
Toward Fluent Module Interactions

Tetsuo Kamina
Ritsumeikan University, Japan

kamina@acm.org

Tomoyuki Aotani
Tokyo Institute of Technology, Japan

aotani@is.titech.ac.jp

Hidehiko Masuhara
Tokyo Institute of Technology, Japan

masuhara@acm.org

Abstract
Recent progress on sensor technologies poses challenges on soft-
ware development such as more interaction with physical environ-
ment and context-awareness. This trend makes it difficult to decide
the boundaries between changing module interactions. In this pa-
per, we propose a concept of fluent module interactions where we
characterize the module interactions in three dimensions, i.e., def-
inition, duration, and scope. Module interactions in any of those
dimensions can change dynamically. We also propose a possible
extension of existing programming language with fluent module
interactions based on context-oriented programming (COP). Then,
we derive a future research roadmap for realizing fluent module
interactions that covers a wide range of research fields including
theory, implementation, engineering, and applications.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages

Keywords Context-oriented programming; Dynamic adaptation;
ServalCJ; Research roadmap

1. Introduction
With the progress of sensor technologies, computing platforms be-
come more aware of physical environment. More interaction with
physical environment requires tighter connection between soft-
ware and hardware. At the same time, becoming aware of physical
environment poses other requirements on software development:
context-awareness and autonomous behavior changes with respect
to context changes.

To achieve those requirements, it is required to decide the
boundaries between the behavior variations. This is not trivial be-
cause sometimes such boundaries are changing, or should be de-
cided in a bottom-up manner at runtime. For example, to detect
outdoors/indoors situations, we may use a combination of several
devices such as GPS and wireless LAN receivers, and atmospheric
pressure sensors. Sometimes such devices get an erroneous status
and become unavailable, and the method to detect situation switch-
ing, which constitutes the boundary between outdoors/indoors be-
haviors, changes dynamically. Another example is the boundary

Figure 1. Fluent module interactions. Each module consists of
several variations, which can be added at runtime. Each variation
can be selected and deselected for particular set of objects at run-
time. This selection comprises the definition of modules, and this
set of objects indicates the scope of the selected variations. This
selection also pertains a particular duration of a particular thread.
In fluent module interactions, all of those “boundaries” are dynam-
ically changeable.

between taxiing and flying behaviors of an unmanned aerial vehi-
cle. Since the behavior seamlessly moves from one to the other, it
is not easy to decide the boundary between them.

In other words, such boundaries looks ambiguous, but in fact,
they exist; thus, they should be determined later on and adaptable
when contexts are changing. Unfortunately, existing modulariza-
tion mechanisms such as OOP, AOP, and FOP impose rather fixed
boundaries on behaviors, which makes it difficult to realize such
late-boundable and changeable behaviors.

In this paper, we propose the concept of fluent module inter-
actions, which reactively respond to dynamic context changes and
then dynamically change the module interactions. More precisely,
we characterize the module interactions in three dimensions: the
module definitions, the duration on which the module takes effect,
and the scope of the module. Fluent interactions in module def-
inition indicate that module definitions change dynamically. Flu-
ent interactions in module scope indicate that a set of computation
units that pertain a specific module changes dynamically. Fluent
interactions in duration indicate that the duration of the module
effect changes dynamically. The fluent module interactions make
it possible to dynamically change the interactions in any of those
dimensions, by reactively responding to observed context changes
(Figure 1).

As the first step to realize fluent module interactions, we de-
rive requirements for programming languages that support them.
Our strategy is based on context-oriented programming (COP) [1]
where behavior of classes in object-oriented programming (i.e., the
definitions of classes) can change dynamically. In particular, we
use ServalCJ [2] as the base language where programmers can ex-
plicitly specify the module interactions with respect to scope and
duration, and discuss how to extend the language to support flu-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

MODULARITY Companion’16, March 14–17, 2016, Málaga, Spain
c© 2016 ACM. 978-1-4503-4033-5/16/03...$15.00

http://dx.doi.org/10.1145/2892664.2892689

158

ent module interactions.1 This discussion raises many issues that
should be explored in future in several research fields, including
theory, implementation, engineering, and applications.

2. Motivation
To illustrate our idea, we elaborate a motivating example that in-
teracts with physical environment. We consider a pedestrian nav-
igation system that provides variations of behavior for each of
outdoors and indoors situations that can be switched dynamically.
These situations are detected using GPS, wireless LAN, and atmo-
spheric pressure sensors equipped with a mobile device. There are
additional requirements as follows.

Specification of behavior duration should change. Even if some
devices become unavailable for some reasons, the system
should be able to detect the situations with degraded accuracy;
i.e., the method to detect situation switching, which triggers the
behavior changes, can change at runtime.

Module definition should change. By paying extra fees, the user
can install an extra feature, namely a satellite view, without
stopping the system. This feature crosscuts several modules and
thus the module definitions should change at runtime.

Specification of behavior scope should change. The user can se-
lect another variation, i.e., a static map, simultaneously, which
implies that only a limited set of computation units executes the
outdoors behavior. Furthermore, the satellite view is running on
another computation unit, and should be visible only when the
running object also executes the outdoors behavior.

3. A Language To Be Extended
As the first step to realize fluent module interactions, we discuss the
design of a programming language that supports them. First, chang-
ing module definitions at runtime can be achieved by applying the
layer activation mechanism in COP [1].

In COP, the behavioral variations added at runtime are im-
plemented using layers, which provide the partial definitions for
classes that override the original behavior when the layer is com-
posed with the system. In the pedestrian navigation example,
we may consider two layers for outdoors and indoors behaviors,
namely Outdoors and Indoors, which override the original be-
havior (i.e., the static map) by providing the auto-scrolling features
(outdoors) and floor plans (indoors) for Map with appropriate posi-
tioning mechanisms for Nav. Below is a skeleton of those layers.

layer Outdoors {
class Map { .. }
class Nav { .. } }

layer Indoors {
class Map { .. }
class Nav { .. } }

Those layers can dynamically be activated (i.e., composed with
the running system). Even though in the original COP, layer ac-
tivation is hardwired in the base program (using so-called with-
blocks), recent research shows that layer activation can be charac-
terized in two dimensions, i.e., scope and duration [2], and by ex-
plicitly specifying them, the programmer can flexibly specify layer
activation. Below is a skeleton of layer activation in ServalCJ [2].

contextgroup Boundary {
subscribers: .. // AOP pointcut
activate Outdoors .. // temporal term }

1 We may also consider other COP languages with generalized linguistic
features. For example, Korz [5] is another candidate for a base language for
the proposed extension.

We specify the duration of Outdoors using the activate dec-
laration where we can describe when Outdoors is activated using
a temporal term. This temporal term is a combination of events,
which are join-points in AOP, control-flows, and conditions. For
example, we can identify the situation switching (i.e., from indoors
to the outdoors situation) that activates Outdoors as an event using
event handlers of wireless communications equipped with the mo-
bile device. Similarly, we can identify the situation switching that
deactivates Outdoors as another event. We also specify the scope
of Outdoors using the subscribers declaration, which specifies
the join-points where the objects on which Outdoors is applied are
created (or, we can specify the objects within the base program).
For example, in the above pedestrian navigation system, the user
can select a static map view that provides the different behavior
from Outdoors; thus, only a limited set of Map and Nav instances
should be included within the scope of Outdoors.

Even though ServalCJ explicitly specifies the interactions of
context-dependent behavior with respect to its scope and duration,
those are fixed. Thus, it does not satisfy the aforementioned require-
ments. For example, since the specification of Outdoors duration
is fixed, we need to rebuild the system when the outdoors situation
detection changes by some erroneous status of the devices. Fur-
thermore, ServalCJ does not allow us to install new layers dynam-
ically. Thus, to install the satellite view feature, which also require
a change of subscribers specification for Outdoors because the
object that executes the satellite view behavior should also executes
the outdoors behavior, we also need to rebuild the system.

4. Future Research Roadmap
The above discussion leads us to further research on realizing fluent
module interactions. First, runtime installation of layers is neces-
sary. Even though this is achieved by COP languages based on dy-
namic languages such as JavaScript [3], this still remains as future
work in COP based on statically typed languages where extra veri-
fication of dynamically installed layer would be necessary. Second,
we should consider autonomous changes of module interactions by
reacting the observed situation switching (e.g., erroneous status of
some devices). By focusing on the data-flows of values obtained
from the external world, reactive programming (RP) would help,
and how to support reactive layer activation already gains attrac-
tions from many researchers [4]. This direction also raises a number
of issues in theory and implementation of programming languages,
e.g., ensuring constraints when module interactions change reac-
tively and developing efficient compilers. Finally, this focus on flu-
ent module interactions would lead us to new software engineering
disciplines and methodologies.

References
[1] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-

oriented programming. Journal of Object Technology, 7(3):125–151,
2008.

[2] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara. General-
ized layer activation mechanism through contexts and subscribers. In
MODULARITY’15, pages 14–28, 2015.

[3] Jens Lincke, Malte Appeltauer, Bastian Steinert, and Robert Hirschfeld.
An open implementation for context-oriented layer composition in Con-
textJS. Science of Computer Programming, 76(12):1194–1209, 2011.

[4] Guido Salvaneschi and Mira Mezini. Reactive behavior in object-
oriented applications: an analysis and a research roadmap. In AOSD’13,
pages 37–48, 2013.

[5] David Ungar, Harold Ossher, and Doug Kimelman. Korz: Simple,
symmetric, subjective, context-oriented programming. In Onward!
2014, pages 113–131, 2014.

159

