
Test-based Pointcuts: A Robust Pointcut Mechanism
Based on Unit Test Cases for Software Evolution

Kouhei Sakurai
Graduate School of Arts and Sciences,

University of Tokyo

sakurai@graco.c.u-tokyo.ac.jp

Hidehiko Masuhara
Graduate School of Arts and Sciences,

University of Tokyo

masuhara@acm.org

ABSTRACT
This paper proposes test-based pointcuts, a new aspect-oriented
programming language construct that uses unit test cases
as interface of crosscutting concerns. A test-based pointcut
primarily specifies a set of test cases associated to a pro-
gram. At execution time, it matches the join points that
have the same execution history to the one of the specified
test cases. The test-based approach improves pointcut def-
initions in two respects. First, test-based pointcuts are less
fragile with respect to program changes because rather than
directly relying on type and operation names in a program,
they indirectly specify join points through unit test cases,
which are easier to be kept up-to-date. Second, test-based
pointcuts can discriminate execution histories without re-
quiring to specify detailed execution steps, as they use test
cases as abstractions of execution histories. With the ab-
stractions, the second respect contributes to the first respect.
We designed and implemented the test-based pointcuts as
an extension to AspectJ, and confirmed, through an case
study, test-based pointcuts are more robust against evolu-
tion when used for a practical application program.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.3.3 [Programming Languages]: Language Con-
structs and Features

General Terms
Languages, Design

Keywords
Test-based Pointcuts, Fragile Pointcut Problem, Aspect-oriented
programming language, Unit Test Cases

1. INTRODUCTION
Current aspect-oriented programming (AOP) languages,

such as AspectJ[7], modularize crosscutting concerns using

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Workshop LATE ’07 March 12-13, 2007 Vancouver, British Columbia,
Canada
Copyright 2007 ACM 1-59593-655-4/07/03 ...$5.00.

the pointcut-and-advice mechanism. Pointcuts match dy-
namic join points, which are well-defined points in the exe-
cution of a target program1 (e.g., method calls). The advise
consists of statements that run when the join points match
an associated pointcut.

This paper proposes a novel pointcut mechanism called
test-based pointcuts, which can make aspects more robust
and more abstract by addressing two problems associated
with pointcuts in current AOP languages: the fragile point-
cut problem[6, 10], and the execution history problem. The
fragile pointcut problem is that, when a developer changes
a program with aspects, the join points actually matching a
pointcut become different from the ones that the developer
originally intended. The execution history problem describe
the difficulty of defining pointcuts that match join points
depending on the computation history so far. Such defini-
tions cause the fragile pointcut problem by manual history
management, even if a developer can define those pointcuts.

Instead of relying on type, method, and field names in
the target program, test-based pointcuts specify variable
names in unit test cases associated to the target program. At
runtime, test-based pointcuts match join points through se-
lected unit test cases indirectly ; they match join points that
have the same execution history as one of selected cases. For
example, we want to advice a login method for the authenti-
cation failure case. With test-based pointcuts, we can define
a pointcut that specifies the variable in test cases that con-
tains an invalid password. Then the pointcut matches (the
end of) calls to the login method that have the same exe-
cution histories as the test cases that uses the invalid pass-
word. The pointcut is faithful even when the target program
is changed as long as the test cases are properly maintained
along with the changes. It is also an easier way to distin-
guish execution histories as it uses test cases as abstractions
of execution histories.

We designed test-based pointcuts as an extension to the
AspectJ language, and implemented a prototype system on
top of the Aspect Bench Compiler[4]. As a framework to
describe unit test cases, we chose JUnit[2] with additional
restrictions.

The rest of the paper is organized as follows: Section 2
presents an example application program that has the fragile
pointcut and execution history problems. Section 3 intro-
duces test-based pointcuts. Section 4 presents evaluation
of test-based pointcuts. Section 5 discusses related work.

1A target program is the program whose execution can be
affected by aspects. Note that in most AOP languages target
programs can include aspects as well.

class FtpConnection {

public boolean login(String n, String p) {

send("USER "+n); if(!checkUser()) return false;

send("PASS "+p); if(!checkPass()) return false;

return true;

}

private void send(String data) {...}

private boolean checkUser() {...}

private boolean checkPass() {...}

... //other methods such as download follow here

}

Figure 1: FtpConnection class

1 aspect ConnectionUpdate percflow(login()) {

2 boolean passSent = false;

3 pointcut login(): call(* login(..));

4 before(): call(boolean checkPass()) &&

5 cflow(login()) {passSent = true;}

6 after() returning(boolean r): login() {

7 if (!r && !passSent) l.loginFailUser();

8 else if (!r && passSent) l.loginFailPass();

9 else l.loginOk();

10 }

11 ...//methods for listener (l) management and

12 //advice for other notifications follow here

13 }

Figure 2: ConnectionUpdate apsect

Section 6 concludes the paper.

2. MOTIVATING EXAMPLE
This section, demonstrates the fragile pointcut problem

and the execution history problem of an FTP client program
written in AspectJ. The problems arise in the class that
establishes network connection with an FTP server.

2.1 An FTP Client Written in Java
FtpConnection is a Java class that represents connections

established by the FTP protocol. The login method shown
in Figure 1 realizes a login operation to an FTP server. The
login method takes a user name and a password as its pa-
rameters, and returns the result of the login operation as a
boolean value. It calls three private methods, namely send,
checkUser and checkPass. It first sends a user name to a
connected server by calling the send method. It then con-
firms if the user name is accepted by the server by calling the
checkUser method. If so, it sends a password. Otherwise
it immediately returns false to indicate failure of the login
operation. Finally, it checks acceptance of the password by
calling the checkPass method. If the password is accepted,
it returns true to indicate success of the login operation.
Otherwise it returns false.

2.2 Notification Aspect in Pure AspectJ
We consider an aspect that implements a notification con-

cern of the FTP client, whose implementation in AspectJ is
shown in Figure 2. The concern notifies the user of the
results of network operations such as login and download.

The main advice (lines 6-10) in the ConnectionUpdate as-

pect calls one of the three notification methods at the end of
login method-call join point. It determines a method to call
by the return value from the login method and a passSent

flag that indicates whether a password is sent to the server.
An auxiliary advice declaration at lines 4-5 runs before a
call to the checkPass method from the login method and
sets the flag. Because the login method calls the checkPass
method only when the server accepts the given user name,
the passSent flag denotes how far the login method pro-
ceeded inside.

2.3 Problems in Pure AspectJ Aspect
There are two problems associated with pointcuts in cur-

rent AOP languages: the fragile pointcut problem[6, 10], and
the execution history problem.

The fragile pointcut problem is the situation that, when
a developer changes a target program without knowing the
aspects, the aspects accidentally match the join points that
are different from the ones initially intended. For exam-
ple, consider that the name of the login method in the
FtpConnection class is changed to something like doLogin.
Then the pointcut call(* login(..)) at line 3 in Figure 2
no longer matches intended join points.

The execution history problem is the difficulty of defining
an advice declaration that runs at a join point depending on
the execution history of the join point. The ConnectionUpdate
aspect in the above example distinguishes execution histo-
ries by explicitly managing the flag passSent with the help
of auxiliary advice. Such a complicated aspect is not easy
to define, understand and maintain.

Moreover, the execution history problem often causes the
fragile pointcut problem because the means of recognizing
execution history has to depend on the target program im-
plementation. In the ConnectionUpdate example, the point-
cut of the auxiliary advice depends on the names of internal
methods.

3. TEST-BASED POINTCUTS
To address the above mentioned problems, we propose a

new mechanism called test-based pointcuts as an extension
to AspectJ.

3.1 Overview
Figure 3 illustrates how test-based pointcuts use unit test

cases as interfaces of crosscutting concerns.
There are three key language elements that enable the

test-based pointcuts:

Test methods. Test methods, showing on the left-hand
side in the figure, verify the target program meets the
specifications by actually running each method in the
target program with typical parameter sets, and by
comparing return values with expected values. We use
an extended JUnit framework for describing test meth-
ods. For example, testLoginFailPass runs the login

method with a valid user name and invalid password,
and confirms that the login operation is actually failed.

Fixtures. A fixture class, shown below the test methods in
the figure, holds a set of variables that store test pa-
rameters and expected results. We require all the test
methods to be written in such a way that they always
access test parameters and expected results through

advice
test(get(* invalidUser))

advice
test(get(* invalidPass))

testLoginFailUser()testLoginFailPass()
loginlogin

target program

specify

apply advice

match

test methods

invalidUser

invalidPass

fixtures

control flow join point

refer

aspect

test-based pointcuts

testing time program execution time

execution history

Figure 3: An overview of test-based pointcuts

fixture variables. For example, invalidPass is a vari-
able for storing an invalid password.

Test-based pointcuts. Test-based pointcuts, which appear
in the aspect in the figure, can be used as a pointcut
primitive in AspectJ. A test-based pointcut is written
like test(p) where p is a sub-pointcut description that
specifies the test methods. For example, test(get(*
Fixtures.invalidPass)) specifies testLoginFailPass.

Execution of a program with test-based pointcuts is di-
vided into the following two stages:

1. At testing time (the left-half of the figure), all the test
methods are executed. The system records an execu-
tion history (shown as a dashed rounded box in the
figure), which is a sequence of dynamic join points,
and a set of referenced fixture variables for each test
method.

2. At program execution time (the right-half of the fig-
ure), when the target program reaches a join point, the
history of the current execution is compared against
the recorded histories of test methods. When there
is a test method that has the same execution history
and it references all fixture variables specified in a test-
based pointcut, the join point matches the test-based
pointcut and hence the advice body runs.

3.2 Notification Aspect with Test-Based Point-
cuts

Figure 4 shows the redefinition of ConnectionUpdate as-
pect with test-based pointcuts. Compared to Figure 2, it is
more straightforward because each advice body merely calls
one notification method thanks to each pointcut matching
only one use case of the login operation. Note that the
loginOk pointcut combines two test pointcuts in order to
match login operations that provide valid user name and
password.

Figure 5 shows a test case class for FtpConnection in the
JUnit framework. It consists of test methods that corre-
spond to unit test cases for the login method. We introduce
the Phase class so that the system can distinguish the join
points of actual test execution from the ones for setting up

aspect ConnectionUpdate {

pointcut loginFailUser():

test(get(* Fixtures.invalidUser));

pointcut loginFailPass():

test(get(* Fixtures.invalidPass));

pointcut loginOk():

test(get(* Fixtures.validUser)) &&

test(get(* Fixtures.validPass));

after(): loginFailUser() { l.loginFailUser(); }

after(): loginFailPass() { l.loginFailPass(); }

after(): loginOk() { l.loginOk(); }

...//methods for listener (l) management and

//advice for other notifications follow here

}

Figure 4: The test-based version of ConnectionUpdate
aspect

parameters and for asserting results. To do so, we require
every test method to call Phase.test() and Phase.cond()

before and after actual test execution respectively. The
Fixtures class is defined as a set of fixture variables that are
commonly used to store the values for testing in test cases.

3.3 Advantages
We claim that the aspects defined with test-based point-

cuts are less fragile and easier to handle the execution his-
tory problems due to the fact that test cases have the fol-
lowing properties. Generally, unit test cases are:

• Up-to-date: when a developer changes a target pro-
gram, he or she (or another developer) also changes all
the test cases associated to the program so as to pass.
Therefore, test-based pointcuts automatically reflect
the changes to the target program as long as the asso-
ciated tests are maintained.

• Thorough: unit test cases cover most use-cases of
most methods in the target program. Therefore, it is
easy to identify a test case that corresponds to a spe-
cific concern, even if it depends on execution history.

public class TestFTPConnection extends TestCase {

Fixtures f = new Fixtures();

...//setUp and tearDown are omitted.

public void testLoginFailUser() {

f.invalidUser = "unknown"; f.validPass = "mypass";

Phase.test();

boolean r = con.login(f.invalidUser, f.validPass);

Phase.cond();

assertFalse(r);

}

public void testLoginFailPass() {

f.validUser = "john"; f.invalidPass = "?";

Phase.test();

boolean r = con.login(f.validUser, f.invalidPass);

Phase.cond();

assertFalse(r);

}

...//other test methods follow here.

}

Figure 5: The TestFTPConnection test case class re-
vised for test-based pointcuts

3.4 Implementation
We implemented a prototype compiler that supports test-

based pointcuts by extending the Aspect-Bench Compiler
(abc)[4]. The size of the extension is approximately 3800
lines of code.

Due to space limitation, we only report an outline of the
compiler implementation, which consists of the following two
stages:

1. The first stage runs each test method, and records its
execution history.

2. The second stage weaves aspects into target program.
For an advice declaration with test pointcuts, it in-
serts code fragments at shadows of the test execution
histories, and inserts a guarded advice invocation into
the test target method. The former code fragments
set the flags when the control passes the shadow. The
guard can then test if the execution has the same his-
tory as one of the test methods by looking into the
flags.

4. CASE STUDY ON EVOLVABILITY
In order to evaluate how test-based pointcuts make as-

pects more robust against software evolution, we compared
two AOP implementations of the j-ftp network browser[1]
over three versions in the repository. The original imple-
mentations are open-source, and written in Java. In the
evaluation, 1) for each version, we modularized a notifica-
tion concern that reports update of remote directories into
an aspect by using pure AspectJ and AspectJ with test-
based pointcuts. 2) We applied aspects of a previous version
to the classes in the later version and compared the methods
to be advised by the aspects with the original implementa-
tion. We chose versions 1.07, 1.15 and 1.48.

Figure 6 shows how the notification concern scatters in
the three versions.

Table 1 summarizes how the notification concern scatters
in the original implementations (OR), and in the classes

with aspects of the previous version (AJ and TB). AJ and
TB are the aspects in pure AspectJ and the aspects using
test-based pointcuts, respectively. The marks (X) denote
that the method is advised. The hyphen (-) are misses; a
method is not advised by the aspect in the previous version,
while the method in the original implementation notifies.
The marks with underlined (X) are accidentally captured
against the original implementation. For instance, the chdir
method of the FilesystemConnection class in the version
1.15 the original implementation notifies, but the pure As-
pectJ aspect version 1.07 does not capture the method be-
cause the pointcut specifies the chdir method in only the
FtpConnection class.

If we closely examined the definitions, the changes can be
classified into the following types:

Concern Change : The developer decided to notify at a
different join point from the previous version. In such
a case, we had to modify the aspect definitions by all
means. The most misses and accidental captures fall
into this category in fact.

Birth of a Sibling Class : The developer defined a new
sibling class of an existing class. FilesystemConnection
in version 1.15 is the case. In such a case, oftenly, the
same set of the methods should be advised as the meth-
ods advised in the existing class. The test-based point-
cuts automatically captured those methods thanks to
the properly defined test methods, while the pure As-
pectJ pointcuts could not work because they used spe-
cific class names in the earlier versions.

Signature Change : The developer changed a name or
the number of arguments of a method. FtpConnection
.upload(f,n,in) in version 1.48 is the new signature.
In such a case, the advice that are applicable to the
method should also be applied to the method with the
new signature. The test-based pointcuts automatically
captured the method with the new signature because
the test methods were modified to reflect the changes.
The pure AspectJ pointcuts could not work. Moreover,
since the developer decided to leave the method with
the original signature for some reasons, the compiler
could not detect the unused pointcut in this case.

Interestingly, FilesystemConnection.upload(file) in the
version 1.15 of the original implementation does not notify
even though the sibling method does. The test-based point-
cut captures the method because the test for the upload
method uses the same fixture variable. We consider this is
rather a concern change.

To summarize, we observed that the test-based pointcuts
work well for evolution that can be classified as birth of
sibling class and signature change.

5. RELATED WORK
There have been studies on defining interface between

aspects and target programs, including Open Modules[3],
Aspect-Aware Interfaces[8], Annotation style development
(as discussed in the paper by Kiczales and Mezini[9]) and
XPI[5]. The techniques proposed in those studies mainly
prohibit changes of target programs when the change causes
pointcut mismatch. Therefore, when the programmer has
to change the target program against the interface, it is the

chdir(dir)
mkdir(name)
upload(file)
login(u,p)
...

FtpConnection

chdir(dir)
mkdir(name)
upload(file)
...

<<interface>>
BasicConnection

chdir(dir)
mkdir(name)
upload(file)
...

FilesystemConnection chdir(dir)
mkdir(name)
upload(file)
upload(f,n,in)
login(u,p)
...

FtpConnection

chdir(dir)
mkdir(name)
upload(file)
...

<<interface>>
BasicConnection

chdir(dir)
mkdir(name)
upload(file)
addConListener(l)
setConListeners(ls)
...

FilesystemConnection

version 1.15 version 1.48advised

chdir(dir)
mkdir(name)
upload(file)
login(u,p)
...

FtpConnection

version 1.07

Figure 6: Evolution of the connection classes and the notification concerns

1.07 1.15 1.48
class method OR OR AJ TB OR AJ TB
FtpConnection chdir(dir) X X X X X X X
FilesystemConnection chdir(dir) X - X X X X
FtpConnection mkdir(name) X - -
FilesystemConnection mkdir(name) X - - X X X
FtpConnection upload(file) X X X X X
FtpConnection upload(f,n,in) X - X
FilesystemConnection upload(file) X
FtpConnection login(u,p) X - - X X X
FilesystemConnection addConListener(l) X - -
FilesystemConnection setConListeners(ls) X - -

Table 1: The result of previous versions of aspect application to later versions

programmer’s responsibility to fix the interface and aspect
definitions. Test-based pointcuts use test methods as inter-
face between aspects and target programs.

Model-based pointcuts[6] propose more abstract pointcuts
than the ones available in existing AOP languages to address
the fragile pointcut problem. The view-based pointcuts,
which are an instantiation of the model-based pointcuts, use
views as a classification that reflects the developer’s inten-
tion. From this perspective, the test-based pointcuts can be
seen as another instantiation of the model-based pointcuts
that use test methods instead of views.

6. CONCLUSION
We proposed test-based pointcuts, which use unit test

cases as an interface of crosscutting concerns. A test-based
pointcut matches join points in the execution of a target
program that (potentially) have the same execution history
as one of the unit test cases specified by the pointcut.

Test-based pointcuts address the fragile pointcut problem
and execution history problem by indirectly matching join
points through unit test cases. In other words, test-based
pointcuts replace the fragile pointcut problem with main-
tainace of unit test cases whose cost should anyhow be paid
with practical software development. Test-based pointcuts
can match join points based on execution histories without
relying on detailed execution steps by using unit test cases
as abstractions of execution histories.

Although at a preliminary stage, we implemented a com-
piler, an AspectJ language extended with test-based point-
cuts, and showed that test-based pointcuts solve the prob-
lems in a practical application when compared the necessary

changes to pointcut definitions over three versions.

7. ACKNOWLEDGMENTS
This work is supported by the JSPS Research Fellowships

for Young Scientists.
We would link to thank the anonymous reviewers of the

workshop for their valuable comments. We also thank the
members of the PPP research group and the TM-seminar at
University of Tokyo for valuable comments.

8. REFERENCES
[1] j-ftp. http://j-ftp.sourceforge.net/.

[2] JUnit. http://www.junit.org/.

[3] J. Aldrich. Open Modules: Modular Reasoning about
Advice. In ECOOP ’05, pages 144–168, July 2005.

[4] P. Avgustinov, A. S. Christensen, L. Hendren,
S. Kuzins, J. Lhoták, O. Lhoták, O. de Moor,
D. Sereni, G. Sittampalam, and J. Tibble. abc: An
extensible AspectJ compiler. In AOSD ’05, pages
87–98, 2005.

[5] W. G. Griswold, K. Sullivan, Y. Song, M. Shonle,
N. Tewari, Y. Cai, and H. Rajan. Modular Software
Design with Crosscutting Interfaces. IEEE Software,
23(1):51–60, 2006.

[6] A. Kellens, K. Mems, J. Brichau, and K. Gybels.
Managing the Evolution of Aspect-Oriented Software
with Model-based Pointcuts. In ECOOP ’06, pages
501–525, 2006.

[7] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An Overview of
AspectJ. In ECOOP ’01, pages 327–353, 2001.

[8] G. Kiczales and M. Mezini. Aspect-oriented
programming and modular reasoning. In ICSE ’05,
pages 49–58, 2005.

[9] G. Kiczales and M. Mezini. Separation of Concerns
with Procedures, Annotations, Advice and Pointcuts.
In ECOOP ’05, pages 195–213, July 2005.

[10] M. Stoerzer and J. Graf. Using Pointcut Delta
Analysis to Support Evolution of Aspect-Oriented
Software. In ICSM ’05, pages 653–656, 2005.

