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ABSTRACT

Recent progress in implementations of object-oriented concurrent programming languages on

highly-parallel processors makes it feasible to construct large-scale parallel applications having

complicated structures. Such applications can not exhibit good performance without dynamic re-

source management (e.g., load-balancing and object scheduling) tailored to the characteristics of

the applications and/or machine architectures. Since dynamic resource management systems are

usually intertwined with the language implementation, modi�cation/extension of the management

systems requires complicated programming in the low-level language. Reective systems can pro-

vide abstractions to modify/extend the implementation-level facilities within the application-level

language. This study proposes a reective architecture of an object-oriented concurrent language

for highly-parallel processors to provide resource management systems for parallel applications.

To make our architecture practical, much attention is payed on balancing the trade-o�s between

extensibility and e�ciency; we examine the requirements for realistic applications by developing

resource management systems for search problems andN -body simulation, and design the architec-

ture based on the requirements. The architecture is evaluated by experiments through a prototype

system running on a parallel computer.
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Chapter

1

Introduction

Recently, advances of implementation techniques of object-oriented concurrent languages on dis-

tributed memory multicomputers[46] make it feasible to execute large-scale and complicated con-

current applications. To make such applications exhibit as much performance as the language

provides, good dynamic resource management (DRM), such as load balancing and scheduling, is

necessary. Unfortunately, there is no ultimate DRM in which any application could exhibit its

best performance. Hence each application tends to have a tailored DRM system, in which assump-

tions to application's behavior (e.g., communication pattern and data structure) and run-time

information from the application are extensively used. The problem is how to easily incorporate

tailored DRM systems for various kinds of applications. Approaches that have been tried so far

are embedding DRM related operations into an application program, or customizing a run-time

system of a language|so called hacking. In the former approach, since operations for original

application and for DRM are intertwined into one program, it is di�cult to reason about such a

program and to re-use it. Another problem of the former approach is e�ciency. Since a language

provides limited exibility, it is often that a DRM requires facilities beyond the language provides.

In such a case, we should simulate those facilities in an application program, which forces the

application program written awkwardly, and sometimes poses unacceptable overheads. On the

other hand, the latter approach is far from convenient. Without deep knowledge of the run-time

system implementation, a modi�cation to the run-time system easily leads to a disaster. Even if

some customization protocols, which promise safe modi�cation, are provided, following problems

remain unsolved. (1) Since interface between the run-time system and applications program is

�xed, it is hard to access application-level information from a DRM system. (2) A customization

to a part of the run-time system usually alters the entire system; i.e., it is hard to localize the

customization. (3) Since descriptions of DRM systems should be given in a low-level language

same to the one that implements the run-time system, a complicated DRM system|which tends

to be a concurrent computing itself|is hard to be programmed. To summarize, we need a lan-

guage extension mechanism in which an extension is clearly separated from application programs,
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while it can access application-level information, and the extension can be localized in an arbitrary

scope. In addition, unit of customization should be �ne enough so as to meet with requirements

from various kinds of DRM, at the same time, such a customization can enjoy high-level language

facilities including concurrency supports.

This study proposes a reective architecture as a solution. Computational reection is a process

that accesses its own computational process[34, 21, 22]. In a reective language, its computational

process, which executes application programs at a base-level, is provided as a meta-level in an

appropriate abstraction, and ways to modify/extend the meta-level within the language are avail-

able. The extensibility of reection has two aspects in terms of target of extensions. The one

is the run-time system extensibility, which is to extend run-time modules of a language such as

a scheduler, and the other is the language facility extensibility, which is to extend/modify in-

terpretation of a program, like in sequential reective languages. It has been noted that the

run-time extensibility makes it easy to provide tailored DRM systems for parallel/distributed en-

vironment in a clear and separated way[47]. In addition, the language facility extensibility is

also useful because it can provide ways to access application-level information from DRM sys-

tems, and to localize the scope of modi�cation. Moreover, better compilation could be done to

for DRM systems in reective approaches, compared to application-embedded ones. This is be-

cause compilers can gain better knowledge of modi�cation from the reective approach, which

can describe modi�cations directly into a language, while application-embedded one does just on

a language. So far, a number of reective systems have been designed mainly for distributed

systems[40, 41, 24, 15, 26, 43, 8, 38, 25], and a few DRM systems actually constructed at the meta-

level of reective systems are reported[23, 14, 27]. However, to the best of our knowledge, there

are no reective systems (except for ongoing one[38]) which is aiming to provide DRM systems for

highly concurrent applications.

The proposed reective architecture originates in the Hybrid Group Reective Architecture

(HGA)[24]. HGA is a general framework to provide control of shared computational resources in

parallel/distributed applications. However, as a way to develop practical DRM systems of highly

concurrent applications, provided abstractions are too high. Since it lacks the notion of a node

(abstraction of a processor element), management relevant to distributed memory multiprocessors

is hard to be described; and the meta-level design somewhat conicts with a practical imple-

mentation. Our proposing architecture, called the Distributed Memory Reective Architecture, is

designed so as to overcome the above-mentioned problems. Its key features are as follows: (1)

Notion of a node is explicitly available at the meta-level, while it is transparent to the base-level

programming. (2) The meta-level design is based on the requirements from realistic DRM systems

of concurrent applications so that they can be an appropriate abstraction of the run-time system of

the language. (3) Chain of executors, which is a set of meta-circular interpreters (each of which is

basically same to the `evaluator' in HGA) giving operational interpretations of base-level programs
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in delegation style, realizes language facility extensions. The language facility can be dynamically

altered by replacing an executor in a chain at run-time; and the scope of the extended facility can

be localized to a speci�c object or a group of objects. (4) Interface to system level information is

de�ned to make good use of low-level information at DRM systems.

Not only extensibility, but also e�ciency is given high consideration in the architecture's de-

sign. Based on the requirements from realistic DRM systems, the meta-level design carefully avoids

providing unnecessary abstractions of the run-time system, which tend to pose unacceptable over-

heads by interfering with the low-level optimizations. Chains of executors is a good abstraction

to facilitate language extensions whose facilities are dynamically (but not so frequently) changed.

Our proposed scheme, called the Dynamic Code Replacement, is an e�cient way to implement the

chains of executors, provided a sophisticated partial evaluation technique that can collapse a �xed

set of meta-level de�nitions.

The e�ectiveness of the architecture is veri�ed by describing DRM systems for several non-

trivial concurrent applications. Such DRM systems include load balancing, object allocation, and

object scheduling. It is also tested by experiments; a simple application-speci�c DRM system is

constructed on a prototype system running on Fujitsu AP1000, which is a distributed memory

multicomputer. It exhibits performance improvement for a search problem, compared to a naive

DRM system.

The main contributions of this study are as follows:

� A new reective architecture, called the Distributed Memory Reective Architecture, which

purposes to easily provide DRM systems for highly concurrent applications, is designed.

� Design of the meta-level, which is an abstraction of the run-time systems relevant to DRM,

is presented.

� A scheme for language facility extension, called chains of executors, is proposed. This scheme

provides localized and dynamic extensions described in an operational way.

� An implementation scheme for language facility extension, called the Dynamic Code Re-

placement, is proposed. With this scheme, a base-level program can be executed with fully

compiled codes, provided a sophisticated partial evaluation technique.

The rest of the thesis is organized as follows. In Chapter 2, ways to provide application

speci�c DRM systems are examined, and problems in terms of the re-usability and the e�ciency

are pointed out. Next how reection contributes to solve these problems are explained. Chapter

3 is devoted to the proposed reective architecture. Firstly, the design requirements of reective

architectures from realistic DRM examples are examined. Next the Distributed Memory Reective

Architecture is explained. This chapter also contains issues on e�cient implementation. In Chapter

4, evaluation of the architecture through the descriptions of DRM systems is presented, and an

3



experiment with a DRM system on a prototype system running on a multicomputer is shown.

Finally, Chapter 6 concludes the thesis, giving future directions to the architecture design, the

e�cient implementation, and the DRM systems.
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Chapter

2

Reection and Highly Concurrent

Object-Oriented Applications

In this chapter, we �rst explain the necessity of a language extension mechanism that supports

construction of e�cient and tailored dynamic resource management (DRM) systems. We then

explain what reection is, and that the reective system is a suitable language extension mechanism,

along with its advantages to the other (non-reective) approaches.

2.1 Why Dynamic Resource Management?

Many highly concurrent applications have dynamic nature. In other words, their data structure

and computational pattern are determined at the run-time. To execute such applications e�-

ciently on multicomputers, the system must do appropriate dynamic resource management, such

as load balancing, object/data allocation, and scheduling. In fact, there are several studies on high

performance applications that have dynamic nature, and such studies mention dynamic resource

management to greater or lesser extent[33, 11]. Many DRM algorithms and also mechanisms are

proposed for multicomputer applications[42, 20, 28].

The algorithms used in dynamic resource management for such applications are tend to be ap-

plication speci�c. An algorithm often assumes on computational patterns of a target application,

such as number of concurrent objects (or tasks) generated at run-time. Moreover, many algorithms

uses run-time information that is available at the application-level. For example, some dynamic

object-allocation system uses the application-level information for predicting the amount of com-

munications between objects[33]. An application speci�c DRM algorithm is tend to be embedded

into the application programs, to have better access the application level knowledge.

While such a specialization shows a dramatical improvement in performance, there are the

following problems. (1) The use of application level information in a DRM system degrades the

re-usability of the DRM system's code, even to the same kind of applications. (2) The mixture

of codes for the resource management and for the original application prevents both codes from
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being modi�ed easily.

Another feature of DRM systems is the concurrency. Since they manage resources for dis-

tributed memory computing, cooperation among node processors (e.g., gathering load information)

can be understood as a concurrent computing. Such concurrency makes di�cult to provide DRM

systems using complicated algorithms.

To summarize, the description of DRM system should be: (1) separated from the ones for

the original application as much as possible (at the same time, the system should be able to

use application-level knowledge), (2) easily customized for various kinds of target architectures

and low-level optimizations, and (3) easily written even if the management involves concurrent

computing.

2.2 Extensibility that Reection Provides

Computational reection, or reection in short, is a computational process that accesses its own

computation process[34, 21, 22, 17]. So far, many reective languages|programming languages

that supports reection|are proposed to provide clear and formalized extensibility to programming

languages.

A reective language has data which abstracts its computation process. A modi�cation to the

data results in a change to the actual computation process, and vice versa. Such data is called

causally-connected self representation (CCSR), or meta-level representation. We emphasize that

CCSR should be an appropriate abstraction from the viewpoint of extensions. For example, the

implementation of a language itself can be regarded as a CCSR when an access method is provided.

However, the implementation is too low abstraction for most kind of extensions. Therefore, most

reective languages uses a meta-circular de�nition of the language as a CCSR, and provides ways

to modify/extend the de�nition.

Extensibility of a reective language can be classi�ed two groups. One is language facil-

ity extension, in which a new language facility can be used as if it is built-in, or the inter-

pretation of an operation of the language can be changed. For example, [39, 10] shows that

call-with-current-continuation of Scheme can be used in the base-level programs via the

meta-level programming. This kind of extensions is usually accomplished by modifying an inter-

preter running at the meta-level. The other is run-time system extension, in which the functionali-

ties of a run-time system of a language

1

can be modi�ed or added in order to improve the system in

performance. For example, an application speci�c scheduling that is implemented by reection is

shown in [23]. To provide this kind of extensions, a reective system has CCSRs in which the func-

tionality of a run-time system is implemented by several modules, and allows user to replace the

modules by user-de�ned ones written for his own purpose. In object-oriented reective languages,

1

Not only programming languages, but also various kinds of systems have the run-time extensibility. Reective

window system[29] and reective operating system[44] are the examples.

6



such modules are provided as objects so that extensions can be achieved in more encapsulated and

modular ways.

2.3 Reection for Dynamic Resource Management Systems

In this study, an object-oriented concurrent reective architecture to provide various DRM systems

for highly concurrent applications is proposed. This is because the extensibility of reection has

advantages to do this:

� The run-time system extensibility makes it easier to construct various DRM systems. In

other words, a reective system provides better abstraction to its run-time systems and

allows user to customize it in high-level language, compared to a language whose run-time

system implementation is opened. Moreover, the ability to customize the run-time system

in an object-oriented concurrent language helps to program DRM system on distributed

memory multicomputers that have concurrent and dynamic nature.

� Meta-level encapsulation makes both application programs and DRM systems more re-usable.

In a reective language, application speci�c DRM systems can be separately described, while

such DRM systems have been embedded into application programs without reection. As a

matter of result, descriptions of both applications and DRM systems become much indepen-

dent from each other.

� The language facility extensibility gives DRM systems more a�nity to application programs,

while preserving the separated descriptions. The language facility extension enables to obtain

application level information, and to selectively use user-customized run-time system, with

minimal modi�cations to application programs.

� Since the extensions are straightforwardly given to the language facilities, they can be re-

garded as extensions to the compiler. Provided sophisticated compilation techniques, appli-

cation programs with such extended language facility could be optimized.

Although reection has ability to provide good resource management systems, the ability largely

depends on its design of reective architecture; i.e., what abstraction is provided by reection.

Design issues of reective architectures is discussed in next chapter.
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Chapter

3

Distributed Memory Reective Architecture:

the Reective Architecture for Highly

Concurrent Computation

This chapter presents a reective architecture, called the Distributed Memory Reective Architec-

ture. Before explaining the architecture itself and its detail, Section 3.1 examines the requirements

to reective architectures with respect to our purpose|providing various dynamic resource man-

agement (DRM) systems for highly concurrent applications. Next the architecture is presented

in Section 3.2, and examples of simple reective programming are shown in Section 3.3. Finally,

Section 3.4 discusses how to implement the proposed architecture e�ciently.

3.1 Requirements from Dynamic Resource Management Systems

In a reective system, the design of the meta-level representation, or abstraction of the language,

determines how clearly user customization can be described. For example, consider describing

a user customized scheduling that gives speci�c concurrent objects high priority. If the level of

abstraction is too high|for example, each base-level object runs of its own accord even in the

meta-level's view, such scheduling is achieved via awkward programming such as explicit token

passing at the meta-level. On the other hand, if the provided abstraction is too low|for example,

activation frames are the meta-level representation, the user should get involved in low-level pro-

gramming to achieve such scheduling. The latter case may not be a great trouble if a sophisticated

abstraction, or a library, is provided onto the low-level representation at the same time. However,

such unnecessary low-level abstraction probably poses overheads because it often conicts with the

low-level optimizations. This observation leads to the following design principle: (1) the meta-level

should be appropriately designed with respect to the user's customization; and (2) no unnecessary

low-levels should not be exposed.

This section examines realistic DRM systems for highly concurrent applications, so that our

8



[class fibonacci ()

(script

(=> n @ reply-to

(cond ((< n 2) !n) ; ``!n" returns the value of n.

(t

;; each of the following two expressions creates a sub-object,

;; and sends an asynchronous message.

[[new 'fibonacci] <= (- n 1) @ Me]

[[new 'fibonacci] <= (- n 2) @ Me]

;; it waits return values from sub-objects.

;; returned values are bound to answer1 and answer2.

(wait-for

(=> answer1

(wait-for

(=> answer2

;; the sum of returned values are sent to the speci�ed object as an answer.

[reply-to <= (+ answer1 answer2)]))))))]]

Figure 3.1: Original Fibonacci Program

architecture provides appropriate abstraction with respect to the DRM systems.

3.1.1 Locality Control for Fibonacci

Firstly, we examine a simple example: the locality control for Fibonacci number computation. As

is shown in Figure 3.1, when a Fibonacci object is requested to compute �b(n) for n � 2, two

sub-objects are created for �b(n � 1) and �b(n� 2).

In this program, parallelism is gained by creating a sub-object at a remote node. Since commu-

nications with remote node much slower than the node-local operations, creation at remote node

does not always speeds up the computation. Hence it is su�cient to get the speed-up by only

letting objects at shallow levels of the tree do the remote creation. We call this scheme the locality

control for Fibonacci. (Figure 3.2)

Let us look how the locality control is accomplished in a non-reective language. We assume

that the language o�ers a way to cntrol in which node a new object is created|for example,

[:new class f:at :remoteg]. A reasonable solution would become a program shown in Figure

3.3; a condition (b) that checks whether it is at the deep level in the tree is added, and one of the

sub-object creation forms (c) has the remote-creation annotation.

However, this solution has the following problems:

Mixture of DRM codes and original codes. In Figure 3.3, the condition for original compu-

tation (a) and for the locality control (b) appear at the same level. Thus a change to either

original program or locality control policy could be harmful to the other.

For example, consider another locality control policy which determines the target nodes of

object creation by the object's depth in the tree, not by the argument n. To implement this,

an additional argument, which indicates the depth in the tree, should be passed along with

9



created at the same nodes

remote
creation

local
creation

Figure 3.2: Locality Control for Fibonacci

the message, and many modi�cations should be done on the program.

E�ciency. In the program in Figure 3.3, once the condition (b) holdes for an object, the condition

also holds for its sub-objects. Hence this condition is redundantly checked. Although the

overheads for condition checks is not large in this case, it could become considerable overheads

when the complicated condition is employed.

This problem can be avoided by giving two class de�nitions|the one checks the condition

(fib-R) and the other does not (fib-L)|as is shown in Figure 3.4. However, this makes the

problem `mixture of DRM codes and original codes' worse; two classes are de�ned for one

algorithm.

Incompatibility with other DRM. When this program is integrated into a large-scale appli-

cation, and is concurrently executed with other modules, the locality control should obey

higher level decisions. For example, when global load balance is good, remote creation is not

needed. Hence the object creation form (c) in Figure 3.3 should designate \if higher level

decision allows, this sub-object shall be created at a remote node," rather than designating

the every-time remote creation.

To summarize, the requirements to the reective systems are as follows:

� A mechanism to provide di�erent interpretation to the same expression can be speci�ed. (In

this case, the target node for an object creation form.)

� User speci�ed interpretation can be hierarchically de�ned. Some mechanism to override

lower-level decisions by the higher-level ones could be useful.

10



[class fibonacci ()

(script

(=> n @ reply-to

(cond ((< n 2)

(a)

!n)

((< n *threshold*)

(b)

[[new 'fibonacci f:at :localg] <= (- n 1)]

[[new 'fibonacci f:at :localg] <= (- n 2)]

(wait-for

(=> answer1

(wait-for

(=> answer2

[reply-to <= (+ answer1 answer2)])))

(t

[[new 'fibonacci f:at :localg] <= (- n 1)]

[[new 'fibonacci f:at :remoteg]

(c)

<= (- n 2)]

(wait-for

(=> answer1

(wait-for

(=> answer2

[reply-to <= (+ answer1 answer2)]))))))]

Figure 3.3: Locality Control without Reection

[class fib-R () ;; Fibonacci object for large n.

(script

(=> n @ reply-to

(cond ((< n 2) !n)

((< n *threshold*)

[[new 'fib-L f:at :localg] <= (- n 1)]

[[new 'fib-L f:at :localg] <= (- n 2)]

(wait-for

(=> answer1

(wait-for

(=> answer2

[reply-to <= (+ answer1 answer2)])))))

(t

[[new 'fib-R f:at :localg] <= (- n 1)]

[[new 'fib-R f:at :remoteg] <= (- n 2)]

(wait-for

(=> answer1

(wait-for

(=> answer2

[reply-to <= (+ answer1 answer2)]))))))))]

[class fib-L () ;; Fibonacci object for small n.

(script

(=> n @ reply-to

(cond ((< n 2) !n)

(t

[[new 'fib-L f:at :localg] <= (- n 1)]

[[new 'fib-L f:at :localg] <= (- n 2)]

(wait-for

(=> answer1

(wait-for

(=> answer2

[reply-to <= (+ answer1 answer2)]))))))))]

Figure 3.4: Another Solution to Locality Control for Fibonacci without Reection
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3.1.2 Dynamic Load Balancing for Parallel Search

Parallel search problem is one of the best-known examples where good dynamic load-balancing

policies are e�ective, because of its high-degree of concurrency and the simplicity of the algorithm.

The algorithm creates new objects as search subtasks

1

.

The load-balancing system must decide: (1) how to distribute tasks to all the nodes; and (2)

how to do so with minimal overhead. For this purpose, the load-balancing policies can generally be

classi�ed into centralized[12] and decentralized[32] one. In general, centralized policies can obtain

good load balance, but task distribution is slow. On the other hand, the decentralized policies can

quickly distribute tasks to all the nodes, but it incurs higher overheads to obtain a better balance.

Here, consider to construct a dynamic load balancing system that appropriately switches be-

tween these two policies according to the current state of the system: i.e., (1) when most nodes

have enough tasks, the centralized policy (balance) is used; and (2) when many nodes are idle, the

decentralized policy (distribute) is used. Furthermore, the system uses a customized scheduler to

invoke the load balancing processes in an appropriate intervals

2

. To do this, the scheduler has a

functionality to report after a certain number of tasks are scheduled.

Requirements to the reective architectures in order to construct such a system are as follows:

� The object creation mechanism can be dynamically changed in order to support two object

creation policies|distribute and balance.

It is possible to support these two policies with a single mechanism that checks the current

policy at each object creation. However, this approach poses a certain overhead because the

policy is scarcely changed.

� Node-local schedulers can be customized so that they have the sentinels, which will notify

after a certain number of tasks are scheduled.

� The way to collect current status of the system can be programmed in order to determine

which object allocation policy is used.

3.1.3 Scheduling for Best-First Parallel Search

Best-�rst seacrh problems are to �nd the answer in the search tree that gives the best value to

an given evaluation function. In parallel algorithms for best answer search problems, the order

of execution, or scheduling, is important. In this subsection, based on a parallelized A*-search

algorithm, requirements to reective architectures are pointed out.

1

Throughout the thesis, we call a node on a search tree as `task' or `subtask' to avoid confusion with processor

elements.

2

Such a customized scheduler example can be found in [32]. To adjust the load balancing intervals appropriately,

the notion of generation is introduced. Roughly, the interval of the generation updating, which invokes the moni-

toring process, is proportional to the number of tasks in the system. Detailed discussion on the generation can be

found in [32].
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In an A*-search algorithm, there is a list l to hold all intermediate states concurrently searching.

In one step of the search process, the most promising state is picked from l, and its successors are

generated and put into l. An intermediate state that can only give worse answers than the best

one found so far is removed from l. Parallelizations of the A*-search is straightforward: each node

has its own l, and runs above search process individually; the di�erence is that promising states

are exchanged between nodes in some way.

It is natural to think the A*-search algorithm can be described as an extension to a paral-

lel (exhaustive) search program in object-oriented concurrent languages. However, the following

di�culties arise to do so:

1. Since the scheduling order of objects is implicit, explicit scheduler must be introduced into the

program to prioritize the most promising task. The introduction of an explicit scheduling

entirely destroys the bene�ts of concurrent language. For example, in one step of search

process could be concurrent; in this case, context switching at synchronization explicitly

written makes program complicated and di�cult to understand.

2. Some languages may allow to claim a scheduling priority for each object. However, it is not

su�cient because the scheduling queue should be more freely accessed for task migration and

pruning. Speci�cally, promising tasks in a node may be get migrated to the other nodes,

and hopeless tasks (i.e., having bad estimation values) may be removed from the scheduling

queue before executing.

3. An improvement for pruning, which switches the scheduling strategy from the depth-�rst to

the breadth- and best-�rst, is di�cult to be implemented.

Above di�culties leads the following requirements to reective architectures:

� Scheduling mechanism should be customizable such as to support most-promising-task-�rst

scheduling.

� In addition, it should allow to switch several scheduling mechanisms dynamically.

� Elegant way to obtain application level information by the scheduler. Without interrupting

the control ow at the application level, such information should be obtained.

3.1.4 Object Allocation for N-Body Simulation

Some fast algorithms for N-body simulation has dynamic nature; i.e., data structure and message

patterns can only be determined at the run-time. Studies shows that better load balancing can be

obtained by specialized object allocation algorithm which uses the application-level knowledge[33].

In this subsection, object allocation for an algorithm for N-body simulation which is a parallelized

version of the one proposed by Barnes and Hut[4] is discussed.
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In that algorithm, a tree structure, which corresponds to the spatial distribution of particles,

is used. The entire space is divided into cells (or subspaces) with child cells that covers part of

the parent's space. The space is divided until all cells contains at most one corresponding particle.

Each cell supposed to have the total mass and the center-of-gravity. Using this tree structure,

force calculation for a particle can be approximated by using an non-terminating cell, which is

su�ciently apart from the particle, as a group of particles.

The object allocation problem to this algorithm is how to place objects so that the amount of

computation is evenly divided as well as the locality is persevered. This originates in the following

characteristics of the algorithm: (1) the amount of computation for each object varies (usually

depends on the number of particles in a cell), (2) the more communications taken place the closer

two cells placed, and (3) since the life-time of cell object is not persistent (a tree structure is

repetitively re-created for each force calculation), the load balancing should be done at allocation

time rather than after the tree is created.

Without reection, the allocation-time load balancing is accomplished by adding list of proces-

sor nodes into the other arguments such as list of particle data. Figure 3.5 shows the outline of the

program (only a script for tree construction is shown). Underlined expressions are added for the

object allocation. Controlled object allocation is done by following steps: (a) along with a message

for tree construction, an additional parameter node-list, which denotes a list of nodes processors

assigned to the cell, is passed; (b) when the cell has more than one particle, the node-list is di-

vided in order to assign each sub-cells; (c) upon the creation of each sub-cell object, creation target

node for it is explicitly speci�ed, and (d) the assigned nodes are passed with other arguments.

This program has the following problems and advantages:

Mixture of object allocation codes and tree construction codes. Codes for object alloca-

tion are embedded in the codes for tree construction. This prevents the program from easy

modi�cation. For example, consider a new allocation strategy that uses another informa-

tion (e.g., depth of the tree). To implement this strategy requires the modi�cations to the

program although the application level algorithm is not changed at all.

In reective systems, codes for object allocation should be placed at the meta-level, so that

the codes for tree construction should not be modi�ed by the modi�cation to the object

allocation strategies. Hence the requirement to the reective system is that such data for

object allocation can be passed at the meta-level along with the base-level arguments.

Application level information. Codes for dividing nodes according to the distribution of the

particles can be straightforwardly described because application level information such as

how particles are distributed can be directly available.

To describe this at the meta-level in a reective language as easily as the non-reective

language, easy ways to access to application level information should be provided.
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[class cell ()

(state [subcells := '()] : : : )

(script

;; script for tree construction

(=> [:create-tree space particle-list node-list

(a)

]

(if (= 1 (length particle-list))

;; it is a leaf cell

hset up with given particlei

;; it is an intermediate cell

(let* ((subspaces (divide-space space))

(subparticles

(mapcar #'(lambda (space) (projection particle-list space))

divided-spaces))

(subnodes

(divide-nodes subparticles (length particle-list) node-list))

(b)

)

(setf

subcells

(mapcar #'(lambda (subspace subparticle-list subnodes-list)

;; create a sub-cell

(let ((subcell [new cell f:at (first subnodes-list)g

(c)

]))

[subcell <= [:create-tree subspace subparticle-list

subnodes-list

(d)

]]))

subspaces subparticles subnodes))

hset up with created subcellsi))))]

Figure 3.5: Object Allocation for N -Body Simulation in Non-Reective Language

Hardware information. How to divide node-list is depends on the target hardware architec-

ture (especially on the network topology). Thus there should be a portable way to deal with

a set of nodes (e.g., partitioning) at the user's will.

3.1.5 Object Based Dynamic Load Balancing

Parallel applications, whose patterns of computation and data is known at the compile-time, can

be executed e�ciently by the static load-balancing. On the other hand, applications whose com-

putational pattern and data distribution is not known at compile time, dynamic load balancing

(DLB) should be done for e�cient execution. The importance of DLB has been broadly noticed,

and many studies on parallel (and practical) applications mention to it[33, 11, 42].

However, most works on DLB are application speci�c; i.e., how to collect load of nodes and how

to balance are depends on the application level information, data structure, and program codes.

On the other hand, this indicates that there are problems to support DLB at the language level.

Followings are the problems and consequent requirements.

� For language level DLB systems, it is di�cult to measure loads using application level infor-

mation. For example, a DLB mechanism that appears in [37] measures a load of a node only

by the usage of memory. Other systems would use number of objects, number of active (i.e.,

running) objects, or number of messages to be processed.

It is usual that better load values can be measured by using application level information.
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Thus the requirement to the reective architecture is to easily incorporate application level

information.

� Migration strategy|which object is moved to which node|is �xed, or far from exible.

In application speci�c DLB systems, migration strategy greatly varies. To support such

variety of strategies the mechanism to determine migrating objects and target nodes should

be opened to the user.

� Low-level techniques for migration may reduce cost for migration. For example, a mechanism

proposed in [37] reduces the overheads of resolving (updating the references to migrated ob-

jects) by doing migration process with the node-local garbage-collection. To take advantages

of such low-level optimizations, abstractions provided for migration should not conict with

them.

3.2 The Distributed Memory Reective Architecture

Based on the requirements discussed in the previous section, a new reective architecture, called the

Distributed Memory Reective Architecture, is designed. This section describes features of

the architecture: mainly the language facility extensibility and the run-time system extensibility.

3.2.1 Overview

Firstly, the overview of the Distributed Memory Reective Architecture is described. Similar to

the Hybrid Group Architecture (HGA)[24], the proposed architecture allows per-object basis re-

ection through the metaobjects, and group basis reection through the shared meta-level objects.

However, our architecture distinguishes itself from the HGA in the notion of nodes (the abstraction

of the processor elements on the distributed memory multicomputer) explicitly introduced at the

meta-level. Figure 3.6 shows an overview. The key features are as follows:

� Notion of nodes is explicitly available at the meta-level while it is still transparent to the

base-level computations.

� Customizable meta-level objects, including node manager, scheduler, andmetaobjects,

provide abstractions of the run-time system relevant to dynamic resource management.

� The chain of executors, which gives operational interpretation of base-level scripts, pro-

vides dynamic and localized language facility extension.

� Interfaces to low-level systems are provided so that information on (not customizable)

run-time systems|memory usage, for example|can be used in DRM systems, and that

facilities such as object migration and timer interrupts can be used.
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Figure 3.6: Overview of Distributed Memory Reective Architecture

3.2.2 Language Facility Extension with Chains of Executors

Language facility extension is realized by the Chains of Executors, which provide interpretations

of base-level programs with dynamic and localized customization. Its characteristics are as follows:

Operational De�nition: An executor in a chain de�nes how an interpretation of each base-level

expression goes in an operational way. The execution of a base-level expression is represented

as a message to executors at meta-level. The message contains all information to evaluate

the expression: the expression itself, an environment, a continuation, and so forth. Figure 3.8

shows a part of the the primary executor's de�nition. This de�nition is almost same to the

ones of evaluators in ABCL/R[40] and ABCL/R2[24], which are meta-circular interpreters

de�ned in a continuation passing style(CPS).

Since interpretations are given in an operational way, it is possible to de�ne dynamic inter-

pretations; i.e., the interpertation for an expression can be changed according to a dynamic

condition. This ability distinguishes the operational extensions to the compile-time exten-

sions.

Hierarchical Scope: Interpretation of a base-level script is de�ned by a sequence of executors at

the meta-level. Table 3.1 shows names of executors, their containers, and scopes of controls.

Each executor in the sequence de�nes only interpretations of expressions specialized to the

objects in the scope of the executor; interpretations of other expressions are de�ned by

another executors at higher rows in the hierarchy. This is done by a delegation mechanism.

Usually, executors except for the primary executor de�ne no speci�c interpretations, and the

primary executor does for all expressions.
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Executor Name Container Scope

primary executor | all baselevel objects

class executor class object objects in the class

node executor node manager objects in the node

object executor metaobject corresponding base-level object

Table 3.1: Hierarchy of Executors Chain

Figure 3.7 shows how a script execution is delegated through executors. Consider there are

base-level objects foo1 and foo2 in class Foo, and bar in class Bar. Objects foo1 and bar reside

at node #1, and object foo2 resides at node #2. In this case, script execution for each object

is taken place along the bold arrows in Figure 3.7. For example, a script execution message

for foo1 is delegated in the following order: object executor foo1, node exectuor #1, class Foo

executor, and the primary executor.

Dynamic Replacement: Any executor in a chain except for the primary one, can be dynamically

replaced. This is accomplished by sending a request to a container object, or by customizing a

container object to replace its executor dynamically. This facilitates that language extensions

in which the functionality of an operation changes dynamically, but not frequently. For

example, consider a system that counts number of variable references for speci�ed periods

of time. Such a system can be realized by de�ning an executor which increases a counter

whenever a variable is referred. Then the executor is used instead of the original one only

for the speci�ed periods. In this realization, the interpretation of variable reference in non-

speci�ed periods are de�ned by the original executor, and no unnecessary overheads are

imposed on the variable references.

The reader may have a fear that the operational style extension could not be implemented

e�ciently. In fact, several reective systems which have the language extensibility de�ned in

operational style are implemented, and they prove that they are slow in the order of magnitude

compared to the corresponding implementations of non-reective languages[23]. However, more

e�cient implementation could be possible with sophisticated compilation techniques. Basic ideas

for compiling base-level scripts with executors are discussed in Section 3.4.2.

3.2.3 Runtime System Extension with Meta-level Objects

3.2.3.1 Node Manager

Node manager is a meta-level object that represents a processor node. Any node manager can

be referred from any object in the system by a pseudo variable or a function call. The forms

18



node #1 node #2

class Foo
executor

class Bar
executor

node #1
executor

node #2
executor

foo1 specific
executor

bar specific
executor

foo2 specific
executor

↑foo1 ↑bar

class object
Foo

node
manager1

class object
Bar

↑foo2

node
manager2

executor

meta-level
objects

delegation path

knows-about
relationship

primary
executor

Figure 3.7: Example of Delegation Path

node-manager and (node-manager-of n) give references to the node manager where executing

object resides and the node manager at node n, respectively. The de�nition of the default node

manager is shown in Figure 3.9.

The major purpose of a node manager is to hold meta-level objects shared by members in the

same node. By default, it holds two meta-level objects: scheduler and node-executor. In addition,

arbitrary meta-level objects and information can be held by customized node managers.

The other role of a node manager is local object creation. By default, execution of an object

creation form ([new : : :] form) at the base-level produces a request message to the node manager.

Then the node manager decides where the new object should reside; if it is local, the node manager

itself creates a metaobject. Otherwise, it selects a remote node, and forwards the request to the

node manager at the node.

To construct dynamic resource management systems, user de�ned node manager is often used

to keep track of load information of nodes, exchange load information, decide scheduling/object

allocation policies, and so forth.

3.2.3.2 Scheduler Object

Scheduler is a meta-level object that controls execution order of base-level objects in a node where

the scheduler resides. In our architecture, the de�nition of scheduler can be customized; but the

problem is what abstraction level the scheduler should provide. As we have observed in Section 3.1,

an abstraction level that the scheduler controls the execution order and time quantum of objects
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[class primary-executor ()

(script

;; for object creation forms

(=> [:do [:new class arguments annotation] env id] @ cont

;; send a creation request to a node manager

[node-manager <= [:object-creation class arguments annotation] @ cont])

;; for past type message forms

(=> [:do [:send-past target body reply-to] env id] @ cont

;; send a metalevel message to the metaobject of target

[target <= [:message body relpy-to [den id]]]

[cont <= nil])

;; for variable references

(=> [:do [:variable name] env id] @ cont

;; return a value of name in env.

[cont <= (lookup name env)])

.

.

.

)]

Figure 3.8: Abridged De�nition of a Primary Executor

[class node-manager (scheduler-class executor-class metaobject-class)

(state [scheduler := [new scheduler-class]]

[executor := [new executor-class

[new 'primary-executor nil]]]

[metaobject-class := meta-object-class])

(script

(=> [:scheduler] !scheduler)

(=> [:set-scheduler new-scheduler] ; replacement of scheduler

[scheduler <== [:copy-contents-to new-scheduler]]

(setf scheduler new-scheduler))

(=> [:executor] !executor)

(=> [:set-executor new-executor] ; replacement of node executor

(setf executor new-executor))

(=> [:new class arguments [&key (metaobject-class metaobject-class)

&rest annotation]]

![den [new metaobject-class class arguments annotation]]))]

Figure 3.9: De�nition of a Node Manager

is enough for most dynamic resource management systems.

3

A default scheduler, whose de�nition is presented in Figure 3.10, has a state variable that holds

active objects. The variable is an abstraction of an active object queue in a node.

Basically, a scheduler receives an execution request by a message [:request-execution

thunk], where thunk is data structure holding enough information to execute. The execution

is started by sending a context data (e.g., an expression, an environment, etc.) to an object

speci�c scheduler.

3

Another possible abstraction level would be that implementation of a message transmission|whether it is exe-

cuted as a procedure call like sequential languages[36], or as a enqueue operation to the target object|is controlled

by a scheduler. However, abstraction level is so low that it makes the architecture implementation speci�c, although

it would improve performance in some cases.
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[class scheduler ()

(state (active-object-queue (make-queue))

(status :idle)

time-quantum)

(script

(=> [:request-execution thunk]

(if (eq status :idle)

(schedule-thunk thunk)

(queue-put thunk active-object-queue)))

(=> [:yield]

(schedule-thunk (queue-get active-object-queue)))

(=> [:yield-check thunk]

(if (zerop (decf time-quantum))

(progn ;; time quantum is expired.

(queue-put thunk active-object-queue)

(schedule-thunk (queue-get active-object-queue)))

(schedule-thunk thunk :time-quantum time-quantum)))

(=> [:finished]

(if (queue-empty? active-object-queue)

(setf status :idle)

(schedule-thunk (queue-get active-object-queue)))))

(routine

(schedule-thunk (thunk &key (next-quantum *default-time-quantum*))

(setf status :busy

time-quantum next-quantum)

(let* ((context (thunk-context thunk))

(id (thunk-id thunk))

(executor [id <== [:executor]])

;; final-cont noti�es the scheduler and the metaobject

;; of the end of the script execution.

(finale-cont [new 'final Me id]))

[executor <= [context . annotation] @ final-cont])))]

Figure 3.10: De�nition of Default Scheduler
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When a script execution terminates, one of the following three messages is sent to the scheduler:

:yield in case of the script execution should be suspended, :yield-check for preempting the script

execution, and :finished in case of the script execution is �nished.

Typical customizations of the scheduler are on the scheduling order and the scheduling time.

As for the scheduling order, it is controlled by using priority queue. In this case, priority value is

based on application level information explicitly passed from the base-level programs, or meta-level

information that the metaobject holds. As for the scheduling time, time quantum is controlled

based on some policy. Also, it is based on application or meta-level information.

3.2.3.3 Metaobject

Metaobject is a meta-level object that represents structural and object-speci�c aspects of an asso-

ciated base-level object. It is designed so that the user can do customizations/introspections like

follows: (1) the message queue can be inspected|this facility is useful to obtain the load value

of individual objects; (2) the state variables can be inspected|useful to obtain application level

information from the meta-level; and (3) behaviors to the events on the base-level object (i.e.,

behaviors to a message reception, invocation of a script execution, and end of script execution) can

be customized|useful to attach information into an executable script and to record information,

which is used for DRM systems.

Based on this observation, the de�nition of metaobject is in an event driven style(Figure 3.11).

Basically, this de�nition is similar to the one in ABCL/R[40] and ABCL/R2[24]. The major

di�erence is that our de�nition has a reference to a class object to hold the script data, while

metaobjects directly hold the script data in ABCL/R and /R2.

3.2.3.4 Class Object

Class object is a meta-level object that holds resource shared by objects belongs to the class. By

default, it serves just as a holder of the class executor.

In some reective languages, the mechanisms for the method dispatching can be altered by

regarding a class object as a unit of the method dispatching[17]. In this study, however, such

extensibility is beyond our focus, although our architecture can support such extensibility by

letting a class object process the method dispatching. This is because it has little to do with our

aim, which is to provide e�cient DRM systems by the reection.

The de�nition of default class object is shown in Figure 3.12. It has one state variable executor

to hold a class executor, and two scripts to reply/change the class executor.

3.2.4 Interface to Run-time Systems

The meta-level objects, such as the scheduler, are abstractions of the modi�able components of

the run-time system. Not only the modi�able, but also interface to non-modi�able components is
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[class metaobject (class arguments

&key (executor 'default-object-executor))

(state [message-queue := (make-queue)]

[class := class]

[state := (make-state-memory class arguments)]

[executor := [new executor]]

[mode := ':dormant])

(script

;; arrival of a message

(=> [:message body reply sender]

(queue-put (make-message body reply sender) message-queue)

(when (eq mode :dormant)

(accept-one-message)))

;; end of a script execution

(=> [:finished]

(if (queue-empty? message-queue)

(setq mode :dormant)

(accept-message)))

;; other meta-level operations on an object (omitted)

.

.

.

)

(routine

;; acceptance of a message

(accept-one-message ()

(let* ((m (queue-get message-queue))

(c (find-script m class state))

(thunk (make-thunk :context c :id Me))

(scheduler [node-manager <== [:scheduler]]))

(setq mode :active)

[scheduler <= [:request-execution thunk]])))]

Figure 3.11: De�nition of Default Metaobject

de�ned in our architecture. For example, functions to utilize the run-time system services such

as object migration, and to obtain the information on hardware (e.g., network con�guration) are

de�ned. Since the interface is de�ned as non-reective (i.e., not modi�able) style, many low level

optimizations can be applied. Detailed description of the interface appears in Appendix C.

3.2.4.1 Object Migration

In object oriented-concurrent languages, since each object requires computational power, some

load-balancing system may resort to the object migration. The interface provided in our archi-

[class default-class-object (&key (class-executor 'default-class-executor))

(state [executor := [new class-executor [new 'primary-executor]]])

(script

(=> [:executor] !executor)

(=> [:set-executor new-executor]

(setf executor new-executor)))]

Figure 3.12: De�nition of Default Class Object
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tecture is only to utilize the object migration functionalities that are provided by the run-time

system. In other words, mechanism of the object migration cannot be altered like some reective

systems[26].

Actually, provided primitives are to direct that what object is to migrate to which node, and

so forth, as appear in Appendix C.

3.2.4.2 System Level Information

Systems level information|state of the hardware and the low-level run-time system|is a good clue

for the decision-making in user-de�ned DRM systems. For example, information from garbage-

collecting system, such as amount of available memory in a node, is a good approximation of the

load of the node.

Another kind of information that is necessary to the DRM programming is about the hardware

con�guration. In particular, network topology is important to have good application speci�c data

(object) distribution. In our architecture, the network topology can be accessed in \mapped" data

structure. That is, mapping functions between a real network topology and several well-known

topologies are provided.

3.3 Reective Programming Examples

To explain how to describe user de�ned DRM systems in our architecture, this section presents

two simple examples. The one is a simple dynamic load balancing system, in which a customized

scheduler, a customized node-manager, and a customized node-executor are de�ned at each node.

The other is a heaviest-object-�rst scheduling system, in which a customized scheduler is de�ned

at each node and a customized metaobject is de�ned for each base-level object. More practical

examples can be found in Chapter 4.

3.3.1 Simple Dynamic Load Balancer

Simple dynamic load balancing (DLB) system is an example for the cooperation of the language

facility extension and the runtime system extension. Figure 3.13 is an overview of the system.

The outline of this DLB scheme is as follows:

(a) When a node (say node A) becomes idle, the scheduler of the node noti�es the node manager

at the same node.

(b) The node manager randomly selects another node (say node B), and sends a request to it.

(c) The node manager B remembers the node A, and replaces its node executor with the remote

create executor.
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Figure 3.13: Overview of Simple Dynamic Load Balancing System

(d) When an object creation form is executed at node B, the remote create executor forwards the

object creation request to the node manager A; consequently, a new object is created at the

node A.

The de�nitions of the customized meta-level objects are shown in Figure 3.14. Since most parts of

codes are same to the default ones, only customized parts are shown here.

3.3.2 Heaviest Object First Scheduling

As an example of the runtime system extension, a heaviest object �rst scheduling system, which

schedules an object that has the longest message queue �rst, is presented.

In the Distributed Memory Reective Architecture, the scheduler object controls the node-

local scheduling. The design of the scheduler allows a straightforward extension for such cus-

tomized scheduling. The heaviest-object-�rst scheduling is realized by a customized scheduler and

a metaobject (Figure 3.15). The key customizations are as follows:

� The scheduler has a priority queue, instead of a FIFO queue in the default de�nition.

� Before the scheduler puts a thunk into the active object queue, it gets a priority value from

the metaobject that creates the thunk via a message [:message-queue-length].

� The metaobject has the script for a message [:message-queue-length] which returns the

length of its message queue.
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[class simple-LB-scheduler ()

(state : : : )

(script

(=> [:finished]

(if (queue-empty? active-object-queue)

(progn (setf status :idle)

[node-manager <= [:become-idle]]

(a)

)

(schedule-thunk (queue-get active-object-queue)))))]

[class simple-LB-node-manager ( : : : )

(state : : :

[idle-nodes := '()]

[local-create-exec := [new 'delegating-executor]]

[remote-create-exec := [new 'remote-create-executor]]

[executor := local-create-exec])

(script

(=> [:become-idle]

[(node-manager-of (random)) <= [:notify-idle Me]]

(b)

)

(=> [:notify-idle idle-node-manager]

(push idle-node-manager idle-nodes)

(if (eq executor local-create-exec)

(setf executor remote-create-exec)

(c)

))

(=> [:get-idle-node]

!(pop idle-nodes)

(if (null idle-nodes)

(setf executor local-create-exec))))]

[class remote-create-executor (primary-executor)

(script

(=> [:new class arguments annotation] @ cont

(let ((idle-node [node-manager <== [:get-idle-node]]))

[idle-node <= [:new class arguments [:at :local annotation]]

@ cont]))

(d)

)]

Figure 3.14: De�nition of Simple Dynamic Load Balancer

3.4 Implementation Issues

Elaborate dynamic resource management systems that are constructed at the meta-level of a reec-

tive architecture will prove fruitless if the reective implementation poses serious overheads. This

section discusses implementation issues of proposed reective architecture, especially of e�ciency.

3.4.1 Runtime System Extensions

Compared to the language facilities extensions, overheads due to the runtime system extensions are

less harmful. The reason is that a run-time extension usually replaces a run-time module, which

has (relatively) high functionality. Assuming that the user de�ned run-time module is compiled

as e�ciently as the default one, overheads from the extensibility (e.g., indirect references) are

negligible. (On the other hand, a language facility extension causes replacement of primitive

operations, each of which is usually implemented in a few machine instructions.)

However, reective facilities for the run-time system extension impose other overheads, which
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[class HOF-scheduler ()

(state [active-object-queue := (make-priority-queue)])

(script

(=> [:request-execution thunk]

(if (eq status :idle)

(schedule-thunk thunk)

(let ((p [(thunk-id thunk) <== [:message-queue-length]]))

;; message queue length is used as a priority

(queue-put thunk active-object-queue :priority p)))))]

[class HOF-metaobject ( : : : )

(state [message-queue := (make-queue)]

: : : )

(script

(=> [:message-queue-length]

;; message queue length is answered

!(queue-length message-queue))

: : : )]

Figure 3.15: De�nition of Heaviest Object First Scheduling System

are less obvious|interference with low-level optimizations. Suppose a reective system provides a

user customizable memory management mechanism. In the system, interfaces between the memory

management system (e.g., how to allocate and reclaim memory fragments) are de�ned, and a

default memory management module, which can be replaced with the user-de�ned one is provided.

Here, a system with a user-de�ned module is less e�cient than a (non-reective) system with

integrated and optimized memory management module (which can not be replaced), although

the former system could be as e�cient as the default system. This is because letting the system

be exible|making its memory management replaceable|poses overheads. For example, the

system forces application programs to do their memory allocation via function calls, which can be

done in a few machine instructions in an optimized implementation with an integrated memory

management scheme. In fact, SML/NJ implementation requires only a few instructions to allocate

a heap memory fragment[2].

Based on this observation, the design of the run-time system extension is conservative; i.e.,

only the run-time system extensions that are relevant to dynamic resource management systems

are supported. As a result, other run-time facilities can not be replaced in order that as many

low-level optimization techniques are applied as possible. For such design, the way to access the

integrated modules (which can not be replaced/modi�ed) from user de�ned modules should be

supplied. In our architecture, a set of primitive functions are de�ned to do so. For example, a

metaobject should search an executable script for a given message. To do this, a primitive function

(find-script hmessagei) is provided. A call to this function can be compiled into a table look-up

operation, provided a compiler with enough knowledge for optimization.
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3.4.1.1 Replication of Shared Meta-Level Object

A class object is a meta-level object whose primary purpose is to hold globally shared data|the

class-executor in a state variable. If a class object changes its class executor, the change should

a�ect how the class member objects interpret their scripts. In the de�nition, the current class

executor is inquired for each script execution step. Thus naive implementations, in which the

inquiry is represented as a remote (i.e., costly inter-node) messages, are too sluggish.

However, access to a class object are biased|frequency of modi�cations of the class executor is

far lower than that of references. Hence it can be implemented e�ciently by making a replication

of class executors at each node

4

. Regarding a class object as a globally shared variable, the

implementation using the replications can be achieved with some consistency protocol.

3.4.2 Language Facility Extensions

As a way for language facility extension, meta-level interpretation imposes overheads that can

not be neglected. Previous studies regarding implementation of reective systems (which are

categorized for language facility extension, in this context) shows that the reective computations

usually slower than corresponding non-reective computations in the order of magnitude.

In the course of language facility extension, smaller unit of operations is replaced with user-

de�ned modules (or objects). A mechanism that makes such small operations replaceable forces

relatively costly interfaces. For e�cient implementation, as a matter of course, it is inevitable to

remove such costly interfaces between replaceable modules|which is so called collapsing of meta-

levels. Several studies have tried to do this, but as far as we know, few successful and practical

solutions are presented. (One exception might be metaobject protocol based compilers, but their

purpose and approach are di�erent to ours, as will be discussed in Section 5.2.)

Here, we will show that such collapsing is possible to our architecture, while preserving its

dynamic extensibility. Firstly, how a base-level script and a customized executor de�nition are

collapsed by the partial evaluation is presented in the following subsection. Next a scheme to

use (fully) compiled code while preserving the semantics of dynamic replacement of executors is

explained.

3.4.2.1 Compilation to Collapse Meta-Level

Firstly, we focus on how to compile a base-level program with a �xed chain of executors(i.e.,

executors in a chain are not replaced dynamically). On this assumption, it is not so di�cult to

compile out the meta-level interpretations by the aid of sophisticated compilation techniques, like

4

In the actual implementation, class objects will serve as abstraction to change compiled codes using mecha-

nisms described in Section 3.4.2, and messages asking current executor will be eliminated by the partial evaluator.

Replication technique is still applicable to such a case, by regarding a update operation as replacement of compiled

codes.
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the partial evaluation. Since several studies have already shown that this is possible[31, 3], a small

example is shown here.

Let us look the object-creation form that appears in Section 4.1.1:

[new 'fibonacci f:controlg]

In addition to the expression to be compiled, the compiler requires a set of executors. In this case,

class- and node-executors are default ones|delegating executors, and either fib-main-executor

or fib-tip-executor is used as an object-executor. Hence the two compiled codes are generated

corresponding to object-executors. (Hereafter, we call each compiled code \main-code" and \tip-

code," according to the object executor compiled with.)

Here, only the compilation of the main-code is explained. In the script of fib-main-executor,

an object creation is de�ned as follows:

(=> [:do [:new class arguments [:control . annotation]] env id] @ cont

(let* ((number (lookup 'n env))

(extended-annotation

(if (< number *threshold*)

[:at :local :executor 'fib-tip-executor . annotation]

annotation)))

[[node-manager <== [:executor]]

<= [:do [:new class arguments extended-annotation] env id]

@ cont]))

The original expression is expanded with above de�nition. Expanded code

5

becomes as follows:

(let ((class 'fibonacci) (arguments '())

(annotation '()) (env ha compile-time environmenti)

(id hthe ID of a metaobjecti) (cont hcont. to next operationi)

(parent hthe Fibonacci class objecti))

(let* ((number (lookup 'n env))

(extended-annotation

(if (< number *threshold*)

[:at :local :executor 'fib-tip-executor . annotation]

annotation)))

[[parent <== [:executor]]

<= [:do [:new class arguments extended-annotation] env id]]))

A partial evaluation of (lookup 'n env) gives an expression n. After substituting variables

de�ned in the outer let form, the following code is generated:

(let* ((number n)

(extended-annotation

(if (< number *threshold*)

[:at :local :executor 'fib-tip-executor]

'())))

[[hFibonacci class objecti <== [:executor]]

<= [:do [:new 'fibonnaci '() extended-annotation]

hthe environmenti hID of metaobjecti]

@ hcont. to next operationi])

Since most meta-level objects|the class object for Fibonacci, the node manager, and those

of class- and node-executors|are not customized, partial evaluation of the following expression

generates a primary executor:

5

Since the annotation f:controlg matches to the pattern [:control . annotation], the value annotation is

an empty list.

29



[hFibonacci class objecti <== [:executor]]

Thus the expression becomes as follows:

(let* ((number n)

(extended-annotation

(if (< number *threshold*)

[:at :local :executor 'fib-tip-executor]

'())))

[hprimary executori

<= [:do [:new 'fibonnaci '() extended-annotation]

hthe environmenti hId of metaobjecti]

@ hcont. to next operationi])

The partial evaluator can not expand the expression [hprimary executori <= [:do : : : ]] be-

cause the value of extended-annotation is not statically determined. Instead, it splits the body

form of let* at the if expression. Resulted code is as follows:

(let ((number n))

(if (< number *threshold*)

[hprimary executori

<= [:do [:new 'fibonnaci '() [:at :local :executor 'fib-tip-executor]]

hthe environmenti hId of metaobjecti]

@ hcont. to next operationi]

[hprimary executori

<= [:do [:new 'fibonnaci '() '()] hthe environmenti hId of metaobjecti]

@ hcont. to next operationi]))

Since the compiler knows that above two message transmission forms are for object creation,

they are compiled as same as the primitive object creation forms. Finally, we get the following

form that switches two object creation forms according to a dynamical condition:

(if (< n *threshold*)

hlocal creation of fibonacci with tip-codei

hremote creation of fibonacci with main-codei)

3.4.2.2 Dynamic Code Replacement: Compilation Living with Dynamic Language

Customization

Thus far, the meta-level programs can be compiled out assuming that a chain of executors is not

dynamically alter its elements. The rest problem is how to deal with a chain of executors whose

elements are dynamically replaced. This section describes a scheme, called the Dynamic Code

Replacement, to e�ciently do this.

Dynamic Code Replacement is a scheme to synchronize a replacement of the compiled code

with the replacement of an executor on the assumption that every script has complied codes for

each chain of executors (Figure 3.16). This assumption is acceptable because we are assuming the

whole program is compiled at a time.

6

However, when an executor in a chain is dynamically replaced, how do we statically determine

which object is used as an executor? Since the `containers' of an executor is a subject of user-

customization, it is di�cult to predict which object becomes as an executor at run-time.

6

This assumption may be violated under interactive programming environments. Our scheme is still applicable

by resorting to dynamic compilation techniques like which is developed for Self[7].
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Figure 3.16: Synchronization of Compiled Codes with Replacement of Executors

A naive solution would regard any objects in any class as an candidate for an executor. However,

this approach is unacceptable for the combinational explosion. Thus, we must predict which object

is used as an executor more precisely. To do this, several approaches are applicable:

User declaration: By compelling the user who customizes containers to declare possible list of

classes which may be used as executors. This lets the compiler easily know the possible

combination.

Subclass or subtyping: When the language has an inheritance mechanism or a (strong) type

system, an object used as an executor should be in a subclass/subtype of the default-object

class/type. In this case, number of candidates for executors is fairly small.

Static analysis: Even in customized de�nitions of the containers, classes of objects that are used

as executors can often be statically analyzed. For example, set of node executor classes

used by simple-LB-node-manager in the de�nition of Figure 3.14 is statically determined

as delegating-executor and remote-create-executor.
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Chapter

4

Evaluation

This chapter shows evaluation of our proposed reective architecture. It is evaluated in two ways:

(1) by describing the resource management systems that are discussed in Section 3.1, and comparing

to the other (non-reective) approaches, and (2) by experiments on the prototype system that

implements some resource management systems shown in (1).

4.1 Descriptions of Dynamic Resource Management Systems

In this section, descriptions of dynamic resource management systems in our reective architecture

are presented. Compared to the non-reective approaches, the advantage of our architecture is also

discussed.

4.1.1 Locality Control for Fibonacci

Firstly, the solution to the locality control for Fibonacci computation that is presented Section

3.1.1 is shown. The solution shown in Figure 4.1 consists of a base-level class de�nition, which is

almost same to the original one except for a few annotations, and de�nitions of two object speci�c

executors. By default, a Fibonacci has fib-main-executor as an object-speci�c executor, because

of the annotation f:object-executor 'fib-main-executorg. The executor fib-main-executor

only de�nes behaviors to object creation forms; all the other behaviors are de�ned by the other

evaluators in a chain. The �rst script de�nes the execution of an object creation form with

f:controlg annotation, which corresponds the form [new 'fibonacci f:controlg] at (a). In

this script, a condition (< n *threshold*) is checked; when it holds, two annotations :at :local

and :executor 'fib-tip-executor is added in order to create a new object at the local node with

executor fib-tip-executor. Otherwise, no annotations are added, which means that decisions on

the object creation is up to a node executor; thus it may be created at a remote node. The second

script de�nes the execution of object creation without f:controlg annotation, which corresponds

the form [new 'fibonacci] at (b). In this case, a new object is created at the local node.
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Once a condition (< n *threshold*) holds, a Fibonacci object with fib-tip-executor is

created. For such an object, the execution of object creation forms are de�ned by the �rst

script of 'fib-tip-executor. The script adds two annotations :at :local and :executor

'fib-tip-executor in order to create a new object at the local node and with the same executor.

Hereafter, let us look how the problems of the non-reective approach are solved in our archi-

tecture:

1. Code for the resource management is clearly separated from the original algorithm. In this

example, decisions and designations for locality control are placed in the executors. Therefore,

both the application and the resource management programs can be easily modi�ed.

2. Minimal redundancy for the application level description. In our approach, di�erent compiled

codes can be obtained by compiling a Fibonacci object program with di�erent executors.

3. Better integration with other resource management policies. In this example, the object al-

location strategy for Fibonacci computation can be integrated with the node-level strategy.

This is achieved without code modi�cation. For objects whose n is larger than *threshold*,

the executor fib-class-executor just delegates a message to the node-manager's one, al-

lowing node-level locality control.

4. Redundant checks can be avoided. In this example, once the condition (< n *threshold*)

holds for an object, it also holds for all sub-objects. When the condition holds for a Fibonacci

object, objects created by that object will have the fib-tip-executor, which does not check

the condition further. Furthermore, sophisticated optimization technique may make possible

to implement Fibonacci computations after the condition has held by the recursive function

calls like sequential languages.

4.1.2 Dynamic Load Balancing for Parallel Search

Here, a dynamic load balancing system for parallel search problems is presented. The overview of

the system is shown in Figure 4.2. Roles of meta-level objects are as follows:

� Object decision maker manages the \generation," collects load information from all node

managers, and decides which of the balancing policies should be used. If it decides to use

the balance, this object also determines at which node a new object will be created for each

node.

� Object scheduler is augmented to deal with sentinels, which is a boundary between genera-

tions. When the scheduler founds a sentinel at the top of the scheduling queue (i.e., all the

tasks before the sentinel have been processed), it noti�es the node manager.
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[class fibonacci ()

(script

(=> n @ reply-to

(cond ((< n 2) !n)

(t

[[new 'fibonacci f:controlg]

(a)

<= (- n 1)]

[[new 'fibonacci]

(b)

<= (- n 2)]

(wait-for answer1

(wait-for answer2

[reply-to <= (+ answer1 answer2)]))))))]

f:object-executor 'fib-main-executorg]

;; Object speci�c executor for larger n.

[class fib-main-executor ()

(script

;; With :control annotation, check the condition.

(=> [:do [:new class arguments [:control . annotation]] env id] @ cont

(let* ((number (lookup 'n env))

(extended-annotation

(if (< number *threshold*)

;; When the condition holds, created object will use fib-tip-executor.

[:at :local :executor 'fib-tip-executor . annotation]

annotation)))

[[node-manager <== [:executor]]

<= [:do [:new class arguments extended-annotation] env id]

@ cont]))

;; Without :control annotation, create locally.

(=> [:do [:new class arguments annotation] env id] @ cont

[[node-manager <== [:executor]]

<= [:do [:new class arguments [:at :local . annotation] env id]

@ cont])

;; All the other messages are delegated.

(=> any-other-message @ cont

[[node-manager <== [:executor]] <= any-other-message @ cont]))]

;; Object speci�c executor for smaller n.

[class fib-tip-executor ()

(script

;; All object creations are taken place at local node.

(=> [:do [:new class arguments annotation] env id] @ cont

[[node-manager <== [:executor]]

<= [:do [:new class arguments

[:at :local :executor 'fib-tip-executor . annotation]]

env id]

@ cont])

;; All the other messages are delegated.

(=> any-other-message @ cont

[[node-manager <== [:executor]] <= any-other-message @ cont]))]

Figure 4.1: Solution to the Locality Control in Distributed Memory Reective Architecture
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Figure 4.2: Dynamic Load Balancing System for Parallel Search

� Object node manager has two roles: (1) upon receiving a message to change the load balancing

policy, it replaces current node executor; and (2) it puts a sentinel into the scheduling queue

in order to �nd the boundary of a generation.

� Executors balance executor and distribute executor implement two load balancing policies|

balance and distribute, respectively. Balance executor requests a node where new object will

be created to the node manager, while distribute executor randomly chooses a node.

In this system, target nodes of object creations are controlled for load-balancing. When a

search task is to create its subtask at the base-level, an object creation request is sent to the node

executor at the meta-level. A target node of this object creation is determined by the current node

executor, which is either balance or distribute.

Recalling the requirements listed in Section 3.1.2, the contribution of our reective architecture

is as follows:

� Chains of executors allows two object creation mechanisms switched according to the load

balancing status of the system.

� The scheduler that can deal with sentinels can be implemented by extending the default

scheduler de�nition.
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[class search-task ()

(script

(=> [:search hparametersi] @ reply-to

(if his it a goal?i

(progn

f:found-answer hvalue of the answerig

(a)

[reply-to <= [:answer hparametersi]])

(let ((children-parameters (generate-next-level hparametersi)))

(dolist (child-parameter children-parameters)

(let ((estimation hestimated value of the childi))

[[new 'search-task f:estimation estimationg

(b)

]

<= [:search child-parameter]]))))))

f:metaobject 'best-answer-metaobjectg

f:class-executor 'best-answer-executorg]

Figure 4.3: Base-level Program for Best Answer Search Problem

� The status of the system is gathered by the object decision-maker, which is user-de�ned

meta-level object.

4.1.3 Scheduling for Best-First Parallel Search

A scheduling system for best-�rst parallel search problems is described on our reective architec-

ture. In this system, the base-level program (Figure 4.3) is a straightforward extension to the

parallel (exhaustive) search problem. It is extended in following points: (a) when an answer is

found, the value of the answer is noti�ed to the meta-level, and (b) a subtask claims its estima-

tion value in an object creation form. Prioritized scheduling and pruning are taken place at the

meta-level. In addition, the system uses two scheduling strategies|depth �rst and best �rst|for

better pruning.

The meta-system in a node, whose overview is given in Figure 4.4, consists of metaobjects that

have additional parameters depth and estimation, a depth-�rst scheduler and a best-estimation-�rst

scheduler, a class executor for class search-task, and a node manager that manages the scheduling

policy and load balancing. Their roles are as follows:

Metaobject: A metaobject for class search-task holds parameters estimation and depth in

addition to the other parameters that the default metaobject holds.

Schedulers: Both depth-�rst and best-�rst schedulers have a priority queue for the priority based

scheduling. A search task at a deeper level in a search tree has higher priority for the former

scheduler, and a task with a better estimation value for the latter. Until any answer is found,

the depth-�rst scheduler is used; and then, the node manager replaces it with the best-�rst

one.

Class Executor: The class executor de�nes interpretation of the object creation form ([new

: : :]) and the user-de�ned annotation (f:found-answer vg). For the object creation form,
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[:new ’best-answer-meta
 class parameters :estimation est :depth d+1]

[:new ’search-task parameters {:estimation est}]

search-
task

best-answer-
meta

search-
task

best-answer-
meta

depth-first
scheduler

best-answer-
node-manager

best-answer-
executor

 (class executor)

chain of executors

execution request w/
estimation&depth

+estimation
&depth

+estimation
&depth

object creation

metaobject
creation

best-first
scheduler

change of
scheduling policy

Figure 4.4: Overview of Scheduling System for Best-First Parallel Search

it obtains the value of depth parameter d of the creator task, then it adds a depth parameter

(d+ 1) for the metaobject being created. For the user-de�ned annotation, it simply reports

the value to the node-manager.

Node Manager: The node manager has three roles: management of scheduling policies, manage-

ment of the global best value of the answers found so far for pruning, and the load balancing

in order that every node searches tasks that have global high priority.

Contributions of our reective architecture in terms of the requirements listed in Section 3.1.3

are as follows:

� Customized schedulers are de�ned with only a few extensions to the default one.

� Two scheduling mechanisms can be used according to whether an answer is found or not.

� Estimation value of an intermediate search task, which is an application level information,

can be available at the meta-level without intrinsic changes to the base-level program.

4.1.4 Object Allocation for N-Body Simulation

Object allocation system speci�c to the N-body simulation is described at the meta-level of our

architecture. In this system, list of nodes, which has been passed along the base-level objects in

a non-reective implementation, is passed along the metaobjects. Figure 4.5 shows how base- and

meta-level cooperates to control object allocation.
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Figure 4.5: Overview of Dynamic Object Allocation System for N-Body Simulation

1. A cell object is created at the base-level. At the same time, a corresponding metaobject is

created with an additional argument node-list at the meta-level.

2. At the base-level, the initialization script divides a given space into subspaces. Next, a given

list of particles are distributed to the divided subspaces.

3. Upon an user-de�ned annotation, how the particles are distributed to the subspaces is in-

formed to the meta-level. The metaobject divides the node-list according to the distribution

of particles and associates to each subspaces.

4. When the cell object creates a sub-cell object at the base-level, a class executor, which handles

the creation request, sends the request to a node in which the new object is to reside, and

creates a metaobject at the node with the divided node-list associated to the sub-space.

The code for class cell is shown in Figure 4.6; those for the meta-level objects are in Section

B.3. Operations for the object allocation and for the original computation are clearly separated.

Contributions of our reective architecture are: (1) using the customized class executor, the object

allocation mechanism speci�c to a class can be described; (2) using the customized metaobject,

meta-level information that is associated to a speci�c object can be dealt with; and (3) the user

de�ned annotation allows to use the application speci�c information at the meta-level.

4.1.5 Object Based Dynamic Load Balancing

In this subsection, a load balancing system that is based on the load of individual object is pre-

sented. The balancing mechanism is simpli�ed to make the explanation easier.

The system consists of customized metaobjects, each of which keeps track of the load, and

load-balancer objects, which balances the loads among nodes.
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[class cell ()

(state : : : )

(script

(=> [:create-tree space particle-list]

(if (= 1 (length particle-list))

hset up with given particlei

(let* ((subspaces (divide-space space))

(subparticles

(mapcar #'(lambda (space) (projection particle-list space))

divided-spaces)))

f:division subspaces subparticlesg ; notify the division to meta-level

(setf

subcells

(mapcar #'(lambda (subspace subparticle-list subnodes-list)

(let ((subcell [new cell]))

[subcell <= [:create-tree subspace subparticle-list

subnodes-list]]))

subspaces subparticles subnodes))

hset up with created subcellsi))))

f:class-executor 'cell-executorg

f:metaobject 'cell-metaobjectg]

Figure 4.6: De�nitions for Dynamic Object Allocation for N -Body Simulation

The metaobject is responsible to monitor the load of its corresponding base-level object in some

sense and to reply the load when asked. For example, the load would be measured by the length

of its message queue, or the time spent for the recent script execution.

At each node, a load balancer object (whose de�nition is shown in Appendix B.4) is created.

A load balancing process starts by a broadcast message. Receiving the message, the load balancer

executes the following steps:

1. A local load value of the node (which is de�ned as a sum of loads of every active objects) is

calculated. This is done by getting a list of active objects from the scheduler.

2. It exchanges the local load value with neighboring nodes.

3. Based on exchanged loads, the amount of loads that should be migrated to other nodes is

determined.

4. Requests for migration of objects are issued according to the amount determined in the above

step. (If the load of node is smaller compared to the neighboring nodes, this step is not taken

place.)

Contributions of our reective architecture are: (1) the customized metaobject is good abstrac-

tion to deal with the object speci�c information|in this case, the object speci�c load; (2) the user

de�ned meta-level object that does load balancing can be de�ned; and (3) that the de�nition of the

load balancer can be written in an object-oriented concurrent language is a good way to describe

inter-node negotiations like the load balancing.
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4.2 Experiment with Prototype System

A locality control system for search problems is implemented on a prototype system which is

running on a multicomputer. In this section, outline of the system and results of our experiments

are presented.

4.2.1 Locality Control at Meta-Level

The locality control system used here is almost same to the one presented in Section 4.1.1. For an

object at the shallow level in a search tree, its child objects are created at randomly-chosen nodes.

For objects at the deep level in the search tree, on the other hand, all its child objects are created

at the same node to the creator's.

The target application program used here is the N -Queens problem in which a node in a search

tree is implemented as a concurrent object. Since the depth in the search tree is not explicitly

available in the base-level program, it is maintained by metaobjects. A metaobject is created with

depth parameter in addition to the default parameters. The metaobject adds the depth parameter

whenever it sends an execution request to a scheduler. The parameter is passed along with an

ordinary context of a script execution, such as environment and metaobject's ID. On an object

creation, an object executor determines a node where new object is created, based on the value of

the depth parameter, instead of picking up the value of a base-level variable (it is obtained through

the form (lookup 'n env)).

4.2.2 Improvements for Better Utilization

Although the above locality control system will reduces overheads from communications with

remote nodes, it also leads to low processor utilization because of load-imbalance. An improvement

for better utilization, which adjusts the threshold depth according to the load balancing status,

is also implemented at the meta-level of our reective architecture. In this system, a monitoring

object, which checks if there are any idle node at certain time intervals, is de�ned. When one or

more nodes become idle, the threshold depth is decreased globally. The outline of the de�nition

for load monitor object is listed in Figure 4.7.

4.2.3 Experiments and Results

A prototype compiler for an object-oriented concurrent language is developed

1

, and the above

locality control systems are programmed

2

on it. All experiments are taken place on 64-nodes

1

Technically speaking, the compiler generates C programs in which a basic-block in a script is implemented as

one C-function.

2

The implementation has several shortcuts and redundancies due to the limitation of the prototype system. (1)

Since a compiler that collapses executor scripts is not established yet, depth parameter is explicitly introduced

into the base-level programs. (2) Instead of the object-executor, the node manager decides where a new object is
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[class load-monitor (initial-threshold)

(state [current-threshold := initial-threshold])

(script

(=> [:timer-event]

Message [:idle?] is broadcasted to all node managers,

and counts number of idle nodes.

(when hnumber of idle nodes is largei

(decf current-threshold)

Message [:set-threshold current-depth] is broadcasted

to all node managers)

(set-timer-event [:timer-event] time-span)))]

Figure 4.7: De�nition of Load Monitor Object

AP1000, which is a multicomputer having 25MHz sparc processors connected via torus network.

Table 4.1 shows the elapsed times for the execution with the di�erent level of depths. The �rst

row in each table shows a result without the locality control system; i.e., all object creations are

remote. In the best case, the execution with the locality control system exhibits approximately two

times faster than the one without the system. On the other hand, the utilization �gures, which

shows how long processors are busy in a total computation time, decreases for the executions with

small threshold values.

Table 4.2 shows the elapsed times and the utilizations with di�erent locality control strategies.

With locality control strategies \depth" and \depth+adjust," the value of (initial) threshold depth

is 5, which resulted in worse utilizations. The table shows that the dynamic adjustment of the

depth threshold results in only few percent performance improvements while the utilization is

improved (in 12-Queens case; it is not so in 11-Queens case, however). It is presumed that the

depth adjustment causes unnecessary remote creation of objects, and this overhead covers the

improvements of the utilization.

To summarize, the locality control system, which is implemented at the meta-level, improves

the performance of a search program by the factor of two in the best case. The utilization of

node processors can be improved by the dynamic adjustment of the depth threshold, but the

improvement is small.

created. Thus the depth threshold is tested redundantly. (3) The implementation of the node manager is redundant;

a dispatching object is inserted for dynamic replacement of node managers.
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12-Queens

threshold elapsed time utiliza-

depth (sec.) tion(%)

| 13.88 97

8 7.655 95

7 6.595 93

6 6.541 87

5 7.301 77

11-Queens

threshold elapsed time utiliza-

depth (sec.) tion(%)

| 2.742 95

7 1.511 92

6 1.403 88

5 1.524 81

4 1.917 70

Table 4.1: Benchmark Results for Di�erent Threshold Depth Parameters

12-Queens

locality control elapsed time utiliza-

strategy (sec.) tion(%)

random 13.88 97

depth 7.301 77

depth+adjust 7.189 86

11-Queens

locality control elapsed time utiliza-

strategy (sec.) tion(%)

random 2.742 95

depth 1.524 81

depth+adjust 1.465 80

Table 4.2: Benchmark Results for Di�erent Locality Control Strategies
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Chapter

5

Related Work

5.1 Distributed/Parallel Reective Languages

Several reective languages/systems have been proposed for distributed/parallel computing. Al-

though there are similarities between such reective architectures and ours, the meta-level

abstraction|what can be altered at the meta-level|is di�erent. Our architecture is designed

for exible control of the dynamic resource management for highly concurrent applications, while

others are designed mainly to provide exible language mechanisms in distributed environment,

which involves heterogeneity, fault-tolerance, etc.

� OCore is a concurrent language for highly-parallel computing. It has a reective archi-

tecture which aims to provide controls of parallel computations through the meta-level

programming[38]. This work is distinguished from ours in the target of control. In OCore, its

meta-level architecture focuses on describing exception handling, (static) object distribution,

pro�ling/debugging statistics, and so, forth.

� AL-1/D is an object-oriented concurrent reective language for distributed environment[26,

27]. One of the major purpose of AL-1/D is to provide exible controls to the low-level

implementation of the language. Hence the low-level mechanisms, such as marshaling, can be

customized by reection in AL-1/D, while our architecture expects that the non-customizable

low-levels are e�ciently implemented by allowing integrated low-level optimizations.

� The design principle of RbCl[15] is to make as many low-level mechanisms rei�able as possible

for maximum exibility. On the other hand, it is not easy to construct a new resource

management system that controls facilities provided by such rei�able low-level mechanisms.

Since a controlled facility is represented as a collective behavior of low-level mechanisms, the

user must carefully implement his/her own policies without conict. Such discipline could be

enforced by the metaobject protocol, but the MOP (metaobject protocols) for RbCl is not

completely de�ned.
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� Open C++[8] is a sequential reective language; i.e., no distributed or parallel computing

facilities are provided by default. As a result, all such facilities are provided by the meta-

level programming; i.e., they are implemented using the low-level mechanisms available at

the meta-level.

An interesting feature of Open C++ is its optimization. Code analysis makes a reective

method call in Open C++ almost equal speed to the one in native C++ in the best case[9].

This optimization is suggestive to the compiler development, although such code analysis

would be di�cult in many reective languages, which has more elaborate architectures.

5.2 Metaobject Protocol based Open Compilers

Open compilers are the system that can extend/modify its compilation. Inspired by the reective

systems, there are several studies to providemeta-object protocols (MOP) to open compilers[18, 30],

so that customizations on a compiler can be achieved in more modular and elegant way.

As a way for language extension, MOP based open compilers have similar advantages to re-

ective languages; it provides a modular and clean interface for the language extension, and the

extension can be achieved with minimal modi�cation to the application program (mostly, inserting

several annotations).

The important di�erence between MOP based open compilers and our reective architecture is

the way of customizations; operational way in ours, while rule-based way in open compilers (here,

by rule-based, we mean customization that is described as extensions to compilation rules).

For language extensions that is de�ned for dynamic resource management systems, the oper-

ational approach is advantageous. This is because open compilers are mainly designed for static

(compile-time) extensions, and not for dynamic (run-time) extensions, in which a behavior of a

program fragment dynamically changes. For example, consider a case that a programmer wants an

operation in his program to have two di�erent behaviors according to a certain dynamic condition.

In our approach, it can be described as a conditional branch that selects one of the two operations.

With good compilation scheme, it can provide two di�erent compiled code is selected according to

the condition. On the other hand, MOP based open compilers does not provide to handle such a

dynamic condition in a elegant way, since the compiler is designed to handle things that can be

statically decided, but not things that can be only dynamically decided.

5.3 Open Implementations

Open implementation is a way to build a exible system by constructing components of the system

in a modular and exchangeable way. Similar to reective languages, such system can extend its

internals. The major di�erence is, however, the approach of extension. In open implementation

systems, a user-de�ned run-time module can be used as a replacement to an original one, but the
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module is regarded as a black box to the system. In reective language, on the other hand, user

extension is done by describing a operational speci�cation (or program) to the meta-level, which

has more possibility to e�ciently compiled out by analyzing the semantics of the extension.

Distributed Operating System: Apertos[43] is a reective operating system for distributed

environment. In Apertos, `object migration' is a primitive operation that changes its meta-

space. The purpose of object migration is for using di�erent OS services, such as paging

mechanisms.

Distributed Shared Memory: Some systems for distributed shared memory provide several

memory coherence protocols and allow the user to use an appropriate one for each shared

object[5]. Moreover, some systems can dynamically change coherence protocols for a shared

data.

Thread Scheduling: By providing an interface between an OS kernel and a user-level thread

scheduler, signi�cant performance improvement can be achieved[1]. Although this has sim-

ilarity to reective systems in terms of incorporating the user's policy to the kernel, there

are several di�erences: (1) the performance improvement is mainly due to the reduction of

the interactions between the user-level and the kernel; and (2) actions to only a �xed set of

events (e.g., I/O blocking) can be controlled by the user-programming.

45



Chapter

6

Conclusion and Future Work

We have proposed a new reective architecture called the Distributed Memory Reective Archi-

tecture, whose purpose is to easily describe dynamic resource management systems for highly

concurrent applications. The architecture is designed under the requirements from dynamic re-

source management systems for non-trivial concurrent applications. The following features of the

architecture contribute for describing various resource management systems:

� Notion of node processors, which is available at the meta-level, enables to describe resource

management systems relevant to the distributed memory multicomputers such as a load-

balancing system and an object allocation system.

� Meta-level objects, including node manager, scheduler, and metaobjects, provide abstrac-

tions of the language's run-time system, which facilitate descriptions of various resource

management systems in an encapsulated manner.

� Language facility extensibility, which is implemented by the chains of executors, enables the

user to give di�erent interpretations to a single program. In addition, it provides clean ways

to access application-level information from a resource management system.

� Interface de�nitions of the run-time systems provide easy access to the low-level and imple-

mentation dependent mechanisms (e.g., object migration and network topology) in a portable

way.

We have also put careful consideration to the e�ciency. Since the meta-level design, which is

based on the requirements from the realistic DRM examples, does not expose unnecessary part of

the run-time systems (e.g., the memory management and the network messages are not modi�ed

by reection), hence many low-level optimization techniques are applicable. Language facility

extensibility, which is provided by chains of executors, could be e�ciently implemented, based on

our proposed scheme Dynamic Code Replacement and sophisticated compilation techniques.
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Proposed architecture has been evaluated by describing dynamic resource management systems

for non-trivial concurrent applications. These systems include a load balancing system for parallel

search problems, a scheduling system for best-�rst parallel search problems, an object allocation

system for N -body simulations, and a load balancing system based on individual objects. The

architecture is also evaluated through an experimental locality control system developed on a

prototype system running on a multicomputer. A search application with the locality control

system is executed twice as fast as the one without locality control (i.e., it has a naive object

allocation strategy).

Future work of this study are broadly divided into three directions: re�nement of the reective

architecture, development and formalization of implementation techniques, and further examples

of dynamic resource management systems described on our architecture.

As for reective architecture, heterogeneous object group, which is introduced in ABCL/R2[24],

would be incorporated in order to share meta-level resources among objects in di�erent classes.

Consider a large-scale application in which several program modules|each module consists of

many kinds of objects and has high concurrency|are simultaneously running. The object group

is a good abstraction as a unit of module speci�c DRM. At the meta-level, such an object group

can be modeled as a group manager , which holds shared resources like executors as state variables.

The other bene�t of the object groups is that it can generalize class objects. Since a class object

at the meta-level is de�ned only to share an executor in our architecture, it could be de�ned as a

special kind of an object group.

As for implementation, elemental techniques should be advanced further. Recent studies have

shown that partial evaluation techniques to collapse meta-levels of a reective language are be-

coming feasible[31, 3, 9] (however, all target sequential reective languages). This encourages us

to develop a partial evaluator for our architecture. In addition, as studies on metaobject protocol

based compilers[18] shows, extensibility to compilers is also useful mechanism. Our ambition is to

enable such compiler level extensions with operational descriptions. Re�nement to Dynamic Code

Replacement scheme is also important. Although the applicability of this idea could be wide, we

must investigate detailed mechanism of it, such as how to do it e�ciently when an executor that

covers more than one object is replaced, representation of a table holding the code fragments com-

piled with di�erent executors, how to replace a code fragment for a running object. To do this,

the dynamic compilation/de-compilation techniques such as the one developed for Self[13] would

be useful. To concentrate these implementation issues, we are planning to design a compiler that

does partial evaluation for a dialect of Scheme.

As for applications, what we should do is further experiments on our prototype system, and

more descriptions of dynamic resource management systems. Both are essential to re�ne the

architecture's detail. For example, the following DRM systems would be investigated: scheduling

and load balancing systems for the TimeWarp system[16, 6, 19], scheduling systems at coarse grain
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concurrency like the self-scheduling[28, 20], and scheduling systems for soft real-time systems[14].
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Appendix A

Meta-Circular De�nition of Distributed Memory

Reective Architecture

The detailed de�nitions of the meta-level objects are presented below. De�nitions are slightly

complicated compared to the ones in Chapter 3, because the de�nitions in this appendix include

code to handle various kinds of annotations.

Node Manager: The default node manager requires three keyword arguments at creation

time. Top-level annotations can specify the values of these arguments. For example, a top-level

annotation f:node-executor 'my-node-executorg speci�es the value of node-executor to be

my-node-executor, which is 'default-node-executor without annotations.

[class default-node-manager (&key (scheduler 'default-scheduler)

(node-executor 'default-node-executor)

(metaobject-class 'default-metaobject))

(state [scheduler := [new scheduler]]

[executor := [new node-executor]]

[default-metaclass := metaobject-class])

(script

(=> [:scheduler] !scheduler)

(=> [:set-scheduler new-scheduler]

[scheduler <== [:copy-contents-to new-scheduler]]

(setf scheduler new-scheduler))

(=> [:executor] !executor)

(=> [:set-executor new-executor]

(setf executor new-executor))

;; local object creation

(=> [:new class arguments &key (metaclass default-metaclass) . annotation]

![den [new metaclass class arguments . annotation]]))]

Metaobject: A metaobject is created with parameters class and arguments. In addition, it

takes a keyword argument executor specifying the class of an object executor. An annotation in an

object creation form can specify the value of this keyword argument. For example, the execution

of a form [:new 'foo f:executor 'my-object-executorg] eventually causes a creation of a

metaobject whose keyword argument :executor is 'my-object-executor. For the time being,
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the relationship between an object and its class is �xed. Thus the value of the state variable class

must not be changed, and the script [:class] must return the value of class in any case.

[class default-metaobject (class arguments

&key (executor 'default-object-executor))

(state [message-queue := (make-queue)]

[class := class]

[state := (make-state-memory class arguments)]

[executor := [new executor]]

[mode := ':dormant])

(script

;; arrival of a message

(=> [:message body reply sender]

(queue-put (make-message body reply sender) message-queue)

(when (eq mode :dormant)

(accept-one-message)))

;; end of a script execution

(=> [:finished]

(if (queue-empty? message-queue)

(setq mode :dormant)

(accept-message)))

(=> [:executor] !executor)

(=> [:set-executor new-executor]

(setf executor new-executor))

(=> [:class] !class))

(routine

;; acceptance of a message

(accept-one-message ()

(let* ((m (queue-get message-queue))

(c (find-script m class state))

(thunk (make-thunk :context c :id Me))

(scheduler [node-manager <== [:scheduler]]))

(setq mode :active)

[scheduler <= [:request-execution thunk]])))]

Thunk is a data structure that contains a context (static information for script execution such

as an expression and environment) and a reference to the metaobject.

Scheduler: The default scheduler can be created with optional keyword parameter, which spec-

i�es the length of initial time quantum for script execution.

[class default-scheduler (&key (initial-time-quantum *default-time-quantum*))

(state [active-object-queue := (make-queue)]

[status := :idle]

[initial-time-quantum := initial-time-quantum]

time-quantum)

(script

(=> [:request-execution thunk . annotation]

(if (eq status :idle)

(schedule-thunk thunk . annotation)

(queue-put thunk active-object-queue)))

(=> [:yield]

(schedule-thunk (queue-get active-object-queue)))

(=> [:yield-check thunk]

(if (zerop (decf time-quantum))

(progn ;; time quantum is expired.

(queue-put thunk active-object-queue)

(schedule-thunk (queue-get active-object-queue)))

(schedule-thunk thunk :time-quantum time-quantum)))

(=> [:finished]
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(if (queue-empty? active-object-queue)

(setf status :idle)

(schedule-thunk (queue-get active-object-queue))))

;; following two scripts are for dynamic replacement of schedulers

(=> [:copy-contents-to scheduler]

[scheduler <= [:set-active-object-queue (listify active-object-queue)]])

(=> [:set-active-object-queue thunk-list]

(queue-set-list active-object-queue thunk-list)))

(routine

(schedule-thunk (thunk &key (next-quantum initial-time-quantum) . annotation)

(setf status :busy

time-quantum next-quantum)

(let* ((context (thunk-context thunk))

(id (thunk-id thunk))

(executor [id <== [:executor]])

(finale-cont [new 'finale Me id]))

[executor <= [context . annotation] @ finale-cont])))]

;; when a script is �nished, a result is sent to this object.

[class finale-cont (scheduler metaobject)

(script

(=> any-value

[scheduler <= [:finished]]

[metaobject <= [:finished]]))]

Class Object: The default class object only holds a class executor.

[class default-class-object (&key (class-executor 'default-class-executor))

(state [executor := [new class-executor [new 'primary-executor]]])

(script

(=> [:executor] !executor)

(=> [:set-executor new-executor]

(setf executor new-executor)))]

Delegating Executors: By default, object-, node-, and class-executors only delegate received

messages to executors residing above; i.e., node-, class-, and primary-executors, respectively. Note

that the target of delegation is obtained for each script execution (except for the primary execu-

tor). This assures that any executors in a chain|except for the primary one|can be replaced

dynamically.

[class default-object-executor ()

(script

(=> message @ cont ;; delegated to a node-executor

[[node-manager <== [:executor]] <= message @ cont]))]

[class default-node-executor ()

(script

(=> message @ cont ;; delegated to a class-executor

(match message

(is [:do _ _ Id . _]

(let* ((class [Id <== [:class]])

(class-executor [class <== [:executor]]))

[class-executor <= message @ cont])))))]

[class default-class-executor (pe)

(state [primary-executor := pe])

(script

(=> message @ cont ;; delegated to the primary-executor

[primary-executor <= message @ cont]))]
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Primary Executor: The primary executor de�nes default semantics of the base-level language

in an operational way. Presented code is a part of the de�nition; this is because enormous features

of the base-level language (the base-level language includes a subset of Common-Lisp[35]) requires

many lines of de�nitions, which are not crucial in this paper.

[class primary-executor ()

(script

(=> [:do exp env id scheduler . context-annotation] @ cont

(match exp

;; object creation

(is [:new class arguments &key at target-node . metaobj-annotation]

(let ((target-node-manager

(case at

(:remote (or target-node (random max-node-id)))

(:random (random max-node-id))

(:local this-node-id))))

[target-node-manager <= [:new class arguments . metaobj-annotation]

@ cont]

[scheduler <= [:yield]]))

;; past type message transmission

(is [:send-past target body reply-to . message-annotation]

[[meta target] <= [:message body reply-to id . message-annotation]]

[cont <= body])

;; now type message transmission

(is [:send-now target body . message-annotation]

[[meta target] <= [:message body cont id . message-annotation]]

[scheduler <= [:yield]])

;; followings de�ne base language constructs

(is [:variable name . _] !(lookup name env))

(is [:constant value . _] !value)

(is [:primitive operator arguments . _] !(apply operator arguments))

(is [:if predicate then else . _]

(let ((selected-form (if predicate then else))

(object-executor [id <== [:executor]]))

[object-executor <= [selected-form . context-annotation] @ cont]))

;; and so forth...

))))]
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Appendix B

De�nitions of Dynamic Resource Management

Systems

In this chapter, programs of the dynamic resource management systems discussed in Section 4.1

are presented.

B.1 Dynamic Load Balancing for Parallel Search

Node Manager The node manager has two node executors that correspond to two ob-

ject distribution policies. On receiving a :change-policy message, which is issued by object

decision-maker according to the global load-balancing status, the node manager changes the

value of variable executor; this means the change of the object creation policy of that node.

(From the viewpoint of implementation, this assignment causes changes of method tables of all

objects in the node.)

[class node-manager-for-search (...)

(state [distribute-executor := [new 'distribute-executor [new 'primary-executor]]]

[balance-executor := [new 'balance-executor [new 'primary-executor]]]

[executor := distribute-executor]

[scheduler := [new 'scheduler-w-sentinel]]

[generation := 0]

target-nodes remote-rate)

(script

;; The assignment to variable executor changes the object creation policy of the node.

(=> [:change-policy new-policy &optional targets remote-rate]

(case new-policy

(:distribute (setf executor distribute-executor))

(:balance (setf executor balance-executor

target-nodes targets

remote-rate remote-rate))))

;; Under the `balance' policy, some of new objects are created at a

;; remote node, which is speci�ed by object decision-maker.

(=> [:choose-target-node]

(if (< (random) remote-rate)

!nil ;; results in local creation

!(select-one-node target-nodes)))

(=> [:start-new-generation new-gen] @ load-reply-to

where (= (1+ generation) new-gen)
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[scheduler <= [:report-load-value load-reply-to]]

[scheduler <= [:put-sentinel new-gen]]

(setf generation new-gen))

(=> [:sentinel-found g] from scheduler where (= g generation)

[decision-maker <= [:start-generation-update generation]]))]

Decision Maker The decision maker is an object that collects global status of load-values, and

decides the next object creation policy based on the status. For `balance' policy, it also decides

where new tasks will be created by assigning a \target node list" for each node.

Since the process of global status collection is distributed, we can make good advantage of

concurrent object-oriented language here. For example, whether most nodes are starving for tasks

or not can be determined by a distributed computation at the collection process.

[class decision-maker ()

(state [broadcaster := [new 'broadcaster : : : ]]

[generation := 0])

(script

(=> [:start-generation-update old-gen] where (= old-gen generation)

(setf generation (1+ generation))

[broadcaster

<= [:broadcast-and-collect [:start-new-generation generation]

:sum-up-function : : : ] @ Me])

(=> [:collected-load-values <load-values>]

(if hmost nodes are starving for taski

[broadcaster <= [:broadcast [:change-policy :distribute]]]

[broadcaster <= [:distribute htarget-nodes-listsi

:with [:change-policy :balance]]])))]

Executors Following two executors embody two object creation policies: balance and distribute.

[class balance-executor ()

(script

(=> [:new class parameter annotation] @ cont

(let* ((target-node [node-manager <== [:choose-remote-target]])

(location (if target-node :remote :local)))

[hclass executori <= [:new class parameter

[:at location :target target-node . annotation]]

@ cont])))]

[class distribute-executor ()

(script

(=> [:new class parameter annotation] @ cont

(let ((location (if hat some frequencyi :random :local)))

[hclass executori <= [:new class parameter [:at location . annotation]]

@ cont])))]

B.2 Scheduling for Best-First Parallel Search

Metaobject A metaobject is created with additional keyword arguments estimation and depth.

The additional scripts are to hold these two parameters, and to reply the values upon the query

messages.

[class best-answer-metaobject ( : : : &key estimation depth)

(state [estimation := estimation]

[depth := depth]
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.

.

. )

(script

(=> [:estimation] !estimation)

(=> [:depth] !depth)

.

.

. )]

Class Executor The class executor has two scripts each of which de�nes interpretation of the

object creation form and of the user-de�ned annotation. The third script delegates expressions in

other types.

[class best-answer-executor ()

(state [primary-executor := : : : ])

(script

;; object creation

(=> [:do [:object-creation class parameters annotation] Id : : : ] @ cont

(let ((depth (+ [Id <== [:depth]] 1)))

[primary-executor

<= [:do [:object-creation class parameters [:depth depth . annotation]]

Id : : : ] @ cont]))

;; user-de�ned annotation

(=> [:do [:found-answer value] Id : : : ] @ cont

[node-manager <= [:found-answer value]]

[cont <= nil])

(=> any-other @ cont

[primary-executor <= any-other @ cont]))]

Schedulers Each of schedulers used in the system has a small extension to the default one. The

depth �rst scheduler uses a depth parameter held by metaobjects as a priority, and the best �rst

scheduler uses an estimation value. In addition, the best �rst scheduler discards an execution

request if its requester has a worse estimation than the value of the best answer found so far; by

this, search tasks that have no chance to yield the best answer are pruned.

[class depth-first-scheduler (: : : )

(state [active-object-queue := (make-priority-queue)])

(script

.

.

.

(let ((p [(thunk-id thunk) <== [:depth]]))

(queue-put thunk active-object-queue :priority p))

.

.

.

)]

[class best-first-scheduler (value)

(state [active-object-queue := (make-priority-queue)]

[best-so-far := value])

(script

.

.

.

(let ((p [(thunk-id thunk) <== [:estimation]]))

(when (< best-so-far p)

(queue-put thunk active-object-queue :priority p)))

.

.

.

(=> [:update-best v] (setf best-so-far := v]))]
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Node Manager The node manager has four scripts for scheduling management. Script

:found-answer is invoked when an answer is found in the node. Script :change-policy is invoked

when the (globally) �rst answer is found. Script :update-global-best is invoked when an answer

that has a better value than the ones found so far. Script :timer-event is periodically invoked

from the run-time system. This is for load balancing; on this event, a node simply sends a search

task that is the most promising to one of the neighboring nodes.

[class node-manager ( : : : )

(state [scheduler := [new 'depth-first-scheduler]]

[current-policy := 'depth-first]

global-best

[balancing-target-no := 0])

(script

(=> [:found-answer value]

(cond ((eq current-policy 'depth-first)

(broadcast [:change-policy value]))

((< global-best value) ; better than ever found

(broadcast [:update-global-best value]))))

(=> [:change-policy value]

(let ((new-scheduler [new 'best-first-scheduler value]))

[scheduler <== [:replace-with new-scheduler]]

(setf scheduler new-scheduler

global-best value

current-policy 'best-first)))

(=> [:update-global-best value]

(when (< global-best value)

[scheduler <= [:update-best value]]

(setf global-best value)))

(=> [:timer-event]

(let ((node-id (aref harray of neighboring node IDsi

balancing-target-no))

(task [scheduler <== [:get-a-task]]))

(migration-request task :to node-id))

(incf balancing-target-no)

(set-timer-event hsome time spani)))]

B.3 Object Allocation for N-Body Simulation

Class Executor As a class executor speci�c to class cell shown in Figure 4.6, class

cell-executor is de�ned. When an annotation f:division ss spg is executed in the base-level

program, the �rst script of the class-executor is invoked. It simply sends received parameters to a

metaobject. The second script is for the object creation. When an object-creation form is executed

at the base-level, this script is invoked. The cell executor �rstly requests the `node-list' of newly

creating object from the metaobject. The new object is created at the �rst node in the speci�ed

node-list, with the node-list as an additional argument.

[class cell-executor ( : : : )

(script

;; for user de�ned annotation

(=> [:do [:division subspaces subparticles] Id : : : ] @ cont

[Id <= [:divide-assigned-nodes subspaces subparticles]]

[cont <= t])

;; object creation

(=> [:do [:new class parameters annotation] Id : : : ] @ cont
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(let ((node-list [Id <== [:creation-node]]))

[parent-executor

<= [:do [:new class parameters

[:at (first node-list) :nodes node-list . annotation]] Id : : : ]

@ cont])))]

Metaobject The metaobject is created with keyword argument node-list. This list is divided

according to the distribution of the particles, which is informed by the user de�ned annotation.

[class cell-metaobject ( : : : &key node-list)

(state [assigned-nodes := node-list]

divided-nodes)

(script

(=> [:divide-assigned-nodes subspaces subparticles]

(setf divided-nodes

(divide-nodes subparticles (length particle-list)

assigned-nodes)))

(=> [:creation-node]

!(pop divided-nodes)))]

B.4 Object Based Load Balancer

The de�nition of the load balancer has only one script. Note that the messages from the load

balancers at neighboring nodes are received by wait-for form in the script.

[class load-balancer (s)

(state [scheduler := s]

[neighbor-load-list := '()]

[neighbor-balancer-list := hload balancer objects on neighboring nodesi]

this-node-load)

(script

(=> [:start-balancing]

;; calculate a load of the node

(let ((active-objects [scheduler <== [:list-active-objects]]))

(setf this-node-load 0)

(dolist (o active-objects)

(incf this-node-load [o <== [:object-load]])))

;; tell the calculated load to neighboring load balancers

(dolist (b neighbor-balancer-list)

[b <= [:node-load this-node-load this-node-ID]])

;; collect loads from neighboring nodes into variable neighbor-load-list

(dotimes (balancer neighbor-balancer-list)

(wait-for

(=> [:node-load load-value b] where (eq b balancer)

(push [load-value b] neighbor-load-list))))

;; calculate the amount of loads to balance into load-to-move

(let* ((neighbor-load-sum

(reduce #'+ (mapcar #'first neighbor-load-list)))

(average-load

(/ (+ this-node-load neighbor-load-sum)

(1+ number-of-neighbors)))

(load-to-move (* (- average-load this-node-load) factor))

(move-load-list

(mapcar #'(lambda (load&balancer)

(list (/ (* load-to-move (first load&balancer))

neighbor-load-sum)

(second load&balancer)))

neighbor-load-list)))

;; Here, the amount of load that should be moved to a neighboring node
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;; is kept in move-load-list

(when (< 0 load-to-move)

(dolist (move-load move-load-list)

(let ((moved 0))

(while (< moved (first move-load))

;; Active objects are removed from the scheduler, and

;; requests for migration are issued until the amount of

;; migrating objects' load satis�es the calculated one.

(let ((obj [scheduler <== [:get-active-object]]))

(incf moved [obj <== [:object-load]])

(migration-request obj :to (second move-load))))))))))]
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Appendix C

Interface De�nitions to Low-Level Systems

Object Migration Following primitive functions are available for object migration:

� (migration-request object :to target node)

This form requests that object will be migrated to target node. Note that the completion

of this form does not mean the completion of migration. This is because some migration

mechanism suspends the request (for example, until the global garbage-collection occurs) to

avoid overhead.

� (migration-wait-completion)

This form waits the completion of the requests issued by above form.

� (migration-now object :to target node)

This form requests an object migration and waits the completion of the request. That is, it

is a shorthand of:

(progn (migration-request object :to target node)

(migration-wait-completion))

The completion of migration is also noti�ed to the node managers as messages:

[:emigrated-objects ((object . destination node) : : :)]

and

[:immigrated-objects ((object . source node) : : :)].

The �rst message|which is sent to a node manager|means that object emigrates from the node

to target node. The second one means that object immigrated from source node into the node.

System Level Information Several system level information can be obtained via primitive

calls:

� (free-memory)

A ratio of free memory of a node is returned.
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� (income-network-messages)

Number of incoming network messages is returned.

� (outgo-network-messages)

Number of outgoing network messages is returned.

� (parent-node hnode-IDi n)

ID of the parent node in a n-ary tree is returned.

� (children-nodes hnode-IDi n)

IDs of children nodes in a n-ary tree is returned.

� (mesh-address (i

1

: : : i

n

) (d

1

: : : d

n

))

ID of a node whose address is (i

1

; : : : ; i

n

) in a d

1

� d

2

� � � � � d

n

-ary mesh is returned.

As for the primitives related to network topology, we are planning to provide abstract data/class

so that we can use in more exible and convenient way.
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