
Hierarchical Layer-Based Class Extensions in Squeak/Smalltalk

Matthias Springer‡ Hidehiko Masuhara‡ Robert Hirschfeld†,§

‡ Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Japan
† Hasso Plattner Institute, University of Potsdam, Germany

§ Communications Design Group (CDG), SAP Labs, USA; Viewpoints Research Institute, USA

matthias.springer@acm.org masuhara@acm.org robert.hirschfeld@hpi.de

Abstract

Class extensions are frequently used in programming languages
such as Ruby and Smalltalk to add or change methods of a class that
is defined in the same application or in a different one. They suffer
from modularity issues if globally visible: Other applications using
the same classes are then affected by the modifications.

This paper presents a hierarchical approach for dynamically
scoping class extensions in dynamically-typed, class-based program-
ming languages supporting class nesting. Our mechanism allows
programmers to define the scope of class extensions and to reuse
class extensions in other programs. Class extensions can be scoped
according to a nested class hierarchy or based on whether program-
mers regard a potentially affected class as a black box or not. Class
extensions are organized in layers, where multiple layers targeting
the same class can be active at the same time.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

Keywords Class extension, context-oriented programming, mixins

1. Introduction

Class extensions are in-place modifications of existing classes:
instance methods are added or modified in an already existing class
(target class) that is typically defined somewhere else in the same
program or in an external library. We call the former case a class
addition and the latter one a class refinement.

There are a variety of use cases for class additions. The most
common use case in mainstream programming languages such as
Ruby is adding convenience methods to organize helper methods in
an object-oriented way. For example, the Ruby library ActiveSup-
port provides methods like Fixnum.minutes and Fixnum.hours

to make it easy to perform time calculations such as 4.hours +

2.minutes. Another use case is multi-dimensional separation of
concerns [12]. The idea is that a class or group of classes may
exhibit a number of different concerns which programmers may
want to group together for understandability reasons. While object-
oriented design without class extensions allows only for a “single,
dominant dimension of separation”, class extensions can be used to
group methods of a class belonging to the same concern.

Class refinements are typically used for bug fixing or modular-
ization of behavioral variations. Multiple behavioral variations can
target the same classes and methods. In that case, there must be a
way to specify which variation should be used and possibly com-
bined. Context-oriented programming [7] (COP) is a mechanism for
modularizing context-dependent behavioral variations. The mech-
anism presented in this paper is similar to context-oriented layer
activation and focuses on dynamically-scoped class extensions, but
other mechanisms will be discussed towards the end of this paper.

1.1 Background

This paper proposes a concept for class extensions in the Matriona
module system [10] for Squeak/Smalltalk, but the main ideas are
amenable to other class-based programming languages. Matriona
runs on top of Squeak and provides class nesting and class param-
eterization. It is implemented without modifying the underlying
virtual machine and is based on metaprogramming.

In Matriona, every class can have variables, methods, and nested
classes. Nested classes are always class-side members and their
purpose is typically to serve their enclosing classes [2]. A new
hierarchical name lookup mechanism featuring the scope keyword
looks up class names and methods by traversing the class nesting
hierarchy, i.e., the lookup starts in the current class and continues
in enclosing classes until the single top-level class Smalltalk is
reached (see Section 3.3).

1.2 Requirements

Our motivation for supporting class extensions in Matriona is three-
fold: First, Matriona should support class extensions for backward
compatibility to Smalltalk, because Matriona aims to be a superset
of Smalltalk. Second, we would like to promote modular understand-
ability through multi-dimensional separation of concerns. Third, we
would like to provide an easy way to implement behavioral varia-
tions and to add new operations to an existing class. At the same
time, class extensions should be confined to a local scope to avoid
the problem of destructive class extensions.

Backward Compatibility Class extensions (star categories in Mon-
ticello [8]) are a widely-used feature of Smalltalk. For backward
compatibility reasons, Matriona should support this kind of class
extensions. The main question is how to organize class extensions
in Matriona, where classes are no longer organized in flat packages
but in a hierarchical nesting structure.

Multi-dimensional Separation of Concerns Matriona is a mod-
ule system that aims to support modular composability, modular
decomposability, and modular understandability. The latter point
can be further supported by grouping methods describing a common
concern together, even beyond class boundaries. The basic idea is
to define a set of classes according to one “dominant” dimension

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

MODULARITY Companion’16, March 14–17, 2016, Málaga, Spain
ACM. 978-1-4503-4033-5/16/03...$15.00
http://dx.doi.org/10.1145/2892664.2892682

107

and to group class additions to “encapsulate concerns in dimensions
other than the dominant one” [12].

Behavioral Variations and Additional Operations Changing ex-
isting or adding new methods to an existing class is difficult without
class extensions. One approach is to create a subclass and perform
changes in the subclass, but this approach fails if the programmer is
not in control of instance creation. Another approach for tree-based
data structures is to use the Visitor design pattern [5], but this ap-
proach results in more overhead and infrastructural complexity due
to additonal classes and double dispatch.

Destructive Class Extensions Class extensions are known to suf-
fer from modularity issues. First, whenever two different modules
extend the same class, conflicts can occur when both extensions de-
fine methods with the same name. It is then unclear which extension
to use. Such class extensions are called destructive [11]. Second,
class extensions might only be suitable in the context of their defin-
ing modules. For example, if one module refines a class, it might be
desirable to run the original implementation whenever the class is
used outside of the scope of the refining module.

1.3 Contributions

This paper makes the following main contributions.

• Hierarchically and dynamically-scoped class extensions

• A layer-based approach for handling destructive class extensions

In the remainder of this paper, we motivate our design using
three examples, describe the concept of our approach, and give an
overview of related work.

2. Examples

In this section, we present three examples to justify the requirements
and give a high-level overview of the class extension mechanism,
that we will formally define in the following section.

2.1 Locality of Changes

This example is taken from Method Shells [11], so it might be
familiar to some readers. We would like to develop an embedded
web browser and an audited viewer for web pages, represented by
classes Browser and Viewer, respectively. Both applications use
the same WebPage library, which contains functionality for showing
popups.

Smalltalk class»WebPage < class >

↑ Smalltalk Kernel Object subclass

Smalltalk WebPage»popup: URL

" Show popup dialog "

Smalltalk WebPage»open: URL

" ... "

popupRequested ifTrue: [self popup: ’...’]

The browser application should not display popup windows,
whereas the audited viewer application should show a popup win-
dow whenever a confidential file is accessed.

Smalltalk class»Viewer < class >

↑ Smalltalk Kernel Object subclass

Smalltalk Viewer»check: file

| page |

page := Smalltalk WebPage new.

(self isConfidential: file) ifTrue: [

page popup: ’confidential’].

" ... "

In this design, the embedded web browser defines a class refine-
ment for WebPage.popup to disable popup windows (Figure 1). The
class extension mechanism should allow for the following behavior.

Smalltalk

WebPage Browser

popup

Viewer

popup
checkWebPage

open

Application

main
open

{Smalltalk, WebPage, Browser, Viewer, Application}

{WebPage} {Browser, WebPage} {Viewer} {Application}

+

+ partial class

Figure 1: Example: Locality of Changes. Gray boxes indicate
classes and their extensions, sets enclosed in curly braces indicate
the scope of a class.

First, when another application uses both the embedded web
browser and the audited viewer, the viewer should still show popup
windows. In other words, the scope of the browser’s class extensions
should be confined to Browser.

Second, in another design, where the embedded web browser
uses the audited viewer as a dependency, programmers should be
able to choose whether the browser’s class extensions should affect
the audited viewer or not. In other words, programmers should be
able to specify whether the scope of the browser’s class extensions
includes Viewer or not.

Representing Class Extensions In Matriona, class extensions are
represented by partial methods. Every partial method is contained
in one partial class. Every partial class belongs to exactly one target
class, which is the class that is extended, and is contained (nested) in
exactly one class. For example, Browser is a class defining a partial
class WebPage targeting the class St.WebPage and containing a
partial method popup.

Smalltalk class»Browser < class >

↑ Smalltalk Kernel Object subclass

Smalltalk Browser class»WebPage < partial >

↑ Smalltalk WebPage

Smalltalk Browser WebPage»popup: text

" Do nothing "

Smalltalk Browser»open: URL

Smalltalk WebPage new open: URL

Scope of Class Extensions To avoid destructive class extensions,
Matriona has rules to activate and deactivate class extensions.
Matriona supports (de)activation on a per-class level, i.e., par-
tial classes cannot be (de)activated separately. We use the term
class (de)activation to denote that all class extensions defined in
a class are (de)activated. The rule for class activation is simple: A
class is activated if one of its methods is executed. For example, if
Browser.open is executed, class Browser is activated.

Class deactivation depends on the scope of a class. The scope
of a class determines how long a class should remain activated if
activated before, i.e., the scope of a class affects only deactivation
but not activation. It always contains the class itself (reflexivity). For
example, when calling WebPage.popup from Browser, the method
lookup will select the class refinement.

The scope of a class also contains the target classes of all
partial classes. For example, if WebPage.open calls popup, the
method lookup will use the class refinement if open was called from
Browser, because WebPage ∈ scope(Browser). This behavior is
known as local rebinding [1].

108

Full Example We now define an Application using both
Browser and Viewer. The browser application will not gener-
ate popup windows, whereas the audited viewer application will,
because Browser is deactivated when Browser.open returns to
Application.main, since Application 6∈ scope(Browser).

Smalltalk class»Application < class >

↑ Smalltalk Kernel Object subclass

Smalltalk Application»main

Smalltalk Browser new open: ’http://...’.

Smalltalk Viewer new check: ’secret.html’.

Consider a slightly different case now where Browser uses
Viewer internally, while both of them still use WebPage for render-
ing purposes (Figure 2). Once Browser calls a method in Viewer,
class Browser is deactivated, because Viewer 6∈ scope(Browser).
Viewer still works properly by showing a popup window.

Application Browser Viewer

WebPage

Figure 2: Example: Browser uses Viewer

The programmer could apply Browser’s class extensions to
Viewer by adding a partial class targeting Viewer to Browser.

2.2 Hierarchical Scoping

Consider a networking library that consists of a class Networking
where functionality such as sockets and DNS name resolution is
organized in a class nesting structure within Networking. Network
endpoints are represented by instances of class Address, which is
nested inside Networking. In this design, the networking library
defines a class addition String»asAddress to make it easy to
convert string representations of DNS names and IP addresses to
instances of Networking (Figure 3).

Smalltalk

AddressBook Networking

Address

Collections

String

{Smalltalk, AddressBook, AddressBook.Address, Networking,
Networking.Address, Pinging, Collections, String}

{AddressBook, Address, String} {Collections, String}

asAddress

asAddress

Address

String

{Networking, Address, String, Pinging}

asAddress

asAddress
String

{Address} {Address}

{String}

Pinging
{Pinging}

+ +

+ partial class

Figure 3: Example: Duplicate Convenience Methods

The class extension mechanism should ensure that the class ad-
dition String»asAddress is visible in the entire networking li-
brary. In other words, the scope of that class extension should con-
tain all nested classes of Networking. Moreover, in accordance
with the mechanism described in the previous section, the class
extension should not be visible in other applications. For exam-
ple, consider that an address book application contains a class
Address representing mail addresses along with a converter method
String»asAddress. The scope of each class extension should be
confined to its respective enclosing class.

Scope of Class Extensions We extend the notion of the scope
of a class such that it also includes all nested classes of the class.
Furthermore, we activate a class not only if one of its method is

executing, but also if a method contained in one of its nested classes
is executing. For example, when calling a method in Pinging, the
classes Pinging, Networking, and Smalltalk are activated. The
class Networking remains active even inside Pinging, because
Pinging ∈ scope(Networking).

Moreover, according to the rule described in the previous
section, both classes AddressBook and Networking can define
class additions String»asAddress and work side by side, be-
cause class extensions defined in AddressBook are not active in
Networking and class extensions defined in Networking are not
active in AddressBook. The reason for that is that Networking 6∈
scope(AddressBook) and AddressBook 6∈ scope(Networking).

2.3 Importing Class Extensions

Consider a libary representing abstract syntax trees (AST) that
defines a tree-based data structure of nodes, along with various
evaluation strategies. In this design, every strategy is represented
as a set of class extensions for AST node classes providing an
implementation of evaluate. Evaluating is the default evaluation
strategy. Notice how the concerns evaluating and printing are
grouped into their own separate enclosing classes (Figure 4).

Smalltalk

AST

Nodes

extends Node

Evaluating(base)

Node
IntNode

PlusNode

Printing(base)

Application

extends Node

IntNode

PlusNode

evaluate

evaluate

Node
IntNode

PlusNode

print

print

extends base extends base

extends AST.Evaluating(
 AST.Printing(Object))

Node

{Nodes, Node, IntNode, PlusNode} {Node, IntNode, PlusNode}

+

+

+ +

+

+

{Smalltalk, AST, Nodes, Node, IntNode, PlusNode, Application}

{AST, Nodes, Node, IntNode, PlusNode}

{Application, Node, IntNode, PlusNode}

{Node, IntNode, PlusNode}

{Node}

{IntNode}

{PlusNode}

+ partial class

Figure 4: Example: AST Library

Smalltalk AST Nodes class»Node < class >

↑ Smalltalk Kernel Object subclass

Smalltalk AST Nodes class»IntNode < class >

↑ Smalltalk Kernel Object

subclassWithInstVars: ’value’

Smalltalk AST Nodes class»PlusNode < class >

↑ Smalltalk Kernel Object

subclassWithInstVars: ’left right’

Smalltalk AST Evaluating: class»IntNode < partial >

↑ scope Nodes IntNode "→ St AST Nodes IntNode"

Smalltalk AST Evaluating: IntNode»evaluate

↑ value

Smalltalk AST Evaluating: class»PlusNode < partial >

↑ scope Nodes PlusNode "→ St AST Nodes PlusNode"

Smalltalk AST Evaluating: PlusNode»evaluate

↑ left evaluate + right evaluate

The class extension mechanism should allow programmers to
choose an evaluation strategy for their application, or possibly com-
bine multiple strategies. For example, strategy Mod10Evaluating

uses the default evaluation strategy and takes the result modulo 10.
In other words, programmers should be able to import class exten-
sions into their application as if they were part of their application.

109

Mixin-based Class Extensions Matriona does not provide a ded-
icated language construct to import classes, but support for mix-
ins [3]. A mixin is a class with a base parameter that serves as the
superclass. Therefore, it can be applied (imported) to many classes.

Smalltalk AST class»Evaluating: base < class >

↑ base subclass

An application can apply the mixin Evaluating: during class
definition, making it part of the resulting class’s superclass hierarchy.
Matriona’s method lookup takes into account superclasses of classes:
It first activates class extensions from superclasses and then class
extensions from the actual class (similar to layer activation in COP).

Smalltalk class»Application

↑ (Smalltalk AST Evaluating:

Smalltalk AST Printing: (

Smalltalk Kernel Object)) subclass

Scope of Class Extensions We extend the notion of the scope
of a class such that it also includes all classes contained in the
scope of its superclass. For example, Application’s superclass is
an application of mixin Evaluating:, whose scope includes all
AST node classes. The only class being activated is Application
but not its superclass. However, the method lookup does not only
take into account partial classes defined in an activated class L, but
also partial classes defined in its superclass L′, starting with L and
then L′ (see Section 3.3). The super keyword can be used in a
partial method of L to call a partial method defined in L′ or one of
its superclasses (similar to proceed in COP).

Consequently, when executing a method in Application, class
extensions from Evaluating: are active and remain active as long
as methods from Application or any AST node class are executed.

Layered Class Extensions We now want to modify our AST
evaluator in such a way that all results and partial results are
calculated modulo 10. For that reason, we define a set of class
extensions Mod10Evaluating: that runs on top of Evaluating:,
i.e., whenever the mixin Mod10Evaluating: is applied, the mixin
Evaluating: is applied first, automatically.

Smalltalk AST class»Mod10Evaluating: base < class >

↑ (self Evaluating: base) subclass

Smalltalk AST Mod10Evaluating: class»IntNode

< partial >

↑ scope Nodes IntNode

Smalltalk AST Mod10Evaluating: class»PlusNode

< partial >

↑ scope Nodes PlusNode

Smalltalk AST Mod10Evaluating: IntNode»evaluate

↑ super evaluate \\ 10

Smalltalk AST Mod10Evaluating: PlusNode»evaluate

↑ super evaluate \\ 10

A mixin application of Mod10Evaluating: contains two partial
methods for IntNode.evaluate and PlusNode.evaluate. Since
a mixin application of Evaluating: is a subclass of a mixin
application of Mod10Evaluating:, method execution will start
with methods from the latter one. The super keyword in the
evaluate methods corresponds to proceed calls in COP and
executes the evaluate implementation defined in Evaluating:.

3. Concept

Matriona provides a variant of context-oriented programming [7]
(COP) to support class extensions. Every class can not only contain
variables, methods, and nested classes, but also partial classes, i.e.,

every class with its partial classes can act as a layer. A partial class
is a special form of a nested class which does not define a new class
via subclassing but extends a specific existing target class. Every
partial class can contain a number of partial methods. Such a method
can be a class addition or a class refinement.

3.1 Rationale

Class extensions can be beneficial for their defining classes, but they
can break other classes or libraries if they are global. Programmers
typically treat external libraries as black boxes [11], i.e., it is hard
to anticipate the effect of a class extension. Therefore, our class
extension mechanism should allow programmers to define the scope
of a class extension, i.e., where it is active. As a rule of thumb, we
propose that a class extension should be deactivated if the control
flow is passed to another class or library that the programmer regards
as a black box. Defining a partial class (class extension) for a target
class C within class L essentially means that C is no longer being
regarded as a black box from L’s point of view.

Class nesting can be used as an orthogonal scoping mechanism
to indicate that a class extension defined for an enclosing class
should also be active for all of its nested classes. If an enclosing
class defines a class extension for C , then C is not being regarded
as a black box from the perspective of any nested class.

3.2 Scope of a Class

Matriona maintains a global stack for active classes. A class is active
only as long as the control flow stays within the class’s scope.

Definition. The scope of a class L is defined as the set containing L,

all target classes (and their reachable nested classes1) correspond-
ing to partial classes of L, all classes in the scope of all nested

classes of L2, and all classes in the scope of the superclass of L.

scope(L) = {L} (reflexivity)

∪{C |C ∈ nested∗(target(P)) ∧ P ∈ partials(L)}
(local rebinding)

∪{C |C ∈ scope(N) ∧N ∈ nested(L)} (hierarch. scoping)

∪ scope(superclass(L)) (importing class extensions)

Note that class extensions remain active even if the control flow
changes from one target class A to another one B. The rationale is
that programmers do not regard A and B as black boxes, since they
are changing both of their behavior. Consequently, programmers
should also be aware of the interaction between A and B.

Whenever a method C.foo is invoked or the control flow re-
turns to that method, Matriona performs the following steps before
execution.

1. For all active classes L, if C 6∈ scope(L), deactivate L.

2. Push C and all of its enclosing classes onto the the layer (class)
composition stack (starting with the outermost class).

Classes are activated implicitly only through method invocation.
Programmers cannot activate classes manually. Furthermore, classes
are never activated multiple times. If an already activated class is
activated once more, the position of that class will be changed, such
that it is on top of the stack. The only purpose of scope is to decide
when to deactivate a class.

3.3 Method Lookup

Whenever a message is sent to an object, Matriona first determines
the receiver’s class C. Instead of using C’s superclass hierarchy for

1 nested∗(C) = {C}∪{D |D ∈ nested∗(N)∧N ∈ nested(C)}, i.e.,
C and all nested classes of C and their nested classes etc.
2 Therefore, nested∗(L) ⊆ scope(L).

110

AA'BB'

<<partial>>
C'

<<partial>>
C'

<<partial>>
C'

<<partial>>
C

C' C

<<nested>><<nested>><<nested>><<nested>>

Figure 5: Example: Effective Superclass Hierarchy

the method lookup, Matriona uses its effective superclass hierarchy,
a combination of C’s superclass hierarchy and partial classes for
C and its superclasses nested in classes on the layer composition
stack.

Effective Superclass Hierarchy In contrast to many COP frame-
works, Matriona does not have a proceed statement for calling a
partial method defined in the next class on the layer composition
stack. Matriona uses the super keyword instead. This keyword is
used for both calling overridden methods defined higher in the su-
perclass hierarchy and for calling partial methods defined in a class
lower on the layer composition stack. From a method lookup point
of view, Matriona merges the actual superclass hierarchy and the
layer composition stack into a combined effective superclass hier-
archy. The rule for merging both hierarchies is simple: For every
class C in the actual superclass hierarchy, first look up methods in
partial classes of C on the layer composition stack, then look up
methods in C. Partial classes are effectively subclasses which are
applied dynamically depending on the layer composition.

Algorithm 1 shows the mechanism for generating the effective
super class hierarchy as pseudo code, i.e., it returns a list of classes
which will be used for looking up a method of (late-bound) receiver
class class during subsequent super calls.

Algorithm 1 Effective Superclass Hierarchy

1: procedure EFFECTIVE(class, layers)
2: h← []
3: for l ∈ layers.reversed() do (starting with top of stack)
4: s← l
5: repeat
6: if s.hasPartial(class) then
7: h.add(s.getPartial(class))
8: end if
9: s← superclass(s)

10: until s = null
11: end for
12: return h + [class] + EFFECTIVE(superclass(class), layers)
13: end procedure

Figure 5 illustrates the effective superclass hierarchy in an
example. Let us assume that the layer composition stack contains
A’ and B’ on top. Classes A’, B, and B’ have partial classes for C’
and class A has a partial class for its superclass C. Consequently, the
effective class hierarchy for C’ (EFFECTIVE(C’, (A’, B’))) starts
with partial classes for C’, continues with C’ itself, followed by a
partial class for C and class C itself.

As another example, Figure 6 shows the effective superclass
hierarchy for class IntNode defined in Section 2.3. If the mixin
Mod10Evaluating: is applied, the hierarchy is prepended with the
corresponding partial class defined in that mixin.

Class Nesting The keyword scope exists in Matriona to send mes-
sages to enclosing classes one by one, until a class understand the

IntNode

+print()

<<partial>>
IntNode

+eval()

<<partial>>
IntNode

ObjectPrinting:Evaluating:Application

<<nested>><<nested>>

Figure 6: Example: Effective Superclass Hierarchy for IntNode

message3. With respect to partial classes, the lookup mechanism
uses the effective superclass hierarchy instead of the actual super-
class hierarchy when trying to send messages to enclosing classes.

3.4 Class Activation

If a class extension defined in class L should be active when
executing a method defined in class A, one of the following two
designs can be applied.

Scope-based Activation In this design, programmers have to en-
sure that the control flow reaches A via a sequence of methods de-
fined in classes L → C1 → . . . → Cn → A with Ci ∈ scope(L)
(for all i = 1 . . . n) and A ∈ scope(L). Programmers can enforce
that a class Ci ∈ scope(L) by adding a partial class targeting Ci

to L (partial classes can be empty). For example, in Section 2.1,
n = 1, L = Browser, C1 = WebPage, and A = WebPage when
calling WebPage.popup via WebPage.open from Browser.open.

Mixin-based Activation The previous design is hard to accom-
plish if a class extension should be shared among a variety of classes.
The following design encapsulates class extensions in mixins and
activates them using mixin application. A mixin is an abstract sub-
class that can be applied to a number of superclasses. When partial
classes are nested inside a mixin M that is applied to a superclass C,
all of M ’s class extensions are active when the control flow passes
through a method in the context of the resulting class C′ (i.e., the
polymorphic receiver class is C′).

Consider Figure 6 as an example. Evaluating: and Printing:

are mixins with partial classes for IntNode. Class Application

is defined as a subclass of the application of both mixins. When
a method is executed in the context of Application, then that
class is pushed onto the layer composition stack. The effective
superclass hierarchy of class IntNode contains the partial classes
of both mixins (see Algorithm 1).

4. Related Work

In this section, we compare our approach for class extensions with
other approaches, focusing on invasiveness and scoping.

3 In the light of subclassing, the lookup is more complex, but the details do
not matter in this paper.

111

Invasiveness A mechanism is invasive if it affects other compo-
nents of an application. The least invasive mechanisms for adding
operations to classes are the Visitor design pattern [5] and subclass-
ing, but they either result in an overhead of classes and complexity
or fail if the programmer is not in control of instance creation. A
variety of extensions to programming languages have been proposed
supporting locality of changes, i.e., class extensions are active only
in a certain scope.

Scoping A Classbox [1] is a container and namespace for classes.
Classes can be imported from other classboxes. Changes to imported
classes are visible only in the extending classbox or in classboxes
importing extended classes. Similar to Matriona, including a class C
from another classbox into a classbox B extends the scope of B onto
C (local rebinding). An application can be represented by a classbox
defining its classes, importing external classes, and extending them
locally. In Matriona, an application is a single (enclosing) class,
whose class extensions are visible in all nested classes.

Method Shells [11] are a similar mechanism. Classes and re-
visers (containers for class extensions) are contained in a method
shell. Class extensions are visible only within the extending method
shell or when the method shell is imported into another one. Classes
from other method shells can also be imported with the link key-
word, which will not include revisers in the current method shell
and switch the context (active method shell) to the method shell
of the included class when a method from that class is executing.
Matriona cannot link other classes; however, the scope of a class
allows programmers to deactivate class extensions, which is similar
to linking in Method Shells and sufficient to implement the exam-
ples shown in that paper [11]. One important difference is that local
rebinding is not transitive in Matriona, i.e., the scope of a class does
not include the scope of all target classes, but only the target classes
themselves. In Method Shells, include is transitive.

MultiJava [4] and Expanders [13] support statically-scoped class
additions. The scope of class additions is confined to the source
code file where they were defined, unless they are imported. Mul-
tiJava and Expanders take into account class additions during type
checking at compile time, making it possible to detect and prohibit
destructive class extensions. In contrast to Matriona, there is no scop-
ing mechanism extending class extensions to collaborating classes,
because class refinements are forbidden and class additions can only
be referred to in a type-safe way if they were imported explicitly.

ContextS is a framework for context-oriented programming
(COP) in Squeak/Smalltalk [6]. Partial methods can be used to en-
capsulate class extensions in COP layers. However, class extensions
are not deactivated if the control flow reaches a class that program-
mers regard as a black box. For example, if a layer disabling popups
is activated when running the application in Figure 2, Viewer will
be broken, because it will not show popups. Programmers have to ei-
ther know about Viewer’s internals to ensure that a class extension
is not destructive or deactivate the layer manually before calling a
method in Viewer. Matriona applies layer deactivation implicitly.

5. Summary

We proposed a hierarchical and layer-based approach for organizing
class extensions in Squeak/Smalltalk based on the Matriona module
system. This approach is similar to context-oriented programming,
but class (layer) (de)activation is performed implicitly. A class
in Matriona can be compared to a classbox or a method shell,
but it is scoped hierarchically and does not require additional
syntactical elements except for the definition of partial classes.
Scoping and locality of changes are important to avoid destructive
class extensions. Matriona lets programmers control the scope of
class extensions by specifying whether a class should be regarded
as a black box or not. We also showed how our mechanism can be

used for multi-dimensional separation of concerns: Every concern is
encapsulated in a mixin and can be activated during class definition,
which is similar to include statements in Method Shells.

Future work might focus on a formal definition of the seman-
tics of our mechanism and consider performance optimizations. Our
current implementation approach is based on an image-side reim-
plementation of the method lookup using metaprogramming. Two
particular problems are implicit class (de)activation, which takes
place not only when a method is executed but also when the method
returns, and super calls: Both are expensive in Matriona, but per-
formance is explicitly not a goal at this time. Future versions of
Matriona might contain optimizations like partial method inlining
or layer composition caching [9].

References

[1] Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz, and Roel
Wuyts. Classboxes: Controlling Visibility of Class Extensions. Com-

puter Languages, Systems and Structures, November 2005.

[2] Joshua Bloch. Effective Java (The Java Series). Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2 edition, 2008.

[3] Gilad Bracha and William Cook. Mixin-based Inheritance. In Proceed-

ings of the European Conference on Object-oriented Programming on

Object-oriented Programming Systems, Languages, and Applications,
OOPSLA/ECOOP ’90, pages 303–311, New York, NY, USA, 1990.
ACM.

[4] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein.
MultiJava: Modular Open Classes and Symmetric Multiple Dispatch
for Java. In Proceedings of the 15th ACM SIGPLAN Conference on

Object-oriented Programming, Systems, Languages, and Applications,
OOPSLA ’00, pages 130–145, New York, NY, USA, 2000. ACM.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley Longman Publishing Co., Inc., 1995.

[6] Robert Hirschfeld, Pascal Costanza, and Michael Haupt. An Introduc-
tion to Context-Oriented Programming with ContextS. In Generative

and Transformational Techniques in Software Engineering II, volume
5235 of Lecture Notes in Computer Science, pages 396–407. Springer
Berlin Heidelberg, 2008.

[7] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-
Oriented Programming. Journal of Object Technology, March-April

2008, ETH Zurich, 7(3):125–151, 2008.

[8] Oscar Nierstrasz, Stéphane Ducasse, and Damien Pollet. Squeak by

Example. Square Bracket Associates, 2009.

[9] Matthias Springer, Jens Lincke, and Robert Hirschfeld. Efficient
Layered Method Execution in ContextAmber. In Proceedings of the 7th

International Workshop on Context-Oriented Programming, COP’15,
pages 5:1–5:6, New York, NY, USA, 2015. ACM.

[10] Matthias Springer, Fabio Niephaus, Robert Hirschfeld, and Hidehiko
Masuhara. Matriona: Class Nesting with Parameterization in Squeak/S-
malltalk. In Proceedings of the 15th International Conference on Mod-

ularity, MODULARITY 2016, pages 129–141, New York, NY, USA,
2016. ACM.

[11] Wakana Takeshita and Shigeru Chiba. Method Shells: Avoiding
Conflicts on Destructive Class Extensions by Implicit Context Switches.
In Walter Binder, Eric Bodden, and Welf Löwe, editors, Software

Composition, volume 8088 of Lecture Notes in Computer Science,
pages 49–64. Springer Berlin Heidelberg, 2013.

[12] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr.
N Degrees of Separation: Multi-dimensional Separation of Concerns.
In Proceedings of the 21st International Conference on Software

Engineering, ICSE ’99, pages 107–119. ACM, 1999.

[13] Alessandro Warth, Milan Stanojević, and Todd Millstein. Statically
Scoped Object Adaptation with Expanders. In Proceedings of the 21st

Annual ACM SIGPLAN Conference on Object-oriented Programming

Systems, Languages, and Applications, OOPSLA ’06, pages 37–56,
New York, NY, USA, 2006. ACM.

112

	Introduction
	Background
	Requirements
	Contributions

	Examples
	Locality of Changes
	Hierarchical Scoping
	Importing Class Extensions

	Concept
	Rationale
	Scope of a Class
	Method Lookup
	Class Activation

	Related Work
	Summary

