and therefore,
it is desirable to automate it.

We explain our derivation algorithm as a compile-time meta-
level function compType, which we can implement straightfor-
wardly using Template Haskell.

5.1 Overview of the Deriving Process
compType takes three parameters necessary for derivations. The
first and second parameters are the names of the derived non-
composed structure operators and the composed structure opera-
tors, respectively. The last one is the names of the type classes of
which the defined structure operators must be the instances.

For example, compType derives BaseInvF and the instance of
Eval in Figure 6 from InvF ⊕ BaseF for the following code:

type ExpF = InvF ⊕ BaseF
compType "BaseInvF" ’’ExpF [’’Eval]

It also derives the instances of ≺, i.e, InvF ≺ BaseInvF and
BaseF ≺ BaseInvF.

The deriving process consists of three steps:

1. Deriving new datatype

2. Deriving injection (smart constructor)

3. Deriving algebra instances of the specified type class

The first step is deriving the non-composed structure operator.
In this step, the deriving process receives the name of the com-
posed structure operator, and generates the declaration of the non-
composed structure operators and the mapping from a data con-
structor to a non-composed structure operator as internal informa-
tion passed to the second and the third step.

The second step is deriving the injection f ≺ g. In this step,
the deriving process receives the mapping between functors that
is generated in step 1 and generates type class instances of subtype
relations. This step enables the programmers to use smart construc-
tors.

The third step is deriving typeclass instances for DTC function
(called algebra). In this step, the deriving process requires algebra
names and algebra declarations. and generates algebras for the
composed structure operator.

5.2 Deriving a Non-composed Structure Operator
Let G be the non-composed structure operator derived from

⊕
Fi.

Then for each data constructor of Fi, there must be one unique data
constructor of G. For example, BaseInvF has three data construc-
tors, Add’, Lit’ and Inv’, that correspond to the Add of BaseF
and Inv of InvF, respectively.

In general, we can derive non-composed structure operators in
the following way. Suppose that Fi is defined as follows.
data Fi a = Ci1 t11 ... t1ρi1 |Ci2 t21 ... t2ρi2

|.. | Ciki tki1 ... tkiρik

a is a type variable, and it can appear in each type tqp. Then, we
define G by creating a new data constructor name Cn′i for Cn as
follows.
data G a = C1′1 t111 ... t11ρ11 |.. | C1′k1 t1k11 ... t1k1ρ1k

| C2′1 t211 ... t21ρ21 |.. | C2′k2 t2k21 ... t2k2ρ2k
..

| Cn′1 tn1
1 ... tn1

ρn1
|.. | Cn′kn tnkn

1 ... tnkn
ρnk

5.3 Deriving Injective Relation
To use the non-composed structure operator G derived from

⊕
Fi

instead of
⊕

Fi, it is necessary to ensure that we can use G when-
ever Fi and any of their compositions are used. This is done by
simply defining the injection relation Fi ≺ G for each Fi as fol-
lows:
instance Fi ≺ G where

inj x = case x of

Ci1 t11 ... t1ρi1 → Ci′1 t11 ... t1ρi1
...

Ciki tki1 ... tkiρik → Ci′ki tki1 ... tkiρik

We do not need to define the injection relations from composi-
tions of Fi to G. This is because compositions of Fi never appear
in the types of extensible functions. For example, the type of exp3
in Section 3 specifies that there are two injection relations from
BaseExpF to f (BaseExpF≺ f) and from InvExpF to f (InvExpF
≺ f), instead of specifing the injection relation from (BaseExpF ⊕
InvExpF) to f and (InvExpF ⊕ BaseExpF) to f.

It is not good to specify (BaseExpF⊕ InvExpF) ≺ f because it
specifies the order of the compositions of BaseExpF and InvExpF
and thus limits the extensibility of the function.

5.4 Deriving Type Class Instances

instance A NewExpF where
f x = case x of

...
Ci a1 .. an → f (C′

i a1 .. an)
...

Figure 7: Derived typeclass instance for algebra function

Let A be a typeclass that has the algebra function, G be a derived
non-composed structure operator and f be a algebra function.

Figure 7 shows the derived instance declaration in this step. Ci

is a data constructor of the derived non-composed operator and C′
i

is the counterpart of the base operator. The derived function simply
maps the Ci to C′

i and applies the base operator’s algebra.

6. Evaluation
To measure the speed-up, we made a simple benchmark program
and compared the optimized program with its non-optimized coun-
terpart.

6.1 Benchmarks
Expression Evaluation
We built simple expression trees and measured the time taken to
evaluate them. In this benchmark, generated trees are perfect binary
trees whose heights are fixed to 20.

89

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 20 40 60 80 100

m
e
a
n
 t

im
e
 (

s
e
c
)

number of constructors

compType
algebraic data type

linear DTC

(a) Result of compType, original DTC and ADT

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100

ti
m

e
 (

n
o
rm

a
li
z
e
d
 b

y
 A

D
T
 t

im
e
)

number of constructors

compType
algebraic data type

balanced DTC

(b) Result of compType, balanced DTC and ADT

Figure 8: Mean running time relative to non-DTC program

data Val e = Val Int
data Addi e = Addi e e
type Sumn = Val ⊕ Add1 ⊕ ... ⊕ Addn
instance Eval Val where

evalAlgebra (Val x) = x
instance Eval Addi where

evalAlgebra (Addi l r) = l + r
buildTree 0 = return $ Val 1
buildTree n = do

k ← randomRIO (0,len)
adds !! k <$> buildTree (n - 1) <∗> buildTree (n - 1)
where

adds = [add1,add2,add3, .. , addn]
len = length adds

$(compType ’’Sumn)
eval :: Eval f ⇒ Mu f → Int
eval = fold evalAlgebra

Figure 9: Code of expression evaluation benchmark

6.2 Results
The benchmarks were performed on a Linux machine running
kernel version 4.0.1 on an Intel Core i7 3.3 GHz with 32 GB of
RAM. Times were measured by the package Criterion [3] using
GHC 7.10.1 with flag -O2.

6.2.1 Speedup in Data Decomposition
Figure 8a shows the relation between the number of composed
constructors (functors) and evaluation time. When increasing the
number of composition operators, the time required for the origi-
nal DTC increases linearly. In contrast, the time of the optimized
versions of DTC and algebraic data type (ADT) remained constant.

Performance normalized by ADT is shown in Figure 8b. This
graph contains the result of the ADT, balanced DTC and DTC
optimized by our approach. Our simple optimization technique
reduces the decomposition from O(N) to O(1) where N is the
number of functor sum operators ⊕.

We can see that DTC programs spend a time proportional to
the number of constructors (functors). This result means that the

average cost of applying algebras is O(N). In contrast, composed
functors and ADT require constant time even if the number of
functors increases.

Figure 8b shows benchmark results of DTC composing functors
with binary tree and compType normalized by ADT time.

7. Related Works
The idea of behind our mechanism is not new. The idea replacing
the function with a more efficient function has been used in com-
piler implementation and the application for functional program-
ming is known as the worker/wrapper transformation [2]. Our ap-
proach extends this idea to polymorphic and extensible functions.

8. Conclusion
We proposed a lightweight optimization technique for functions
that destruct the values of DTC data types. This technique does
not require any changes to the existing DTC programs except
for their type annotations. We also implemented a code generator
from composed type operators to non-composed structure operators
using Template Haskell. Our experimental results show that a DTC
program using our approach runs faster than the original DTC and
avoids slowdown even if the data types are extended multiple times.

References
[1] P. Bahr. Composing and decomposing data types: A closed type fam-

ilies implementation of data types à la carte. In Proceedings of WGP
’14, pages 71–82, 2014.

[2] A. Gill and G. Hutton. The worker/wrapper transformation. J. Funct.
Program., 19(2):227–251, Mar. 2009.

[3] B. OSullivan. Criterion version 1.1.0. http://hackage.haskell.
org/package/criterion, 2015.

[4] T. Sheard and E. Pasalic. Two-level types and parameterized modules.
Journal of Functional Programming, 14(5):547–587, 2004.

[5] W. Swierstra. Data types à la carte. Journal of Functional Program-
ming, 18(4):423–436, July 2008.

[6] P. Wadler and et al. The expression problem. Discussion on the Java-
Genericity mailing list, December 1998.

90

http://hackage.haskell.org/package/criterion
http://hackage.haskell.org/package/criterion

	Introduction
	Data Types à la Carte
	Initial Interpreter
	Extending the Interpreter
	Constructing Reusable Expressions

	Problem of DTC
	Our Approach
	Automated Derivation
	Overview of the Deriving Process
	Deriving a Non-composed Structure Operator
	Deriving Injective Relation
	Deriving Type Class Instances

	Evaluation
	Benchmarks
	Results
	Speedup in Data Decomposition

	Related Works
	Conclusion

