
Towards Improving Interface Modularity in Legacy
Java Software through Automated Refactoring

Raffi Khatchadourian Olivia Moore
City University of New York, USA
rkhatchadourian@citytech.cuny.edu
olivia.moore@mail.citytech.cuny.edu

Hidehiko Masuhara
Tokyo Institute of Technology, Japan

masuhara@acm.org

Abstract
The skeletal implementation pattern is a software design pattern
consisting of defining an abstract class that provides a partial inter-
face implementation. However, since Java allows only single class
inheritance, if implementers decide to extend a skeletal implemen-
tation, they will not be allowed to extend any other class. Also,
discovering the skeletal implementation may require a global anal-
ysis. Java 8 enhanced interfaces alleviate these problems by allow-
ing interfaces to contain (default) method implementations, which
implementers inherit. Java classes are then free to extend a different
class, and a separate abstract class is no longer needed; developers
considering implementing an interface need only examine the inter-
face itself. We argue that both these benefits improve software mod-
ularity, and discuss our ongoing work in developing an automated
refactoring tool that would assist developers in taking advantage of
the enhanced interface feature for their legacy Java software.

Categories and Subject Descriptors D.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement—Restructuring,
reverse engineering, and reengineering

Keywords refactoring; java; interfaces; default methods

1. Introduction
Java 8 is one of the largest upgrades to the popular language and
framework in over a decade. There are several new, key features
that can help make programs easier to read, write, and maintain,
especially in regards to collections. The advantages of migrating
legacy code to Java 8 include a reduction of code and files via
enhanced interfaces [8].

An interface in Java is a type whose primary purpose is to lists
method declarations (method headers only, no bodies) that classes
can implement. Implementing an interface guarantees that the class
provides implementations for all of the interface methods. If an
implementing class does not provide an implementation for all
methods, a compile-time error would result.

Listing 1 portrays a snippet of the java.util.List interface
found in the Java Development Kit (JDK) [17] as an example.
One of the method declarations, namely, clear(), along with its

documentation, is listed. A concrete implementer of List must
provide an implementation for the clear() method.

1 interface List { //...
2 /** Removes all of the elements from this list

(optional operation) ...↪→

3 @throws UnsupportedOperationException if the clear

operation is not supported by this list. */↪→

4 void clear(); /* ... */ }

Listing 1: A snippet of the Java List interface.

Often times, interface implementers share common functional-
ity, and some interface methods may be considered optional, i.e.,
implementers may decide to provide an implementation for them
or simply state the operation is not supported by throwing an ap-
propriate exception. As an example of the former, consider List-
ing 1, where the clear() method documentation states that an
UnsupportedOperationException should be thrown by the imple-
mentation if the operation is not supported (line 3).

The skeletal implementation pattern has emerged to make inter-
faces easier to implement by providing a corresponding abstract

class (i.e., a class that is solely used to capture common data and
functionality and thus cannot be instantiated itself) as a partial in-
terface implementation [2]. Implementers then extend the skele-
tal implementation, thereby inheriting the partial implementations.
For each interface method, a default implementation may be pro-
vided that will execute if the implementer does not provide one.
Or, functionality common to all method implementations may be
supplied. Implementers can chose to inherit the complete method
or furnish a customization via a super method call. Prominent ex-
amples of this pattern include the java.util.AbstractCollection

and java.util.AbstractList classes, which are part of the JDK
Collections library. Figure 1 depicts a UML class diagram of these
classes, including their relationships and implemented interfaces.
Note that java.util.ArrayList and java.util.Vector are two
example concrete implementations of java.util.List.

Though useful, the skeletal implementation pattern has several
significant drawbacks. Firstly, since Java allows only single class
inheritance, if implementers decide to extend the skeletal imple-
mentation, they will not be allowed to extend any other class. Fur-
thermore, if an implementer already extends another class, they
would not be able to easily use the skeletal implementation.1 Sec-
ondly, an additional type is created, which may further complicate
the software and may not be easily locatable by developers whom
may only be examining the interface they wish to implement.

1 Implementers already extending a class can use the skeletal implementa-
tion pattern via delegation to an internal class [2].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

MODULARITY Companion’16, March 14–17, 2016, Málaga, Spain
c© 2016 ACM. 978-1-4503-4033-5/16/03...$15.00

http://dx.doi.org/10.1145/2892664.2892681

104

Figure 1. JDK collections UML class diagram snippet.

Java 8 default methods alleviate these problems by allowing in-
terfaces to contain (default) method implementations along with
their declarations [18].2 Implementers inherit default methods,
much like they inherit methods from an extended class. Imple-
menters are not, however, constrained by single class inheritance,
as is the case with the skeletal implementation pattern (Java allows
multiple interface inheritance), and are thus free to extend other
classes. Also, a separate class is not needed; developers consid-
ering implementing an interface need only examine the interface
itself. This facilitates local reasoning as discovering skeletal imple-
mentations may require a global analysis (there is no syntactical
path from the interface to the skeletal implementation).

For example, using default methods, the default implementa-
tion specification in the documentation of the clear() method in
Listing 1, line 3 can be replaced with an actual code body:

default void clear() {throw new

UnsupportedOperationException();}↪→

In this case, implementers of List would not be required to
provide their own implementation if the clear() method was not
supported. Moreover, such a code body could appear in a skele-
tal implementation of the interface, e.g., AbstractList. If enough
of these can be migrated to interfaces as default methods, it may
be possible to eliminate the skeletal implementation. List imple-
menters would then not need to extend a skeletal implementation
and can implement List directly.

Our refactoring algorithm and corresponding automated tool
will be of great use to developers looking to take advantage of
the enhanced interface feature in Java 8. Refactoring [16] is a pro-
cess in which code is restructured to improve software design and
safety features while preserving the original program semantics.
Refactoring tools typically automatically assist developers with a
range of software evolution and maintenance tasks, including mi-
grating source code to a new platform version [6,10,11,13,20,23] or
to make use of more desirable paradigms for performance improve-
ments [4], translating existing code to a new platform [3,12,24], and
restructuring code to reflect a superior design philosophy [5,9,14].

While it is desirable, e.g., to improve modularity, to refactor
code to take advantage of new features such as enhanced inter-
faces in Java 8, doing so may require significant manual effort by
the developer that is tedious, time-consuming, and both error- and

2 Java 8 interfaces cannot contain default fields nor constructors.

omission-prone [4]. Our tool must perform a semantics-preserving
source-to-source transformation of existing Java programs in an ef-
ficient, error-free, and omission-free way. Moreover, the tool must
be able to work on large-scale projects with minimal (if any) de-
veloper intervention. These requirements are, in fact, common to
most refactoring approaches. In the following sections, we will de-
tail how such requirements apply to the problem-at-hand.

2. Approach
Our approach is being formulated via a careful study of the Java 8
language specification an will produce a sufficient set of refactoring
preconditions. These are the conditions a program must meet prior
to the refactoring to guarantee that the transformation is semantics-
preserving. The algorithm will analyze the abstract syntax tree
(AST) of the input program.3 Transformation will occur via the
use of existing tooling in the Eclipse Integrated Development En-
vironment (IDE; http://eclipse.org). Eclipse has been chosen
due to its ample refactoring tool plug-in creation documentation [1]
and that it is completely open source for all Java development,4 thus
possibly impacting more Java developers. Moreover, we are adapt-
ing existing algorithms used for refactoring class hierarchies [21].

2.1 Research Questions
1. Is it possible to eliminate skeletal implementations from legacy

Java code by migrating their methods to interfaces?
2. What are the refactoring preconditions? How applicable are

they to real-world software?
3. What is the percentage of candidate skeletal implementations

that can be completely migrated?
4. If all methods cannot be migrated to an interface (e.g., if a

method accesses fields), either due to semantics-preservation
(i.e., failed refactoring preconditions) or language constraints,
is it worthwhile to migrate a subset of the methods in both
skeletal implementations to interfaces?

5. Can the process be automated?
(a) If so, can it be done accurately and efficiently? How does

the automated result compare with a manual refactoring?
(b) Can we minimize or completely eliminate developer inter-

vention? That is, how much human input would be needed?
(c) Is it possible automatically identify occurrences of the

skeletal implementation pattern in legacy Java code?

2.2 Methodology
Considering Question 1 in Section 2.1, naturally, several issues
arise, e.g., how do we determine if an interface implementer is
“skeletal?” The pattern occurrence may not be completely obvious
as the classic pattern can be slightly modified by the implementer.
The perhaps obvious occurrence is an abstract class whose name
begins with “Abstract,” extends no classes, and implements a sin-
gle interface. Clearly, implementers can still abide to the essence
of the pattern without exhibiting any of these criteria. For example,
an implementer may not be abstract but, nevertheless, used like
one (i.e., never instantiated and/or mainly used for inheritance pur-
poses). Moreover, a skeletal implementer may implement several
interfaces (e.g., marker interfaces like java.io.Serializable).
To complicate matters further, there may exist a hierarchy of
skeletal implementers, e.g., java.util.AbstractList is a skele-
tal implementation of the java.util.List interface that extends
java.util.AbstractCollection, which is a skeletal implementa-
tion of the java.util.Collection interface (cf. Figure 1).

3 While many refactoring approaches analyze ASTs, it is possible to use
other approaches, e.g., intermediate representation analysis [22].
4 As of this writing, the IntelliJ IDE is closed source for Java EE develop-
ment; see http://jetbrains.com/idea/#chooseYourEdition.

105

http://eclipse.org
http://jetbrains.com/idea/#chooseYourEdition

We are analyzing several large open source projects5 for com-
mon occurrences and variations of the skeletal implementation pat-
tern. We propose that our approach can later be expanded to deal
with pattern variations. This preliminary study will help identify
necessary refactoring preconditions (question 2 in Section 2.1).

There are several interesting preconditions that arise when con-
sidering type hierarchies and multiple interface implementation.
For example, suppose that a skeletal implementation A defines a
method m() and implements two interfaces I and J, each of which
declare the same method m(). As such, A.m() is an implementation
of both I.m() and J.m(). Further suppose that I.m() is a default

method. In this case, A.m() overrides I.m(). If we choose to mi-
grate A.m() to J as a default method, then any subclass of A in-
heriting A.m() will break because it must now choose which imple-
mentation, either I.m() or J.m(), it will inherit. We plan to further
explore such complex relationships further.

Partial migration of skeletal implementations interfaces (Ques-
tion 3 in Section 2.1) will be answered by adjusting and safely ex-
panding refactoring preconditions while simultaneously analyzing
large code bases. In our preliminary implementation (available at
http://git.io/v2nX0), the preconditions are as strict as pos-
sible. We plan to carefully relax these to include more candidate
classes. Upon each relaxation phase, we will employ techniques
from the literature [7,15,19] to help test our refactoring algorithm.

For Question 4 in Section 2.1, we speculate that, at least, partial
skeletal implementation migration will be worthwhile because all
concrete implementations (i.e., classes extending the skeletal inter-
face) may not need to extend the skeletal implementation as a result
of the migration. This will make implementing the interface easier
in some cases and possibly reduce the need for simultaneous evo-
lution of interfaces and skeletal implementations.

We have uncovered several instances in the JDK 8 where exist-
ing methods were manually migrated to Java 8 enhanced interfaces.
We plan to expand this investigation to more projects. Ideally, these
projects will have existed for several years, are extended by a wide
variety of client applications, and have a large developer-base. This
last criterion helps prevent the collection of biased information as
individual developers may use very specific styles and idioms. We
plan to manually compare the differences between the versions and
attempt to identify general transformations. Furthermore, any re-
quired client changes will be analyzed.

3. Conclusion & Future Work
We have presented our ongoing work in increasing Java inter-
face modularity by automatically migrating method definitions in
classes to Java 8 interfaces as default methods. Doing so makes
Java interfaces easier to implement because software design pat-
terns, such as the Skeletal Implementation Pattern, where a separate
partial implementation class is provided, would not be necessary.
This alleviates developers from a possible whole program analysis.

One point of future interest would be to find ways to compensate
for limitations of Java 8 enhanced interfaces. For example, there
is no direct support for default fields and constructors. As such,
methods that access fields, for example, will not be able to be
migrated to interfaces (failed precondition). This result may be
mitigated by encapsulating fields and generating corresponding
method declarations in the target interface.

There is also a possibility to migrate static methods to inter-
faces as part of the refactoring as such methods are now allowed
in interfaces as of Java 8. We foresee exploring this avenue in the
future. We also plan to evaluate our approach via a full empirical
study on popular Java projects.

5 See http://git.io/v2ZDL for a complete project listing.

Refactoring interfaces may be risky as third-party clients may
rely of the interfaces. Like many refactorings, our preliminary
algorithm works with a “closed-world” assumption. However, in
our future work, we will explore ways to relax this assumption,
possibly through more stringent preconditions in certain situations.

References
[1] D. Bäumer, E. Gamma, and A. Kiezun. Integrating refactoring sup-

port into a Java development tool. In Object-Oriented Programming,
Systems, Languages, and Applications, 2001.

[2] J. Bloch. Effective Java. Prentice Hall, 2008.
[3] A. De Lucia, G. Di Lucca, A. Fasolino, P. Guerra, and S. Petruzzelli.

Migrating legacy systems towards object-oriented platforms. In Int.
Conf. Software Maintenance, 1997.

[4] D. Dig, J. Marrero, and M. D. Ernst. Refactoring sequential java
code for concurrency via concurrent libraries. In Int. Conf. Software
Engineering, 2009.

[5] A. Donovan, A. Kieżun, M. S. Tschantz, and M. D. Ernst. Converting
Java programs to use generic libraries. In Object-Oriented Program-
ming, Systems, Languages, and Applications, 2004.

[6] R. Fuhrer, F. Tip, A. Kieżun, J. Dolby, and M. Keller. Efficiently
refactoring Java applications to use generic libraries. In European
Conference on Object-Oriented Programming, 2005.

[7] X. Ge and E. Murphy-Hill. Manual refactoring changes with au-
tomated refactoring validation. In Int. Conf. Software Engineering,
2014.

[8] C. S. Horstmann. Java SE 8 for the Really Impatient. Addison-Wesley
Professional, 2014.

[9] H. Kegel and F. Steimann. Systematically refactoring inheritance to
delegation in Java. In Int. Conf. Software Engineering, 2008.

[10] R. Khatchadourian, J. Sawin, and A. Rountev. Automated refactoring
of legacy Java software to enumerated types. In Int. Conf. Software
Maintenance, 2007.

[11] A. Kieżun, M. D. Ernst, F. Tip, and R. M. Fuhrer. Refactoring for
parameterizing Java classes. In Int. Conf. Software Engineering, 2007.

[12] K. Kontogiannis, J. Martin, K. Wong, R. Gregory, H. Müller, and
J. Mylopoulos. Code migration through transformations: an experi-
ence report. In Conference of the Centre for Advanced Studies on
Collaborative Research, 1998.

[13] A. Kumar, A. Sutton, and B. Stroustrup. Rejuvenating C++ programs
through demacrofication. In Int. Conf. Software Maintenance, 2012.

[14] Y.-W. Kwon and E. Tilevich. Cloud refactoring: automated transition-
ing to cloud-based services. Automated Software Engineering, 2014.

[15] M. Mongiovi. Safira: A tool for evaluating behavior preservation.
In Object-Oriented Programming, Systems, Languages, and Applica-
tions, 2011.

[16] W. F. Opdyke. Refactoring object-oriented frameworks. PhD thesis,
University of Illinois at Urbana-Champaign, 1992.

[17] Oracle Corporation. JavaTM platform, standard edition 8 api, 2016.
URL http://docs.oracle.com/javase/8/docs/api.

[18] Oracle Corporation. Default methods, 2016. URL
http://docs.oracle.com/javase/tutorial/java/IandI/
defaultmethods.html.

[19] G. Soares, R. Gheyi, and T. Massoni. Automated behavioral testing
of refactoring engines. IEEE Transactions on Software Engineering,
2013.

[20] W. Tansey and E. Tilevich. Annotation refactoring: inferring upgrade
transformations for legacy applications. In Object-Oriented Program-
ming, Systems, Languages, and Applications, 2008.

[21] F. Tip, A. Kieżun, and D. Bäumer. Refactoring for generalization
using type constraints. In Object-Oriented Programming, Systems,
Languages, and Applications, 2003.

[22] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundare-
san. Soot-a java bytecode optimization framework. In Conference of
the Centre for Advanced Studies on Collaborative Research, 1999.

[23] D. von Dincklage and A. Diwan. Converting Java classes to use
generics. In Object-Oriented Programming, Systems, Languages, and
Applications, 2004.

[24] Y. Zou and K. Kontogiannis. A framework for migrating procedural
code to object-oriented platforms. Asia-Pacific Software Engineering
Conference, 2001.

106

http://git.io/v2nX0
http://git.io/v2ZDL
http://docs.oracle.com/javase/8/docs/api
http://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html
http://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html

	Introduction
	Approach
	Research Questions
	Methodology

	Conclusion & Future Work

