
Toward a Multi-Language and
Multi-Environment Framework

for Live Programming

Hidehiko Masuhara Shusuke Takahashi Yusuke Izawa Youyou Cong
masuhara@acm.org,{takahashi,izawa}@prg.is.titech.ac.jp,cong@c.titech.ac.jp

Tokyo Institute of Technology

Abstract
While applications of live programming are expanding
to more practical and professional domains, most live
programming environments (LPEs) are still developed
for a single target language with an original code editor.
We propose an implementation framework for developing
LPEs so that we can minimize efforts on implementing
an LPE for a different target language and an existing
code editor/IDE. Our idea is to use a meta-JIT lan-
guage implementation framework (e.g., Graal/Truffle
and RPython) and LSP to separate core live program-
ming implementations from language-specific and edi-
tor/IDE specific implementations. This paper takes the
Kanon live programming environment as a concrete ex-
ample and discusses how we can design the framework
to accommodate the features of Kanon. Although the
framework design is still underway, the paper presents a
sketch of the framework APIs for separating language-
specific functions and clarifies the requirements to LSP.

1 Introduction
Live programming is a programming activity where the
programmer incrementally writes code fragments in a
program while immediately observing the behavior of the
program [14]. A live programming environment (LPE) is
a code editor or an integrated development environment
(IDE) that immediately re-executes the program when
it is changed and presents the code’s behavior so that
the programmer can recognize the effect of the edit from
the presented behavior.
While live programming has initially been practiced

in specific kinds of programs, such as programming edu-
cation [4] and musical performance [1], its applications
are expanding to more professional programs, including
exploratory data analysis [9, 12], high-performance com-
puting [13]and general-purpose programming with data
structures [10].

However, there are still challenges to live programming
for overcoming the “Real Programmer” [11] syndrome. In

Presented at Live Programming Workshop 2020 (LIVE’20), co-
located with SPLASH 2020 on November 17, 2020.

other words, live programming still needs to be expanded
to wider ranges of domains in the following respects.

∙ Most LPEs support a single programming language,
sometimes a newly designed language (e.g., [5, 6]).
Constructing LPEs for the real programmer’s fa-
vorite languages requires a considerable amount of
effort.

∙ Most LPEs are developed as their own program-
ming environments. Bringing the LP features to
the real programmer’s favorite programming en-
vironments is not easy especially by considering
the number of different programming environments
used in practice.

The reasons that make LPEs remain in specific languages
and environments are that LPEs require tight integration
with the target language and the code editor. LPEs
require information on program execution that is only
available inside of a language runtime, for example, a
value of a variable in the middle of program execution.
They also need to observe editing activities so that they
can immediately present the program’s behavior as soon
as the program is edited. As a result, those environments
often come with a customized interpreter or compiler
that is integrated with a newly developed code editor.

This paper proposes a polyglot and ploy-environment
LPE implementation framework called Poly2Kanon based
on our previous work Kanon, a live data structure pro-
gramming environment for JavaScript [10]. The goal of
the framework is to easily implement Kanon for many
programming languages and for many existing code edi-
tors and IDEs. Our idea is to separate the language and
environment neutral implementation from the language
runtime and the code editor as illustrated in Figure 1,

(existing)
language runtime

extract object
graph information

cortrol text cursor

edit&cursor movement

live programming
server

(existing)
code editor

Figure 1. Overview of the Poly2Kanon Framework

1



Figure 2. Screenshot of Kanon. The left pane is a
code editor where the programmer edits a program. The
top-right pane displays the objects created during the
execution of the program as a node-link diagram. The
diagram will be updated immediately when the program-
mer modifies the code.

and use a language implementation framework to ex-
tract information and use the Language Server Proto-
col (LSP) [7] in order to interact with many code editor
implementations.
We hereafter focus on a specific LPE namely Kanon

to make the discussion concrete. However, we believe
that the basic idea and many of the specific ideas would
also be valid to many types of LPEs.
In the rest of the paper, we first introduce Kanon’s

features and its implementation, and two core technolo-
gies namely language implementation frameworks and
LSP as the background of the work. We then discuss
the requirements of the language runtime and the editor
from the LP engine.

2 Background
This section introduces Kanon’s features from the pro-
grammer’s viewpoint, and its key implementation tech-
niques [10], followed by the introductions to the two
existing technologies that we will use in our proposal,
namely the language implementation frameworks [2, 15]
and LSP [7]. The readers familiar with those technologies
may skip to the next section.

2.1 Live Programming Features in Kanon

Kanon is an LPE for JavaScript programs, and lively
visualizes object structures as a node-edge diagram (Fig-
ure 2). The node-edge diagram (in the top-right pane
in the screenshot) represents the state of the objects
created during an execution of a user program. As the
objects and their relations change during the execution,
the displayed diagram is synchronized with the position
of the text cursor; i.e., it shows the object diagram of
the execution at the text cursor.

When the programmer is about to write a function
that manipulates objects, the visualization helps the pro-
grammer’s Plan-Do-Check process in this way: (Plan)
the programmer reasons about the relations between
objects from the diagram (e.g., “this object is connected
to that object by the next field” and plans the next
immediate operation (e.g., “change the next of this to a
new object”); (Do) along with the plan, the program-
mer writes one or a few lines of code, which trigger
Kanon to immediately re-execute the program and to
visualize the objects after executing the newly inserted
code fragments; and (Check) the programmer checks if
the code behaved as expected by reading the updated
visualization.

Automatic visualization: Kanon automatically col-
lects and visualizes objects without special directions in
a program. In contrast, existing LPEs require explicit
drawing commands written in a program to give visual
feedback [4]1.

Navigation based on the text cursor: Kanon syn-
chronizes the visualized object diagram with the text
cursor position. The object diagram also shows the refer-
ences from local variables that are available at the text
cursor position.

Navigation based on the call graph: Kanon also
displays a call graph for navigating the visualization
(the bottom-right pane in the screenshot). This is useful
when a program executes one source code location more
than once either by calling a function multiple times or
running a looping construct.

Context preservation: Kanon uses calling-contexts
for distinguishing execution points matching a source
code location. As a result, when the programmer places
the text cursor on a source code location that is executed
more than once, and he or she moves the cursor to the
next line or inserts a code fragment, Kanon will display
the object diagram at the new text cursor position in
the same calling context.

Jump-to-construction: When the programmer clicks
on a node or an edge in the object diagram, Kanon
moves the text cursor to the source code location that
created the clicked object or that assigned the value to
the clicked field.

2.2 Implementation Techniques of Kanon

In this section, we overview the current implementation
of Kanon.

1See our previous paper [10] for further discussion when automatic
visualization is appropriate.

2



Dedicated code editor: The code editor part is ex-
tended from the Ace editor [3], an open-source project
with basic code editor features like syntax highlighting
and automatic indentation. Kanon extended it to detect
text cursor movement, and to detect edits of the user
program (e.g., insertion and deletion of text).

Source code instrumentation: To automatically col-
lect object graph information from an execution of a
program, Kanon instruments checkpointing operations
into the user program and let the standard JavaScript
engine run the instrumented program.

Checkpointing: Each instrumented checkpoint, given
a root set (set of objects referenced by global and local
variables accessible from the inserted code location),
traverses objects reachable through field references. It
records those objects as a copy of a node-edge graph. To
traverse objects, Kanon uses the reflection mechanism
in JavaScript.

Call stack monitoring: To provide the call graph and
implement the mental map preservation, Kanon also
instruments code before and after every function call
site. The code simulates the call stack, whose information
will be recorded in the checkpointing operations.

2.3 Language Implementation Framework

In this section, we introduce meta-JIT language imple-
mentation frameworks. In general, a language implemen-
tation framework is a framework that enables language
implementations (compilers, virtual machines, etc.) eas-
ier by providing commonly used functions. A meta-JIT
language implementation framework, as exemplified by
RPython [2] and Graal/Truffle [15], allows the language
developer to merely define an interpreter of the target
language to obtain the runtime of the language with a
just-in-time compiler.

Both RPython and Graal/Truffle are successful in im-
plementing various languages including Python, JavaScript,
Smalltalk, Ruby, and R. Those frameworks are also suc-
cessful in providing quality language runtimes.

2.4 Language Server Protocol (LSP)

The Language Server Protocol (LSP) is a protocol “used
between an editor or IDE and a language server that
provides language features like auto complete, go to def-
inition, find all references etc.” [7] It aims at minimizing
efforts on providing language features to different code
editors and IDEs. The official website lists 34 tools that
support LSP including major IDEs and code editors such
as Visual Code Studio, Eclipse, and Sublime Text.
The current specification lists 52 protocols in total.

Most of the protocols are commonly found in code editors

and IDEs like requesting code completion from the editor
to the server. The followings are examples.

hover Request: The editor requests the server to
show a piece of hover information at a specific text
in the program.

DidChangeTextDocument: The editor notifies
changes in the program.

Goto Definition Request: The editor requests
the location of an identifier in the program.

3 Language and Environment Specific
Implementations

To design a framework for supporting multiple languages
and environments, we here analyze an existing imple-
mentation of LPE in terms of dependency on the target
language and environment.

3.1 Language Specific Implementations

Source code instrumentation It depends on the
syntax and semantics of the target language as it needs
to insert code into specific syntactic nodes of the parsed
program tree. Its implementation is often burdensome
as many programming languages have many different
syntactic categories. Though there are AST libraries for
many languages that provide some means of instrument-
ing code, there is no single library that uniformly covers
multiple languages as far as the authors know.

Checkpointing It depends on the target language in
two ways. First, to obtain the root set at each source
code location, it needs to understand the variable scoping
rule of the language. Second, traversing objects requires
a reflection mechanism of the language, which is different
between languages.

Logging It is an alternative technique to collect ob-
ject graph information, though not used in Kanon. The
logging technique records every event that modifies an
object graph (e.g., creation of an object, and update of a
field of an object) during execution of the user program.
From the recorded history of events, we can reconstruct
an object at any point of execution. This technique is
usually realized by modifying an interpreter of the target
language, which is definitely language-dependent. It is
not easy to realize by using source code instrumenta-
tion because operations performed inside of the system
library cannot be instrumented.

Call stack monitoring It depends on the target lan-
guage’s functionality. Some languages provide some means
of accessing the call stack information (e.g., thisContext
in Smalltalk) but in a language-specific way. In some
other languages that do not provide sufficient informa-
tion, we need to monitor by code instrumentation, which
is again language-dependent.

3



3.2 Programming Environment Specific
Implementations

Although visualization of the object graph can be in-
dependent of languages and environments, many other
features in Kanon depend on the programming environ-
ment.

Navigation of visualization Kanon visualizes the
object graph at the text cursor position. It also provides
several commands to navigate the calling context. These
features require to detect text cursor movement and in-
vocations of commands in the code editor, which depend
on the code editor implementation.

Controlling the text cursor position Kanon offers
the two features that move the text cursor position to a
specific code location based on user actions performed on
the visualization. The one is jump-to-construction, and
the other is calling context selection on the call graph
visualization. Those features need to control the text
cursor position from outside of the code editor, which
depends on the editor’s implementation.

Code change detection Kanon re-executes the user
program as soon as it is changed. Moreover, Kanon
requires to know the details of the change made on
the user program so that it can match the code lo-
cations in the older and changed program texts. This
requires detailed information from the code editor, which
is implementation-dependent.

4 Poly2Kanon: a Polyglot and
Poly-Environment Framework

We propose Poly2Kanon, an implementation framework
for live data structure programming. It is polyglot, i.e.,
easily supports multiple languages by exploiting exist-
ing language implementation frameworks. It is poly-
environment, or easily supports multiple code editors or
IDEs based on the idea of LSP.
Since the proposal is not yet implemented, we here

discuss how the underlying technologies can make the
framework polyglot and poly-environment. As an under-
lying language implementation framework, we assume
Graal/Truffle here. However, most of the discussion will
also be valid for RPython.

4.1 Sharing Language Implementations
Through a Language Implementation
Framework

The key idea here is to provide a framework for object
graph logging and call stack monitoring so that we can
equip those functions into each language runtime with
minimal modifications.

We here list some of the framework API functions
that are provided to and required by the language de-
veloper. The design of the whole API is still under-
way. The framework provides functions to record events
that modify an object graph: create(object,loc) and
update(object,field,value,loc) respectively records
construction of an object and assignment to a field

of an object, for example. The last parameter loc tells
the source code location that performed the event.

The framework also requires the language developer to
implement functions that depend on the language imple-
mentation: get class(object) and get field(object)

are typical reflective functions for example. Other re-
quired functions are get source(...), set id(object,

ID) and get id(object,id) which returns the source
code location of the current execution point, associates
and retrieves a unique ID of an object, respectively.
With those provided and required functions, logging

and call stack monitoring will be implemented by modi-
fying a few handlers2 in the interpreter implementation.
For example, the developer will modify a handler for
object creation so that it will first obtain the source
code location, and then call create(object,loc). The
create function then generates a unique ID for the ob-
ject, associates the ID to the object by calling set id

function, collects the field values of the object by calling
get field, and records the event with the ID, the field
values, and the source code location.

4.2 Using LSP for Supporting Multiple
Programming Environments

The concept of LSP exactly suits our goal to provide live
programming to multiple programming environments.
The question is whether there are suitable protocols to
implement the Kanon’s features. Since each protocol
specification only describes types of parameters and a
few sentences of the behavior, we would need to inves-
tigate each code editor’s behavior with respect to each
protocol to answer this question (note that editors may
not implement all the protocols). We here discuss, based
on the protocol specification, our plan to implement
Kanon’s feature by using the protocol.

Displaying visualization LSP does not define a pro-
tocol to display visual information like an object graph
alongside the code editor. This is however not a serious
problem as the LP server can create its own window to
display the graph.

Code change detection LSP defines DidChange

TextDocument protocol to notify the server when the

2By a handler, we here mean the interpreter’s implementation for

specific kind of operation in the language such as object creation
and field assignment.

4



program text is changed in the editor. The protocol also
gives the source code location of the change and the
content of the change. It therefore should be sufficient to
implement the re-execution feature and to match code
locations in the older and the newer program texts.

Navigation based on the text cursor position
LSP defines no protocol that notifies movement of the
text cursor, but several protocols (e.g., Hover Request

and Code Lens Request) that request additional infor-
mation related to the editing code. We might be exploit-
ing those notifications to detect the movement of the
cursor position. Otherwise, we would need to define our
own protocol to notify movement of the text cursor as
it is crucial to implement Kanon’s feature.

Controlling the text cursor position LSP defines
no protocol that controls the text cursor position from
the server’s side. Therefore, Kanon’s features that move
the cursor position by clicking visualization cannot be
implemented straightforwardly. One approach would be
to install a new command into an editor, which can be
triggered by the server.

5 Conclusion
This paper proposed Poly2Kanon, an implementation
framework of live data structure programming for multi-
ple languages and environments. The core ideas of the
framework are to use a meta-JIT language implementa-
tion framework for minimizing dependency on the target
language, and to use the Language Server Protocol (LSP)
for separating the editor implementation from the live
programming engine.
We investigated the meta-JIT language implementa-

tion framework and LSP with respect to the Kanon’s
implementation details and features, and presented a
rough sketch of the Poly2Kanon API for supporting mul-
tiple languages. For supporting multiple environments,
we presume that the current LSP might not be sufficient
and that further investigation is required.

Acknowledgement
Niephaus et al. developed a live programming system by
using Graal/Truffle and LSP [8]. The core part of this
work was proposed independently from their work. We
would like to Fabio Niephaus for many suggestions on a
draft version of the paper. We would like to thank the
reviewers of the LIVE 2020 workshop for their valuable
comments. This work was supported by JSPS KAKENHI
grant number 20K21790.

References
[1] Aaron, S., and Blackwell, A. F. From Sonic Pi to Overtone:

Creative musical experiences with domain-specific and func-
tional languages. In Proceedings of the First ACM SIGPLAN

Workshop on Functional Art, Music, Modeling & Design
(New York, NY, USA, 2013), FARM ’13, ACM, pp. 35–46.

[2] Bolz, C. F., Cuni, A., Fijalkowski, M., and Rigo, A. Trac-

ing the meta-level: PyPy’s tracing JIT compiler. In Proceed-
ings of the 4th Workshop on the Implementation, Compilation,

Optimization of Object-Oriented Languages and Programming
Systems (New York, NY, USA, 2009), ICOOOLPS ’09, ACM,

pp. 18–25.

[3] Jakobs, F. Ace: The high performance code editor for the
web. https://ace.c9.io, 2018. Accessed on April 23, 2018.

[4] Khan Academy. Intro to JS: Drawing & ani-

mation. https://www.khanacademy.org/computing/
computer-programming/programming, 9999. Accessed

Ferburary 2017.

[5] Maloney, J., Resnick, M., Rusk, N., Silverman, B., and
Eastmond, E. The Scratch programming language and en-

vironment. ACM Transactions on Computing Education

(TOCE) 10, 4 (2010), 1–15.
[6] McDirmid, S. Living it up with a live programming lan-

guage. In In Proceedings of Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software

(Onward!) (2007), ACM, pp. 623–638.

[7] Microsoft. Language server protocol.
https://microsoft.github.io/language-server-protocol/.

visited September 19, 2020.

[8] Niephaus, F., Rein, P., Edding, J., Hering, J., König, B.,
Opahle, K., Scordialo, N., and Hirschfeld, R. Example-

based live programming for everyone: Building language-
agnostic tools for live programming with LSP and GraalVM.
In Proceedings of the ACM Symposium for New Ideas, New

Paradigms, and Reflections on Everything to do with Pro-
gramming and Software (Onward! 2020) (Nov. 2020).

[9] o. DeLine, a. Fisher, a. Chandramouli, o. Goldstein,

i. Barnett, a. Terwilliger, and o. Wernsing. Tempe:
Live scripting for live data. In 2015 IEEE Symposium on

Visual Languages and Human-Centric Computing (VL/HCC)

(2015), pp. 137–141.
[10] Oka, A., Masuhara, H., and Aotani, T. Live, synchronized,

and mental map preserving visualization for data structure

programming. In Proceedings of the 2018 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and

Reflections on Programming and Software (New York, NY,

USA, Nov. 2018), Onward! 2018, ACM, pp. 72–87.
[11] Post, E. Real programmers don’t use Pascal. Datamation

29, 7 (1983), 263–5.
[12] Rein, P., Taeumel, M., Hirschfeld, R., and Perscheid, M.

Exploratory development of data-intensive applications: Sam-

pling and streaming of large data sets in live programming
environments. In Companion to the First International Con-

ference on the Art, Science and Engineering of Programming
(New York, NY, USA, 2017), Programming ’17, Association
for Computing Machinery.

[13] Swift, B., Sorensen, A., Gardner, H., Davis, P., and

Decyk, V. Live programming in scientific simulation. Super-
computing Frontiers and Innovations 2, 4 (2016).

[14] Tanimoto, S. L. A perspective on the evolution of live
programming. In 2013 1st International Workshop on Live

Programming (LIVE) (2013), IEEE, pp. 31–34.

[15] Würthinger, T., Wöß, A., Stadler, L., Duboscq, G.,
Simon, D., and Wimmer, C. Self-optimizing ast interpreters.

In Proceedings of the 8th Symposium on Dynamic Languages

(New York, NY, USA, 2012), DLS ’12, ACM, pp. 73–82.

5

https://www.khanacademy.org/computing/computer-programming/programming
https://www.khanacademy.org/computing/computer-programming/programming

	Abstract
	1 Introduction
	2 Background
	2.1 Live Programming Features in Kanon
	2.2 Implementation Techniques of Kanon
	2.3 Language Implementation Framework
	2.4 Language Server Protocol (LSP)

	3 Language and Environment Specific Implementations
	3.1 Language Specific Implementations
	3.2 Programming Environment Specific Implementations

	4 Poly2Kanon: a Polyglot and Poly-Environment Framework
	4.1 Sharing Language Implementations Through a Language Implementation Framework
	4.2 Using LSP for Supporting Multiple Programming Environments

	5 Conclusion
	References

