
In Search of a Type Theory for Fuzzy Properties

Youyou Cong

Tokyo Institute of Technology

1 Introduction
Types are a powerful language for describing properties. Over the past decades, researchers have used
this aspect of types for diverse purposes, ranging from verification of compilers [14, 1], to represen-
tation of discourses [21, 2], and to formalization of music theory [24, 7]. These applications are all
built on top of the Curry-Howard isomorphism, which relates types to propositions and programs to
proofs.

Typically, whether an object satisfies a property is considered as a binary question. For instance,
in the case of compiler verification, we say that a compiler is correct only if it is fully consistent with
its specification. Such binary questions can be easily translated to a type inhabitation problem e : τ,
where e is a term representing the object we are interested in, and τ is a type encoding the property
we would like e to satisfy.

On the other hand, there are cases where satisfaction of a property is not a binary question. As an
example, in music composition, a choice of a note may be regarded better or worse than other choices,
rather than absolutely good or bad. Such fuzzy properties require a type system with some form of
grades, telling us to what extent an object satisfies a certain property.

In this abstract, we describe our work in progress on developing a type theory for expressing fuzzy
properties. We begin by comparing three existing type systems with the notion of grades, designed for
programming [3], linguistics [8], and music [6]. We then compare these systems to effect systems and
coeffect systems, which allow grades-like annotations to appear in restricted places. It is our belief
that a general theory of fuzzy properties will open up new possibilities of transferring knowledge
between different areas.

2 Existing Type Systems with Grades

2.1 Precision Types
Boston et al. [3] implement precision types in the context of approximate computing, a technique for
improving performance by allowing imprecise results. In their type system, types are annotated with a
probability, representing how precise a value is. As an example, consider the square function below.

@Approx(0.8) int square(@Approx(0.9) int x) {
@Approx(0.8) int xSquared = x * x;
return xSquared;

}

In the signature of square, we state that the input x is precise with probability 0.9, and that we would
like the output to be precise with probability 0.8. Assuming multiplication always produces a precise



result, we can deduce that the product xSquared is precise with probability 0.9 × 0.9 = 0.81. This
probability is greater than the expected probability 0.8, hence the function is judged well-typed. Thus,
using the information of probabilities, we can soundly reason about the quality of a computation.

2.2 Probabilistic Type Theory
Cooper et al. [8] formulate a probabilistic type theory for natural language semantics, with a special
focus on the modelling of human cognition and learning. In their framework, typing judgments may
be associated with a probability, representing how likely a situation is true. For instance, in a situation
where we have two strawberries, three red apples, and five oranges, we have the following judgments:

p(a : Apple) = 0.3
p(a : Red) = 0.5

p(a : Apple | a : Red) = 0.6

The first judgment states that an object a is an apple with probability 0.3, and similarly, the second
one states that a is red with probability 0.5. The last judgment states that a is an apple with probability
0.6 given that a is red. Using judgments like these, we can learn classifiers of situations and compute
semantic values of sentences.

2.3 Weighted Refinement Types
Cong [6] proposes weighted refinement types as a means to formalize the rules of counterpoint, a style
of composition where one composes a melody against another melody. In a weighted refinement type,
every refinement predicate is paired with a weight, representing the reward one gets by choosing an
interval satisfying that predicate. To illustrate this idea, we give a partial encoding of the rules for
composing first-species counterpoint [10] as well as two example compositions.

CP : Type
CP = List (Pitch * Interval) < (isImperfect @ 30), (isDissonant @ -100) >

cp1 : CP @ 150
cp1 = [(c, per8), (d, maj6), (e, min6), (f, maj3),

(e, min3), (d, maj6), (c, per8)]

cp2 : CP @ -10
cp2 = [(c, per8), (d, per5), (e, min3), (f, aug4),

(e, min6), (d, maj6), (c, per8)]

The type CP defines counterpoint as a list of pitch-interval pairs refined by two predicates, each of
which is coupled with a reward. The rewards encode the guidance that imperfect intervals (i.e., thirds
and sixths) are preferred and dissonant ones (i.e., seconds, fourths, and sevenths) should be avoided.
By summing up the rewards, we can discuss the theoretical correctness of counterpoint compositions.
In the above example, cp1 is considered more correct than cp2 as it has more imperfect intervals and
no dissonant ones.

3 Generalizing Existing Type Systems
We have seen three type systems that express fuzzy properties by means of grades. Now we turn to
our research question: How can we design a general theory that subsumes these type systems? We do



not have a concrete answer yet, but we conjecture that the resulting theory would share similarities
with effect systems and coeffect systems.

Effect systems [16, 18] are a framework for tracking what side effect a program causes to the en-
vironment. Representative applications of effect systems include checked exceptions in Java, which
prevent runtime errors, and the Cats Effect library of Scala, which guarantees resource safety of asyn-
chronous programs. In an effect system, computation types or typing judgments carry an annotation,
such as a set of exceptions and reading/writing actions. These annotations are similar to the precision
on the output type of the square function from Section 2.1, and the probability on the judgments of
situations from Section 2.2.

Dual to effect systems, coeffect systems [5, 20] are a framework for tracking what resource a
program demands of the environment. Notable applications of coeffect systems include bounded
variable use, where each variable can only be used a certain number of times, and secure information
flow, where high-security data are guaranteed not to leak. In a coeffect system, variable bindings
carry an annotation, such as the usage bound and security level. These annotations are similar to the
precisions on the input types of the square function from Section 2.1.

There also exists a concept, called graded modal types [19], that allows simultaneous handling of
effects and coeffects. In a system with graded modal types, computations and variable bindings may
both carry an annotation, representing either a side effect or a resource demand. These annotations
might subsume the three domain-specific annotations we saw in the previous section, including the
rewards on refinement predicates we saw in Section 2.3 if we emulate refinement types as dependent
pair types [23].

Once we have a uniform theory for fuzzy properties, we can explore opportunities to transfer
techniques developed in one area to another area. For instance, in a type system that counts variable
use, we can exploit the usage information to guide synthesis of programs [4]. By replacing variable
use with probabilities, we could potentially extend this idea to perform proof search for sentences.
As a different example, in a type system with probabilistic judgments, we can model incremental
interpretation of utterances [12]. By viewing probabilities as rewards, we could possibly apply this
idea to model incremental composition of music.

4 Related Work
The idea of grading types first appeared in the effect system of Lucassen and Gifford [16], which is
designed for finding scheduling constraints of parallel computations. Since then, researchers have
developed various graded type systems that enable fine-grained reasoning of programs [15, 22, 26],
as well as techniques that make those systems usable in practice [25, 27].

In the context of natural language, grades have been used to give a compositional account of
“linguistic effects”, including anaphora resolution [11] and scope ambiguity [13]. We are however
not aware of similar work on “linguistic coeffects”, although there exist linguistic applications [9, 17]
of a special case of coeffects (namely linear logic).

The recent years have also seen implementations of type systems with grades, such as Gran-
ule [19], Idris 2 [4], and Lambda VL [26]. These languages cannot currently express the three type
systems discussed in Section 2, although their future versions may be able to do so by allowing the
programmer to define custom grades.

5 Conclusion
We described our ongoing work on developing a general type theory for expressing fuzzy properties.
As a first step toward this goal, we observed three type systems featuring grades and identified their



similarities to effect and coeffect systems. We hope our work will stimulate interesting discussions
across research communities and lead to better understanding of fuzzy phenomena.
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