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Abstract
There are a number of constructs to implement context-dependent
behavior, such as conditional branches using if statements, method
dispatching in object-oriented programming (such as the state de-
sign pattern), dynamic deployment of aspects in aspect-oriented
programming, and layers in context-oriented programming (COP).
Uses of those constructs significantly affect the modularity of the
obtained implementation. While there are a number of cases where
COP improves modularity, it is not clear when we should use COP
in general.

This paper presents a preliminary study on our software de-
velopment methodology, the context-oriented software engineering
(COSE), which is a use-case-driven software development method-
ology that guides us to a specification of context-dependent require-
ments and design. We provide a way to map the requirements and
design formed by COSE to the implementation in our COP lan-
guage ServalCJ. We applied COSE to two applications in order
to assess its feasibility. We also identify key linguistic constructs
that make COSE effective by examining existing COP languages.
These feasibility studies and examination raise a number of inter-
esting open issues. We finally show our future research roadmap to
address those issues.

Categories and Subject Descriptors D.2.1 [Software Engineer-
ing]: Requirements/Specifications—Methodologies

General Terms Design, Languages

Keywords Context-oriented programming; Methodology; Use
cases

1. Introduction
Context awareness is a major concern in many application areas. It
refers to the capability of a system to appropriately behave with re-
spect to its surrounding contexts. A context is identified by observ-
ing behavioral changes in the application. An example of a context-
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aware application is a ubiquitous computing application that differ-
ently behaves in relation to situations such as geographical location,
indoor or outdoor environment, and weather. In this case, some spe-
cific states or situations are contexts. An adaptive user interface is
also context aware as it provides different GUI components (behav-
ior) depending on the user’s current task (contexts).

There are a number of constructs to implement context-dependent
behavior, such as conditional branches using if statements, method
dispatching in object-oriented programming (such as the state
design pattern), and dynamic deployment of aspects in aspect-
oriented programming (AOP). Context-oriented programming (COP)
[20] also provides another mechanism to implement context-
dependent behavior, which is called a layer. Uses of those con-
structs significantly affect the modularity of the obtained imple-
mentation, and research in COP shows a number of cases where
COP can modularize variations of context-dependent behavior that
are difficult to modularize by using other approaches.

However, it is not clear when we should use COP in general
because of the lack of a methodology to find context-dependent
behavior from the requirements. This problem consists of a stack
of subproblems. First, the definition of a context is not clear. A
context implies a specific state of a system and/or an environment
that affects the system’s behavior, but we may find a very large
number of such states and environments from the requirements.
We need to find the candidate contexts among them and the be-
havioral variations depending on them that should be implemented
by using layers in COP. Second, besides context-dependent behav-
ior, predictable control of change of context-dependent behavior
is also important. There are complex relations between contexts
(that affect the application’s behavior) and variations of behavior,
which make the modification of behavioral changes with respect to
a change in the specification error prone. Thus, systematic identifi-
cation of changes in contexts and variations of behavior is required.
Third, we need to design modules and dynamic changes of behavior
from the identified contexts. For example, selecting modularization
mechanisms for context-dependent behavior and context changes is
important because these behavior and context changes may be scat-
tered over the whole execution of the application. Finally, we need
to map the design to the implementation. A number of COP mecha-
nisms have been proposed thus far [7, 9, 14, 17, 19, 20, 23]; among
them, we need to select an appropriate mechanism to implement a
design artifact.

This paper presents a preliminary study of our software de-
velopment methodology, context-oriented software development
(COSE) that organizes the specifications of contexts and variations
of behavior depending on them. By giving an overview of the devel-
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opment process with COP, even if it is not in depth, it would lead
us to further research on each stage of the development process.
We hypothesize methods to find context-dependent behavior, and
they are validated through two case studies. We provide a mecha-
nized modular mapping from a specification developed by COSE
to an implementation in our COP language ServalCJ [26]1. This
preliminary study raises a number of interesting open issues. To
address these issues, we finally present a future research plan to
further explore the effectiveness of COSE that covers a number of
research areas including requirements engineering and program-
ming language implementation.

Methodology. On the basis of the use-case-driven approach [21],
COSE represents the requirements for a context-aware application
using contexts and context-dependent use cases. A context is rep-
resented as a Boolean variable that represents whether the system
is in that context2. A context-dependent use case is a specialization
of another use case applicable only under some specific contexts.
From these requirements, COSE further derives a design model
that is eventually translated into a modular implementation. This
design method classifies variations of context-dependent behavior
into those implemented by appropriate mechanisms such as layers
in COP and other traditional mechanisms such as class hierarchies
and if statements. This classification drives mechanized mapping
from requirements to implementation. We choose ServalCJ as an
implementation language because it provides a generalized layer
activation mechanism, which supports all existing COP mecha-
nisms as far as we know. This mapping ensures that each speci-
fication in the requirements is not scattered over multiple modules
in the implementation, and each module is not entangled with mul-
tiple requirements.

Case studies. We demonstrate the effectiveness of this method
by conducting two case studies of different context-aware applica-
tions. The first one is a conference guide system, which serves as
a guide for an academic conference including management of an
attendee’s personal schedule, navigation help inside the venue and
around the conference site, and a social networking service (SNS)
function such as a Twitter client. The other one is CJEdit, a program
editor providing different functionalities relative to cursor position
[8]. In these case studies, we successfully organized context-related
specifications by applying COSE and directly mapped these speci-
fications to their implementations in ServalCJ.

To examine the existing language features and discuss what fea-
tures make the methodology effective, we analyze how COSE ad-
dresses the aforementioned problems and the key linguistic con-
structs that make COSE effective through the case studies. We ex-
amine several existing implementation techniques to clarify which
constructs will be useful for COSE. A notable finding is that, while
most existing COP languages directly specify the execution point
when the corresponding context becomes active, in the case studies,
the implicit layer activation mechanism where context activation is
indirectly specified by using conditional expressions is used inten-
sively. Even though the implicit layer activation mechanism may
currently suffer from performance problems, it can be a strong tool
to separately implement the dynamic changes of behavior specified
in the requirements.

1 This language was previously known as Javanese.
2 Keays also proposed COP [28], where a context is a named identifier
(e.g., location) that identifies the type of open terms (holes in the code
skeleton) that are filled at runtime with pieces of code corresponding to
a specific value of the context (e.g., location=”Tokyo”). This paper is based
on Hirschfeld’s COP [20] where a context is represented as a layer that
dynamically takes two states, namely active and inactive, and thus can be
represented as a Boolean variable.

Research roadmap. Although the case studies indicate that our
approach is promising, we also identify a number of interesting
open issues, which comprise our future research roadmap. First,
to deal with scattered mentions of context-dependent behavior in
descriptions of the system-to-be written in inconsistent syntax, we
are planning to further develop a systematized method to identify
contexts. Second, our approach is based on use cases; however, it
is also desirable to explore how similar approaches can be applied
when use cases are not appropriate to analyze requirements. Third,
we mention issues in the evaluation of our methodology. Fourth,
since there is a performance issue in the implicit layer activation,
we are planning to study optimization of implicit activation. It is
also interesting to analyze when the event-based activation (i.e.,
the way in which the execution points where context activation
occurs are explicitly represented) is useful and desirable. Finally,
since both case studies in this paper are standalone and conducted
by using just a single language, it is also desirable to study how the
same approach can be applied to more sophisticated environments
such as distributed, multi-language environments.

Contributions. The main contributions of this paper are as fol-
lows:

• Identification of difficulties in the development of context-
aware applications and discussion about the existing approaches
(Section 2)

• Systematic organization of context-dependent requirements and
classification of them into those implemented by appropriate
linguistic mechanisms (Section 3)

• Mechanized mapping from the artifacts obtained by COSE to
modular implementation in existing COP mechanisms (Section
4)

• Informal evaluation of COSE through case studies, and identifi-
cation of key linguistic constructs that make it successful (Sec-
tions 5 and 6)

• Provision of the future research roadmap (Section 7)

2. Motivation
We explain the motivation to develop a new context-oriented soft-
ware development methodology by introducing an example of a
context-aware application and explaining the difficulties in the de-
velopment of context-aware applications and the limitations of the
existing approaches.

2.1 Example
We introduce a conference guide system, which serves as a guide
for an academic conference, as an example of a context-aware
application. This system is implemented on an Android smart-
phone and provides the conference program, management of the
attendee’s personal schedule, navigation help inside the venue and
around the conference site, and a Twitter client to enable the user
to submit their comments on the talks during the conference. This
system has a couple of context-related behavioral variations listed
as follows:

• The conference program is provided online; the user can view
the online program using Internet on the smartphone. The
downloaded program is cached on the local database in case
the online version becomes unavailable. From the program, the
user can select sessions that she/he will attend. The selected
sessions are listed on the personal schedule. The listing of the
selected sessions is available only when some have been se-
lected.
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Figure 1. Use case diagram for the conference guide system

• The system provides a map function. When the user is within
the conference venue, the map provides a floor plan of that
venue. When the user is outside the venue, it provides a city
map around the conference site, which is updated when the new
position of the user is detected. The positioning is performed on
the basis of GPS or the Wi-Fi connection. If the system cannot
determine whether it is outdoors or indoors, it provides a static
map around the conference site.

• The system provides a Twitter client, which is available only
when the Internet is available.

In Figure 1, we summarize the use case diagram for the confer-
ence guide system. Besides the “Startup” use case where the user is
starting the system, there are four use cases where the user interacts
with the system, corresponding to the above itemized listing. Fur-
thermore, the use case “Viewing the program” includes the use case
“Updating the schedule” where the user selects sessions to attend,
and the use case “Using a map” includes the use case “Moving”
where the user is moving and the new position of the user is de-
tected by the positioning system.

2.2 Difficulties
Although this is a simple example, we can observe that there are a
number of difficulties in the development of context-aware appli-
cations.

Identification of contexts and requirements variability. A context-
aware application changes its behavior with respect to current ex-
ecuting context, i.e., there are a number of variations of behavior
depending on context. Thus, we need to identify contexts and re-
quirements variability depending on them. For example, in the con-
ference guide system, we may identify contexts such as outdoors,
the availability of the list of selected sessions, and the availability
of the Internet. However, identification of contexts is not trivial.
After the identification of the outdoor context, it is unclear whether
we should also identify the indoor context, because it seems that we
can represent the indoor context by means of the outdoor context
(i.e., indoors=!outdoors).

Different levels of abstraction. Contexts have different abstrac-
tion levels, and contexts at the abstract level consist of multiple
concrete contexts. For example, the availability of positioning sys-
tems depends on the hardware specifications such as the availability
of GPS and/or wireless LAN functions. Thus, we need to precisely
define contexts in terms of the target machine. This multiple depen-
dency leads to difficulty in precisely defining when the variation of
behavior switches at runtime, because there may be a number of
state changes in the target machine that trigger a context change,
and some states of the executing hardware may barrier or guard the
change of abstract contexts.

Multiple dependencies between contexts and behavior. We also
need to carefully analyze dependencies between contexts and varia-
tions of behavior because some variations depend on multiple con-
texts. For example, in the conference guide system, if we identify
outdoor and indoor situations as different contexts, displaying a
static map depends on them, because this behavior is executable
only when the system cannot determine whether it is outdoors or
indoors. In general, this multiple dependency depends on how we
identify contexts, and multiple contexts may barrier or guard the ex-
ecution of context-dependent behavior. This dependency becomes
more complicated when we consider different levels of abstraction
of contexts as discussed above.

Requirements volatility in context specification. Technologies
for sensing context changes are very complex and evolving contin-
ually, indicating that requirements specifications for context sens-
ing are subject to change. For example, at first, it seems appropriate
to define the outdoor/indoor contexts on the basis of the status of
the GPS receiver. However, this definition may change in the fu-
ture to use air pressure sensors or other technologies that are not
currently implemented in the smartphone (such as an active RFID
receiver).

Crosscutting of contexts in multiple use cases. In context-aware
applications, a number of contexts are scattered over multiple use
cases. For example, in the conference guide system, the confer-
ence program is downloaded through the Internet (to let the user
access the up-to-date program) only when Internet access is avail-
able. Similarly, the availability of the Twitter client depends on the
availability of the Internet. Thus, the context “the Internet is avail-
able” crosscuts both use cases “Viewing the program” and “Us-
ing Twitter.” A systematic way to find such a situation and select
an appropriate implementation mechanism for this specification is
necessary.

Crosscutting of behavior changes. One of the most important
properties of context-aware applications is that they change their
behavior at runtime. Thus, we need to identify when a variation of
behavior switches to another one. However, as discussed above, a
variation of behavior may depend on multiple (abstract) contexts,
where each context may depend on a number of concrete contexts.
Furthermore, changes of such concrete contexts are scattered over
the execution of the application. Since their specifications are sub-
ject to change, it is desirable to encapsulate them.

Translation to modular implementation. The above difficulties
(from the viewpoint of requirements specification) make it diffi-
cult to map specifications to modular implementations. We need
to carefully trace which requirements are implemented by which
modules. It is also desirable that a module in the implementation is
not entangled with several requirements but serves only a single re-
quirement. Thus, to support modularity, it is desirable that there is
an injective mapping from the specification to the implementation.

2.3 Problems in Existing Approaches
COP languages provide a novel linguistic construct called layers
to modularize context-dependent behavior. A number of COP lan-
guages have been developed thus far, and some of them share the
same abstraction mechanism based on layers and partial methods
[7, 9, 14, 19]. On the other hand, little research effort has been de-
voted for systematizing the design of context-oriented programs.
For example, the process of discovering layers from requirements
is unclear. Determining when the use of layers is preferable over
the use of existing object-oriented mechanisms and if statements
in order to implement context-dependent behavior also remains un-
clear. A number of mechanisms have been proposed in COP for
dynamic activation of layers. Most of the existing COP languages
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are based on a dynamically scoped layer activation mechanism us-
ing so-called with-blocks, which scatters a context activation code
over the whole program. Event-based activation of layers with the
support of AOP features is proposed to separate the control of
layer activation from the base program [9, 23]. A layer activation
mechanism that unifies existing COP mechanisms is also proposed
[26]. All these mechanisms are useful under the assumption that we
have already determined what are contexts and what are behavioral
variations depending on them. We require a software development
methodology that addresses the aforementioned difficulties.

There have been a number of software development method-
ologies. Object-oriented methodologies are useful for discovering
objects and classes from the requirements and analyzing them.
Aspect-oriented software development (AOSD) methodologies
[22, 35] are useful for finding crosscutting concerns and modu-
larizing them. Feature-oriented software development (FOSD) [4]
is a method that maps feature diagrams [27], which are obtained
by analyzing the software to be developed, to implementations.
Feature diagrams are useful for analyzing dependencies among
features from which software is constructed. Even though these
methodologies provide a good starting point to consider how we
develop context-aware applications, they do not focus on solutions
for the aforementioned difficulties. We need to extend the exist-
ing methodologies to systematically identify contexts and behavior
depending on them to provide predictable control of change of
context-dependent behavior.

Recently, a number of approaches to discover, analyze, and im-
plement contexts and variations of behavior depending on them
have been studied. A number of requirements engineering methods
[3, 31, 32, 37, 38, 41] mainly focus on discovery and analysis of
(abstract) contexts and variations of behavior depending on them.
Henrichsen and Indulska propose a software engineering frame-
work for pervasive computing [18]. They do not provide any sys-
tematic ways to manage volatile requirements for concrete levels
of context, and to modularly implement them. Specifically, they do
not identify a set of variations that comprises one single module.
Frameworks and libraries for context-aware applications provide
context-aware software components and thus enhance reusability,
addressing some of the difficulties mentioned above [1, 12, 13, 36].
They are domain specific, and few general solutions for context-
aware applications are provided.

The authors previously proposed a metamodel of context-
dependent specifications and formalized an injective mapping from
specifications to implementations in EventCJ [25]. Although this
proposal discusses the entire development process from require-
ment analysis to the implementation, the mapping from specifi-
cations to implementations highly depends on EventCJ [23]. By
using this proposal, we can find only context changes that are ex-
plicitly triggered by events. Since the metamodel includes detailed
specifications of context changes, we need to fix the way of imple-
mentation at the earlier stages of development. In contrast, COSE
provides a language-independent methodology to elicit contexts
and context-dependent behavior3, enables us to find several types
of context changes including implicit ones, and postpones a de-
tailed specification of context changes after designing classes. As
a result, the model transformation mentioned in [25] is no longer
required but implementations are directly obtained from specifica-
tions without transforming the model.

To our knowledge, besides our previous study, this paper is the
first attempt to propose a methodology to systematically organize
context-dependent requirements and promote modular implemen-
tation of them.

3 Although COSE is language independent, this paper shows mappings from
specifications in COSE to implementations in ServalCJ.

2.4 Hypotheses
To address the aforementioned descriptions of context-dependent
behavior and problems in existing approaches, we propose the fol-
lowing hypotheses that are assumed in COSE to identify contexts
and context-dependent behavior.

HYPOTHESIS 2.1. The factors dynamically changing the system
behavior are candidates for contexts.

A context is one of the factors that changes the system behavior.
Thus, it is a good starting point for identifying contexts to focus on
factors that change the system behavior.

HYPOTHESIS 2.2. A context can be represented as a Boolean vari-
able.

In many cases, a factor that changes the system behavior takes
only two states. For example, the situation whether the user is
outdoor takes just two states, yes or no. The availability of the
network also takes two states, available or unavailable. The battery
level also takes two states, low or not low. Each of these factors can
be represented as a Boolean variable.

In some cases, such factors may take more than two states. For
example, a location may take a number of values such as “Tokyo,”
“Lugano,” and so on. In such cases, we can consider that each
value as a context. For example, we can consider a context like
that “whether the user is in Tokyo.” This may results in quite a
large number of contexts (e.g., we may list thousands of cities),
and it is hard to prepare such listing. In general, COP requires
pre-listing of variations of behavior, and contexts with a large
number are unlikely modularized by using COP but implemented in
other techniques such as abstraction over parameters. Thus, in the
following sections, we assume that a context can be represented as
a Boolean variable.

HYPOTHESIS 2.3. If multiple variations of context-dependent be-
havior share the same context, and if such variations are not the
specializations of the same behavior, they should be implemented
by using a layer.

This hypothesis explains the situation where “unrelated” varia-
tions of behavior are eventually found to be executable in the same
situation. This is the situation where the same context is scattered
over a number of behavioral variations in the system. A layer in
COP can modularize such crosscutting behavior. On the other hand,
if the context affects only one single variation of behavior, or if such
variations are specialization of the same behavior, we may also con-
sider other implementation mechanisms such as if statements and
method dispatching in object-oriented programming.

3. Specifying Context-Dependent Requirements
and Design

We propose COSE, a use-case-based methodology for context-
oriented software engineering. It represents the requirements for
a context-aware application using contexts and context-dependent
use cases. A context is represented as a Boolean variable that rep-
resents whether the system is in that context. A context-dependent
use case is a specialization of another use case applicable only in
some specific contexts.

On the basis of this requirements model, COSE further de-
rives a design model that is eventually translated into a modular
implementation, as shown in Section 4. COSE is based on the
use-case-driven approach. It provides a systematic mapping from
context-dependent use cases to modules provided by existing COP
languages, namely layers, just as Jacobson proposed the AOSD
method, where each use case is implemented by using an aspect
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Table 1. Listing of contexts: the first stage
name description
hasSchedule the user has registered at least one

session or not
hasNetwork the Internet is available or not
outdoors the situation is outdoors or not
hasPositioning the positioning systems are available or

not
batteryLow the battery level is low or not

[22]. Our design method classifies variations of context-dependent
behavior into those implemented by appropriate implementation
mechanisms such as layers in COP and those implemented by other
traditional mechanisms such as class hierarchies and if statements.
The following design constituents are identified:

1. Groups of context-dependent use cases, each of which shares
the same contexts. Context-dependent use cases in the same
group simultaneously become applicable when the contexts
hold. To modularize dynamic behavioral changes, they should
be modularized into a layer in COP languages.

2. Classes participating in the use cases by applying the standard
use-case-driven approach.

3. Detailed specification of contexts based on the identified classes
and frameworks on which the system depends.

In the following sections, we overview each step of COSE using
the conference guide system example introduced in Section 2.

3.1 Identifying Contexts and Context-Dependent Use Cases
The first step of COSE is to identify contexts and context-dependent
use cases. We extend the original use-case-driven method in [21]
with context-dependent use cases that are applicable only in spe-
cific contexts. By observing use cases, we can see that there exist a
number of variations of behavior with respect to some situations or
state of the system. As explained in Hypothesis 2.1, these factors
changing the system behavior are candidates for contexts. For ex-
ample, in the conference guide system, we can identify a use case
“Startup” where the user starts the system. We can then identify
two specializations of “Startup,” namely “Startup scheduler” that
prepares the menu for the user’s schedule, and “Startup Twitter”
that prepares the menu for the Twitter client. All these specializa-
tions are applicable only when some situations hold such as the
availability of the user’s schedule and availability of the Internet.
Another example is the use case “Using a map,” which is special-
ized to three use cases “Using a city map,” “Using the floor plan,”
and “Using a static map,” which are applicable when the user is
outdoors, when the user is indoors, and when the system cannot
determine the user’s situation, respectively.

More precisely, a context in our model is defined as a Boolean
variable that represents whether the system is in that context or not.
We list the candidates for contexts in the conference guide system
in Table 1. This is the very early stage of listing candidates for
contexts that are directly observable from behavior of the system-
to-be, and should be refined at later steps.

One important criterion on which we rely to identify contexts
is that each context should not depend on other contexts, because
such dependencies imply that a context can be represented in terms
of others. A context and other contexts should be orthogonal, or
if they are not orthogonal, they should be exclusive. In the above
listing, we can find such a dependency: the situation where no posi-
tioning systems are available is a subcase of the situation where the
user is not outdoors, because (assuming that the conference guide

Table 2. Refined listing of contexts
name description
hasSchedule the user has registered at least one

session or not
hasNetwork the Internet is available or not
outdoors the situation is outdoors or not
indoors the situation is indoors or not
batteryLow the battery level is low or not

Table 3. Use cases for the conference guide system
name context
Startup

Startup scheduler hasSchedule
Startup Twitter hasNetwork

Viewing the program
Viewing the online program hasNetwork

Updating the schedule
Using a map

Using a city map outdoors
Using the floor plan indoors
Using a static map !outdoors && !indoors

Moving
Moving when outdoors outdoors

Viewing the schedule hasSchedule
Using Twitter hasNetwork

Updating timeline frequently !batteryLow
Updating timeline infrequently batteryLow

system determines the situation using positioning systems) the de-
tection of an outdoor situation relies on the availability of posi-
tioning systems. Thus, the context outdoors and hasPositioning are
divided into three contexts representing outdoors, indoors, and no
positioning is available, and the final one is exactly the case where
the system cannot determine whether it is outdoors or indoors. The
refined listing of contexts is shown in Table 2.

Note that, as discussed in Section 2, requirements for context
changes are often volatile. Thus, at this stage, it is preferable to keep
contexts abstract to be prepared for future changes of requirements.

A context-dependent use case is a use case annotated with a
proposition where ground terms are contexts that specifies when
this use case is applicable. Context-dependent use cases for the
conference guide system are summarized in Table 3. The names
of use cases are listed in the left column, and conditions in terms of
contexts that represent when the use case is applicable are listed
in the right column. A name with an indent represents that this
use case is a specialization of the use case listed in the above row
with the italic font. A use case with an empty condition is context
independent.

3.2 Grouping Context-Dependent Use Cases
A situation where multiple use cases are applicable in the same con-
text implies that the context-dependent behavior is scattered over
those use cases. To modularize dynamic behavioral changes, these
context-dependent use cases should be grouped into one module
that is enabled (activated) when the condition holds, and disabled
(deactivated) when the condition does not hold. This is the sit-
uation where the Hypothesis 2.3 explains, which is rephrased in
terms of the use case driven method as follows: if multiple context-
dependent use cases that are not specializations of the same use
case share the same context, their behavior should be implemented
by using a layer.
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Table 4. Groups of context-dependent use cases
context use case
hasSchedule Startup scheduler

Viewing the scheduler
hasNetwork Startup Twitter

Viewing the online program
Using Twitter

outdoors Using a city map
Moving when outdoors

indoors Using the floor plan
!outdoors && !indoors Using a static map
hasNetwork && !batteryLow Updating timeline frequently
hasNetwork && batteryLow Updating timeline infrequently

Table 5. Classes for each layer
layer classes position
HasSchedule MainActivity, Schedule class-in-layer
HasNetwork MainActivity, Program, class-in-layer

Twitter
Outdoors Map layer-in-class
Indoors Map layer-in-class
StaticMap Map layer-in-class

Table 4 lists the groups of context-dependent use cases. We
can see that three contexts, hasSchedule, hasNetwork, and out-
doors, are assigned to multiple context-dependent use cases. Thus,
these use cases are grouped into a layer; from now on, we rename
these contexts by capitalizing the first character like HasSchedule,
HasNetwork, and Outdoors, respectively, following the tradition
of the naming of layers in COP languages.

Now, the question is how to treat the remaining context-
dependent use cases. Even though they do not share the condition
with other use cases, some of them still have a relationship with
other layers in that a subterm of their condition is the condition that
activates the layer. For example, the condition for “Using a static
map” includes a subterm outdoors, which is the condition that acti-
vates the layer Outdoors. To uniformly control dynamic changes
of behavior, activation of “Using a static map” should be managed
in the same way as that of Outdoors. Thus, we also identify the
context-dependent use case “Using a static map” as a layer, namely
StaticMap. Similarly, we identify the context-dependent use case
“Using the floor plan” as a layer, namely Indoors.

Other context-dependent use cases are not implemented by us-
ing layers. They are conceptually the same as alternative use cases,
and the behavioral variations represented by such use cases should
be implemented by traditional OO mechanisms such as inheritance
and if statements.

3.3 Designing Classes
Each layer in COP consists of (partial) definitions of classes. By
straightforwardly extending the original use-case-driven approach,
we can identify classes and methods participating in each layer.

First, from use case scenarios, we identify the names of classes.
Due to the limited space, we do not describe the details, but briefly
illustrate the result. Since the conference guide system is an An-
droid application, each view of the application should be imple-
mented as a subclass of the android.app.Activity class from
the Android SDK framework4. The use case “Startup” identifies
the MainActivity class, which will implement the main view of
the application. Similarly, in the use cases “Viewing the program,”

4 http://developer.android.com/sdk/

“Using a map,” “Viewing the schedule,” and “Using Twitter,” we
identify an Activity class for each of them, namely Program,
Map, Schedule, and Twitter. There are some other helper classes;
however, only the Activity classes participate in the context-
dependent behavior.

Table 5 summarizes this assignment of classes for each layer.
While layers HasSchedule and HasNetwork consist of multiple
classes, other layers consist of just one class Map. This table also
shows the preferred ways to allocate layers. There are two alter-
native ways to allocate layers: the class-in-layer style allocates the
(partial) classes that implement the context-dependent behavior in
the layer, while the layer-in-class style allocates the layer within the
class. When a layer is scattered over several classes, the class-in-
layer style is preferable, while when a class is scattered over several
layers, the layer-in-class style is better. Note that some COP lan-
guages support only one style [6]. In this case, we need to conform
to the style provided by the implementing language.

3.4 Designing Detailed Specification of Contexts
The contexts identified above are abstract. Since we have identified
a number of classes in use case scenarios, we can now provide more
concrete definitions for them. In the following, we define when
the context becomes active in terms of classes identified above and
classes from the framework. As explained later, specifications for
some contexts are complex; thus, we need to identify more fine-
grained contexts that comprise the specified context.

Section 3.1 defines that the context hasSchedule holds when
the user has registered at least one session to attend from the
conference program. In terms of the Android SDK framework, this
is represented as “a query on the SQLite instance returns at least
one result.” Thus, we define when the layer HasSchedule becomes
active as follows, which is read as “the getCount method on the
result of a query on an SQLite instance (namely db) returns an
integer value that is greater than 0”:

HasSchedule(SQLite db) ::
db.query(..).getCount() > 0

Similarly, by inspecting the specification of the Android SDK
framework, we define when the layer HasNetwork becomes active
as “the result of the getDetailedState method on the result of
getActiveNetworkInfo on a ConnectivityManager instance
(namely cm) is equal to NetworkInfo.DetailedState.CONNECTED”:

HasNetwork(ConnectivityManager cm) ::
cm.getActiveNetworkInfo().getDetailedState() ==

NetworkInfo.DetailedState.CONNECTED

The cases for outdoors and indoors contexts are more complex.
They are affected by multiple states of the running machine. First,
to determine whether the user is outdoors, the GPS device should be
available. Second, the conference guide system determines whether
the user is in the conference venue by using the SSID of the con-
necting wireless LAN, which means that the wireless LAN connec-
tion should be available. Thus, the activation of layers Outdoors
and Indoors is determined in terms of more fine-grained contexts:

Outdoors :: !WifiAvailable && GPSAvailable
Indoors :: WifiAvailable

In other words, Outdoors and Indoors are composite layers [24].
The context WifiAvailable is defined as follows, assuming

that isWifiConnected is an application method that returns true
when the wireless LAN is connected and its SSID is some pre-
defined value:

WifiAvailable :: Config.isWifiConnected()==true
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The context GPSAvailable is defined as follows using the
isProviderEnabled method provided by the framework:

GPSAvailable ::
LocationManager.isProviderEnabled(

LocationManager.GPS_PROVIDER) == true

4. Mapping to Implementation
This section demonstrates how the facts discovered by COSE are
systematically translated into a program with existing COP mech-
anisms. We choose ServalCJ [26], which is a successor of EventCJ
[23], as an implementation language because it provides a general-
ized layer activation mechanism that supports most existing COP
mechanisms. A context in ServalCJ is defined as a term of tempo-
ral logic with a call stack, which can represent most existing layer
activation mechanisms. For example, it can specify two events, of
which one activates the corresponding context and the other deac-
tivates that context (as in EventCJ’s event-based layer transition).
ServalCJ can also specify a control flow under which the corre-
sponding context is active (as in JCop [9]). ServalCJ can select the
target where such context specifications are applied, and that target
can be a set of objects (per-instance activation) or the whole appli-
cation (global activation). Furthermore, ServalCJ supports implicit
activation, where activation of a context is indirectly specified by
using a conditional expression. As shown in the following sections,
our methodology clarifies that this mechanism is notably useful for
modular implementation.

A ServalCJ program comprises a set of classes, layers, and
context groups where dynamic layer activation and the target for
this activation are specified. Layers and classes identified in Sec-
tions 3.2 and 3.3 are directly implemented in layers and classes in
ServalCJ. Context specifications in Section 3.4 are directly imple-
mented in context groups in ServalCJ. We explain the details in the
following sections.

4.1 Implementing Layers
As in other COP languages, layers and partial methods comprise
the mechanism for modularization of context-dependent behavior
in ServalCJ.

Figure 2 shows an example of layers and partial methods in Ser-
valCJ for the main view of the conference guide system. The class
MainActivity extends the Activity class provided by the An-
droid SDK framework, and overrides the onResume method, which
is called from the framework when this view resumes the execution.
This method displays the main menu of the conference guide sys-
tem as buttons for viewing the conference program and using the
map. MainActivity also declares two layers HasSchedule and
HasNetwork. These layers define the context-dependent behav-
ior of MainActivity5. HasSchedule defines the behavior when
there is at least one session that the user would like to attend, and
HasNetwork defines the behavior when the Internet is available.
These layers extend the original behavior of onResume by declar-
ing after partial methods, which are executed just after the execu-
tion of the original method when the respective layer is active6. For
example, when HasSchedule is active, onResume also displays
the menu button to check the user’s schedule.

5 Although Table 5 shows that it is preferable to implement these layers in
the class-in-layer style, in Figure 2, they are implemented in the layer-in-
class style because currently ServalCJ only supports the layer-in-class style.
6 There are also before and around partial methods that execute before
the execution of the original method and instead of the original method,
respectively, when the respective layer is active.

1 class MainActivity extends Activity
2 implements View.OnClickListener {
3 private GridLayout layout;

5 @Override
6 protected void onResume() {
7 super.onResume();
8 layout = new GridLayout(this);
9 layout.addView(makeMenu("program", "Program"));

10 layout.addView(makeMenu("map", "Map"));
11 }

13 private Button makeMenu(String tag,
14 String label) {
15 ..
16 }

18 layer HasSchedule {
19 after protected void onResume() {
20 layout.addView(makeMenu("schedule",
21 "Schedule"));
22 }
23 }
24 layer HasNetwork {
25 after protected void onResume() {
26 layout.addView(makeMenu("twitter",
27 "Twitter"));
28 }
29 }
30 }

Figure 2. Layers and partial methods in ServalCJ

1 contextgroup Network(ConnectivetyManager cm)
2 perthis(this(ConnectivityManager)) {
3 context HasNetworkContext if(
4 cm.getActiveNetworkInfo().getDetailedState()
5 ==NetworkInfo.DetailedState.CONNECTED);
6 activate HasNetwork when HasNetworkContext;
7 }

Figure 3. Context group responsible for activation of HasNetwork

4.2 Implementing Layer Activation
In COP languages, we can dynamically activate and deactivate
layers, and ServalCJ provides declarative ways to perform such
layer activation. These declarations are directly obtained from the
design of detailed contexts discussed in Section 3.4.

First, detailed context definitions are further grouped on the ba-
sis of the variables and contexts that these definitions refer to. For
example, HasNetwork refers to an instance of ConnectivityMan-
ager (and this is the only context that refers to that instance); thus,
it makes up one group, which we call a context group.

Figure 3 shows a context group that is responsible for acti-
vation of HasNetwork. The first line specifies the name of the
context group, which is Network, followed by a specification of
how this context group is instantiated. The perthis clause spec-
ifies that the instance of Network is associated with an instance
of ConnectivityManager (as specified using the this pointcut),
which can be referenced through the variable cm.
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1 contextgroup Schedule(MainActivity main)
2 perthis(this(MainActivity)) {
3 context HasScheduleContext if(
4 main.scheduleCounter > 0);
5 activate HasSchedule when HasScheduleContext;
6 }

Figure 4. Context group responsible for activation of
HasSchedule

1 contextgroup Situation {
2 context WifiAvailable if(
3 Config.isWifiConnected()==true);
4 context GPSAvailable if(
5 LocationManager.isProviderEnabled(
6 LocationManager.GPS_PROVIDER)==true);
7 activate Outdoors
8 when !WifiAvailable && GPSAvailable;
9 activate Indoors when WifiAvaileble;

10 activate StaticMap
11 when !Outdoors && !Indoors;

Figure 5. Context group responsible for activation of Outdoors,
Indoors, and StaticMap

Line 3 defines a context HasNetworkContext, which is used
to specify when HasNetwork is active. The syntax of context
declaration is as follows:

context ContextName Term ;

It starts with the keyword context followed by the name of the
context and the specification of when that context is active. There
are several ways to specify context activation, e.g., to specify the
join points where that context becomes active and inactive, to
specify the control flow under which that context is active, and
to specify the condition when that context is active. In Figure
3, we specify the condition, which is declared by using the if
expression. In the if expression, we can use any Boolean-type Java
expressions, and in this case, we just copy the expression from the
definition in Section 3.4.

Line 6 declares when the layer HasNetwork is active using an
activate declaration. The when clause specifies the condition when
the layer is active in terms of contexts; i.e., if HasNetworkContext
is active, HasNetwork is active.

We can also declare a context group for HasSchedule in a simi-
lar way. One subtle issue is that the definition of HasSchedule con-
tains an expression that requires local database accesses. If the de-
veloper has performance concerns, this definition is not preferred,
because in ServalCJ, this condition is tested at every call of the lay-
ered method (i.e., a method that consists of a set of partial methods).
In our case, the definition of HasSchedule is refined to access the
counter variable that is introduced to MainActivity and updated
when the local database is updated:

HasSchedule(MainActivity main) ::
main.scheduleCounter > 0

The definition of the context group for HasSchedule is shown in
Figure 4.

The remaining layers are Outdoors, Indoors, and StaticMap.
Since they share the same set of context references, we group them
into one context group, which is shown in Figure 5. Since this con-
text group does not refer to any instance variables, it specifies no
perthis and pertarget clauses. This context group is a single-

Table 6. Listing of contexts for CJEdit
name description
cursorOnCode the cursor is on code
RTF the text renderer renders comments

ton, i.e., it is created at the beginning of execution of the application
and remains until it terminates.

Context declarations for WifiAvailable and GPSAvailable
are directly obtained from the definitions in Section 3.4. Further-
more, activate declarations for Outdoors, Indoors, and StaticMap
are also directly obtained from the definitions in Section 3.4. Note
that we can use the logical operators ||, &&, and ! to compose
propositions in the when clauses.

Finally, we need to decide the sets of instances where these con-
text groups are applied. ServalCJ supports per-instance activation,
where a context group is applied to a specified set of instances, and
global activation, where a context group is applied to the whole ap-
plication. In the conference guide system, we decide that all context
groups are global because per-instance activation is not important
in this system. All the types of instances that should be under the
control of some context groups are subtypes of Activity, and their
instantiation is totally controlled by the Android SDK framework.
There should not be cases where multiple instances of the same
Activity class coexist simultaneously. A context group is global
at the initial setting. Thus, the context groups shown in Figures 3,
4, and 5 are global.

5. CJEdit: Another Case Study
This section demonstrates another case study using COSE. CJEdit
[8], which was first implemented by Appeltauer, is a program edi-
tor that enhances the readability of programs by providing different
text-formatting techniques for code and comments. The code part
is rendered in a typewriter format with syntax highlighting, and
the comment part is rendered in a rich text format (RTF) that sup-
ports multiple fonts, text sizes, decorations, and alignments. Fur-
thermore, CJEdit provides different GUI components depending on
whether the programmer writes code or comments. For example,
when the user is editing code, CJEdit displays the “execute” menu
to quickly test the code currently being edited. This application is
implemented using the QtJambi framework7. We use this example
to investigate how COSE fits the development of existing context-
aware applications.

Since the original implementation of CJEdit already exists, we
do not perform this case study from scratch. We use the original
implementation as a prototype of this case study, and by observing
the system’s behavior, we first derive the contexts listed in Table
6. The context cursorOnCode holds when the cursor is on code.
There is also a context for text-rendering regions: RTF holds when
the text renderer renders comment regions.

Table 7 lists context-dependent use cases for CJEdit. In CJEdit,
we identify the use case “Editing a program,” which includes an-
other use case “Displaying the source code.” We derive context-
dependent use cases from these use cases. “Editing a program” is
specialized to different use cases with respect to the cursor’s posi-
tion; “Writing code” is applicable only when the context cursorOn-
Code holds, and “Writing comments” is applicable only when the
context cursorOnCode does not hold. “Displaying the source code”
is specialized to three different use cases depending on the text re-
gion and the cursor’s position; “With syntax highlighting” is appli-
cable only when the context cursorOnCode && !RTF holds; “With-
out syntax highlighting” is applicable only when the context !cur-

7 http://qt-jambi.org
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Table 7. Use cases for CJEdit
name context
Editing a program

Writing code cursorOnCode
Writing comments !cursorOnCode

Displaying the source code
With syntax highlighting cursorOnCode && !RTF
Without syntax highlighting !cursorOnCode && !RTF
RTF format RTF

Execute cursorOnCode

Table 8. Layers for CJEdit
layer use case
CodeEditing Writing code

Execute
CommentEditing Writing comments
RenderWithHighlighting With syntax highlighting
RenderWithoutHighlighting Without syntax highlighting

Table 9. Classes for each layer of CJEdit
layer classes
CodeEditing TextBlock,TextEditor

FileExecutor
CommentEditing TextEditor
RenderWithHighlighting SyntaxHighlighter
RenderWithoutHighlighting SyntaxHighlighter

sorOnCode && !RTF holds; “RTF format” is applicable only when
the context RTF holds. “Execute” is applicable only when the con-
text cursorOnCode holds.

The next step is to group all context-dependent use cases with
the same context into one single layer. On the basis of Hypothesis
2.3, we group “Editing a program” and “Execute” into the layer
CodeEditing. The remaining context-dependent use cases do not
share their context with other use cases; however, we still need to
further group each of them as a distinct layer because a subterm of
their context is a (subterm of a) context that activates a layer. Thus,
we finally obtain the layers listed in Table 8.

Next, we identify the names of classes from the use case sce-
narios. Table 9 lists important classes for implementing context-
dependent behavior. While the CodeEditing layer consists of mul-
tiple classes, other layers consist of just one class.

Now, we can define the detailed specifications of contexts in
terms of classes. As specified in Table 6, the context cursorOnCode
holds when the cursor is on code. This condition is represented by
using the application method isCursorOnCode that returns true
when the cursor is on code:

CursorOnCode :: TextEditor.isCursorOnCode()

The context RTF is also defined in terms of an application
method that returns a text block by inspecting the type of that text
block:

RTF :: SyntaxHighlighter.getCurrentBlock()
instanceof RTFBlock

We directly implement the above systematized specification
using ServalCJ. Layers listed in Table 8 are translated to layer
declarations in ServalCJ. Figure 6 illustrates the layers affecting
the behavior of TextEditor. They change the arrangement of GUI
components by introducing partial methods, which are executable
only when the corresponding layer is active.

1 class TextEditor {
2 void showWidgets() { .. }
3 void showToolbars() { .. }
4 void showMenu() { .. }

6 layer CodeEditing {
7 after void showWidgets() { .. }
8 after void showToolbars() { .. }
9 }

10 layer CommentEditing {
11 after void showMenu() { .. }
12 after void showToolbars() { .. }
13 }
14 }

Figure 6. Layers and partial methods for CJEdit

1 contextgroup CJEdit(TextEditor editor)
2 perthis(this(TextEditor)) {
3 context CursorOnCode if(
4 editor.isCursorOnCode());
5 context RTF if(
6 editor.getHighlighter().getCurrentBlock()
7 instanceof RTFBlock);
8 activate CodeEditing when CursorOnCode;
9 activate CommentEditing

10 when !CursorOnCode;
11 activate RenderWithHighlighting
12 when CursorOnCode && !RTF;
13 activate RenderWighoutHighlighting
14 when !CursorOnCode && !RTF;
15 }

Figure 7. Context group for CJEdit

The detailed specification of contexts is also directly imple-
mented in the context group shown in Figure 7. Since the methods
used in the specification of contexts are instance methods, we bind
the instance of TextEditor with the local variable editor of the
context group CJEdit, and the condition that specifies which con-
text is active is specified by using the corresponding variable. Ac-
tivate declarations that specify when the corresponding layers are
active are directly obtained from Tables 7 and 8.

6. Discussing Modularity
The case studies demonstrate our hypotheses on when we should
use COP. In this section, we summarize the result of case stud-
ies and validate our hypotheses. By comparing ServalCJ with other
languages and implementation techniques, we also explore what
are the key functionalities of the implementing language to make
our approach effective. Finally, the case studies lead us to further
research on each stage of the development process from the require-
ment analysis to the implementation.

6.1 Summary of Case Studies
In Section 2.2, we identified several difficulties in development of
context-aware applications. Our approach COSE addresses them as
follows.

Identification of contexts and requirements variability. As illus-
trated in Section 3.1, COSE systematizes identification of contexts
by observing behavior of the system-to-be, such as use cases and
prototypes. Furthermore, we clarify a criterion that should hold for
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each context, which is that a context should not be a subcase of
other contexts. Requirements variability based on contexts is also
represented by context-dependent use cases.

Different levels of abstraction. As discussed in Sections 3.1 and
3.4, COSE provides a concretization process for contexts. A con-
text may be composed of other contexts that are less abstract than
the composed context. Each level of abstraction of contexts in the
specification is also directly represented by the implementation lan-
guage using composite layers.

Multiple dependencies between contexts and behavior. As dis-
cussed above, because of composite layers, a layer can be com-
posed of a number of contexts.

Requirements volatility in context specification. Each context-
dependent use case is represented in terms of abstract contexts, and
thus it is rigorous for future changes of detailed specifications of
concrete contexts. For example, in the conference guide system, the
specification of the outdoor context may change according to future
evolution of sensor technologies that detect outdoor and indoor
situations. Context-dependent use cases depending on the outdoor
context will not be affected by such changes because the detailed
specification of the outdoor context is abstracted from the context-
dependent use cases. We may also separately perform such changes
because definitions of contexts are encapsulated in context groups
in ServalCJ.

Crosscutting of contexts in multiple use cases. COSE groups a
number of variations of behavior that are executable under the same
contexts and scattered across multiple use cases into one single
layer. As discussed in Section 3.2, it also provides a guideline for
when to use COP.

Crosscutting of behavior changes. Dynamic changes of contexts
and behavior depending on them, which are scattered across the
whole execution of the program, are separated as specifications
of contexts and directly implemented by using context groups.
Specifically, definitions of such changes are declaratively specified
and totally separated from the base program.

Modular translation to the implementation. Layers and classes
identified in Sections 3.2 and 3.3 are directly implemented in lay-
ers and classes in ServalCJ. Context specifications in Section 3.4
are directly implemented in context groups in ServalCJ. Each re-
quirement in the specification is not scattered across multiple mod-
ules in the implementation, and each module is not entangled with
multiple requirements.

6.2 Validating the Hypotheses
The results of case studies discussed above confirm the validity of
Hypotheses 2.1 and 2.2. The case studies reveal that the factors
changing the system behavior are actually “candidates” for con-
texts, and each context can be represented as a Boolean variable.
This representation of contexts further derives a criterion to iden-
tify contexts, which is that each context at the abstract level should
not depend on other contexts. A context and other contexts should
be orthogonal, or if they are not orthogonal, they should be ex-
clusive. This criterion enhances the exhaustiveness of contexts and
makes it easy to discuss the equivalence between contexts.

For the Hypothesis 2.3, however, we need to further discuss
the validity of our decision to implement the variations of context-
dependent behavior using layers, because there are other alterna-
tives to implement such variations, and above case studies do not
discuss the cases where we do not use COP even when COSE indi-
cates that we should use that.

We can validate it by using Tables 4 and 5. First, the layers
HasSchedule and HasNetwork crosscut across multiple classes,

and thus the same concern may scatter over those classes if we
naively implement them using if statements. Applying design
patterns may also produce this scattering problem. Extracting such
scattered code as a common superclass requires an additional class
hierarchy, which may be orthogonal to the existing hierarchies.
Applying multiple inheritance, mixins [11], and traits [40] makes
it difficult to take a look at the all classes that are composed
with the same context-dependent behavior. In contrast, layers in
COP provide a good solution to separate such concerns. More
importantly, using the techniques other than COP makes it hard to
separate behavior changes from the base program, which is possible
in (some variants of) COP languages.

On the other hand, the layers Outdoors, Indoors and Static-
Map in Table 5 exist only one single class Map and thus they do
not seem to contribute to separation of crosscutting concerns. From
Table 4, however, we can observe that Outdoors consists of two
use cases, which are implemented by different methods, and using
if statements would results in scattering of the same conditions
over those methods. We may also avoid this scattering by, for
example, to allow the Map object to have a state of the current
situation, and to define behavioral variations for each state by using
the state design pattern. The problem in applying design patterns
is the scattering and tangling of behavioral changes. The state
changes of the Map object are triggered by external environment
changes, which are observed by the framework. We need to embed
state changes of the Map object by implementing appropriate event
handlers of possibly multiple modules (such as Wifi and GPS
related classes). Thus, it becomes hard to localize the overall state
changes in the Map object. By applying COSE with appropriate
COP languages, we can separate such context changes into one
single module.

Similar discussion holds in the case study of CJEdit. Thus,
all decisions in this paper to implement variations of context-
dependent behavior using layers are valid.

6.3 Comparison with Other Activation Mechanisms
The implementation in ServalCJ discussed in Section 4 implies
that, in our approach, it is not necessary to transform the model
of the requirements into that of the implementation. Instead, the
implementation is directly obtained from the requirements. There
are injective mappings from layers and contexts discovered in the
requirements to those in the implementing language. Thus, this
mapping promotes separation of concerns in that requirements are
not scattered across several modules in the implementation, and
each module is not entangled with a number of requirements.

The implementations in the case studies rely on the specific lin-
guistic constructs provided by ServalCJ. In this section, we identify
what are the properties that the implementing languages should
have to make COSE effective, and compare ServalCJ with other
languages and implementation techniques, such as ContextJ [7],
EventCJ [23, 24], and a pseudo AOP language with the dynamic
layer activation mechanism, with respect to those properties. Table
10 summarizes the result of the comparison. The leftmost column
shows the numbers and titles of the following sections.

We do not argue that programming languages that do not sup-
port features listed below are not useful in COSE. In such lan-
guages, we may still apply useful workarounds to implement spec-
ifications organized by COSE, which would not be a bad choice in
some circumstances such as availability of libraries and a develop-
ment environment, and programmer’s preference. Nevertheless, Ta-
ble 10 indicates that recent progress in COP languages effectively
supports COSE, which will be a good input for future language
design.
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Table 10. Comparison with other activation mechanisms
ContextJ AOP+COP EventCJ ServalCJ

6.3.1 Separation of context-dependent behavior8 a a a a
6.3.2 Separation of context changes n/a a a a
6.3.3 Expressing relations between layers and contexts n/a n/a a a
6.3.4 Implicit activation n/a n/a n/a a

6.3.1 Separation of context-dependent behavior
First, in COSE, the implementing language should separate context-
dependent behavior that is dynamically enabled and disabled from
the base program. Layers of COP languages provide an effective
way to achieve this purpose. Each partial method implements the
context-specific behavior of the base method, and a layer packs all
partial methods executable under the same context into one single
module. Besides COP, other programming paradigms such as AOP
and feature-oriented programming (FOP) [34] also provide such a
modularization mechanism; however, for these paradigms, we also
require an additional mechanism for dynamic composition of mod-
ules. For example, dynamic aspect deployment [10] may be applied
for this purpose.

6.3.2 Separation of context changes
We can also see that, in COSE, specifications and implementa-
tions of dynamic changes of contexts and behavior depending on
them are also separated from other specifications and modules,
respectively. From the implementation viewpoint, such dynamic
changes can easily be scattered over the whole application execu-
tion. Such scattering behavior can be avoided by using the pointcut-
advice mechanism provided by AspectJ [29] (provided that it is also
equipped with some imperial layer activation mechanism), or other
COP languages with AOP features such as EventCJ and JCop [9].

In some COP languages, layer activation is controlled in a per-
thread manner, whereby the generation of the event activating the
layer and layer activation occur synchronously. In such languages,
it is difficult to separate dynamic changes of behavior. For example,
in ContextJ, layer activation is expressed by using the with-blocks,
which ensures that layers are active only within the explicitly spec-
ified dynamic scope:

with (activeLayers) { onResume(); }

However, context changes are triggered by external events that
asynchronously occur with the dynamic change of behavior. For
example, in this case, we need to remember the active layer within
the body of the event handler that handles the change of contexts
to activate context-dependent behavior that does not appear in the
scope of the event handler:

void someEventHandler(Event e) {
activeLayers.add(Outdoors);

}

In this case, the scattering problem is readily encountered, and
the base program is entangled with the concerns about dynamic
changes of behavior.

6.3.3 Expressing relations between layers and contexts
From COSE, we can also see that a variation of behavior may
depend on multiple contexts. For example, from Table 4, we can
see that the use case “Using a static map,” which is implemented

8 ServalCJ (and EventCJ) only supports the layer-in-class style. Thus, the
same layer may be scattered across multiple classes. In fact, such layers
exist in both case studies. This scattering can be addressed by supporting
the class-in-layer style in the syntax.

in the layer StaticMap, depends on both contexts outdoors and
indoors, one of which, namely outdoors, is further decomposed
into two contexts WifiAvailable and GPSAvailable. To sepa-
rate context-dependent behavior from the detailed specification of
contexts, such an abstraction mechanism is necessary. From the
implementation viewpoint, composite layers [24], which are sup-
ported by EventCJ and ServalCJ, are useful for this purpose.

6.3.4 Implicit activation
In most existing COP languages, we need to explicitly specify the
join point where the context change occurs. In COP languages with
AOP features, we perform such specification using the pointcut
sublanguage. In COP languages with with-blocks, we explicitly
inject the layer activation block into the base program. However,
from the case studies, we have learned that a more declarative way
to specify the condition when the corresponding context is active is
heavily used in the context specification, which is directly imple-
mented by using the implicit layer activation mechanism provided
by ServalCJ (i.e., the if condition that specifies the condition when
the corresponding context is active). This fact indicates that, even
though it currently suffers from performance problems, the implicit
layer activation mechanism can be a strong tool to modularly im-
plement dynamic changes of behavior from the specification.

It is also possible to manually translate implicit layer activation
into the explicit activation by identifying the join points where the
condition is changed. However, when there are such multiple join
points, we need to list all of them, which is an error-prone task.
Furthermore, explicitly specifying the join points using pointcut
often encounters the fragile pointcut problem [30].

6.4 Open Issues
Our preliminary case studies on COSE raise the following open
issues that should be further explored.

First, both case studies in this paper are simple. Although these
case studies demonstrate the effectiveness of COSE, they do not
promise success in more complex cases. In large systems, we may
have a large number of dynamic changes in behavior, some of
which are context dependent. Eliciting contexts from such systems
may be time consuming. Furthermore, in both case studies, the tar-
get system is standalone and implemented by using one single pro-
gramming language. We should not consider that the results of the
case studies immediately imply that we can easily apply COSE to
distributed systems implemented by using multiple programming
languages.

Second, COSE represents variations of context-dependent be-
havior using use cases. There should be some cases where we may
prefer to use methods other than use cases, such as feature diagrams
and goal models. The results in this paper do not ensure that we can
also apply similar context-oriented extensions to those methods.

Third, the case studies do not convey compelling results regard-
ing costs and benefits of COSE. The results ensure modularity of
the products. However, they do not reveal how such modularity
affects the real software production process and the quality of its
products. We believe that COSE would have a significant impact
on software development, in particular on software maintenance,
because it provides comprehensive abstractions, clarifies complex
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relations between contexts and behavior, and provides good modu-
larity in its products. However, this hypothesis should be validated
through a lot of control experiments. Furthermore, the hypotheses
explained in Section 2.4 should also be validated through a number
of demonstration experiments and industrial software development.

Finally, as mentioned above, there are open issues in the per-
formance of implicit activation, which is heavily used in the case
studies. The performance problem of implicit activation is not sig-
nificant in the case studies. However, this assumption will not al-
ways hold in applications of larger sizes. In some cases, we may
optimize implicit activation, but there may be other cases where
such optimization is not feasible. The case studies do not clarify
when to use implicit activation and when to use other mechanisms
such as event-based activation.

7. Future Research Roadmap
In this paper, we presented COSE and proposed that it can be em-
ployed for the effective development of context-aware applications.
Specifications systematized by COSE effectively represent differ-
ent levels of abstraction of contexts, which makes the system rig-
orous with respect to the change of detailed definitions of contexts.
Context-dependent use cases are used to discover a layer, a mod-
ularization unit in COP, from the specification. The injective map-
ping from specifications to implementations ensures that each spec-
ification in the requirements is not scattered across multiple mod-
ules in the implementation, and each module is not entangled with
multiple requirements. The comparison among several implemen-
tation techniques shown in Section 6.3 reveals the key linguistic
constructs that make COSE effective and indicates important re-
search directions for context-oriented software development.

This paper presents preliminary studies on COSE. Although
these studies reveal that our approach is promising, there are also a
number of open issues. In this section, we show our future research
roadmap.

7.1 Systematizing Context Identification
The applications mentioned in the case studies are simple, and
the number of identified contexts is not large. In large systems,
the number of “candidates for contexts” will be very large. Fur-
thermore, the system-to-be will be described by using natural lan-
guages including diagrams in inconsistent syntax. In some cases,
such descriptions will be scattered over various documents, spread-
sheets, and emails. This unstructured piling up of descriptions eas-
ily results in a situation where conceptually the same contexts are
described in different words and notations.

In Section 3, we list the factors changing the system behavior
as candidates for contexts. This is the most fundamental property
of contexts. To systematize identification of contexts and deal with
a large number of candidates for contexts, more precise criteria to
find candidates for contexts will be necessary. For example, for a
factor changing the system behavior to be identified as a context
in COP, it should affect the behavior of a number of objects in the
system. Moreover, all the contexts in the case studies are external
with respect to the affected entities.

From this perspective, we are planning to develop a systematic
context elicitation process that is applicable in the early stages of a
requirements elicitation process.

7.2 Requirements based on Other Methods
Using use cases is a fantastic way to figure out functional require-
ments of the system-to-be. Use cases do not require any special
languages to describe them; thus, people from various backgrounds
can easily understand them. Nevertheless, they effectively describe
the system behavior. Furthermore, they prevent hasty design; de-
sign methods based on use cases are well studied.

However, use cases are not all around. They are not suitable
for figuring out non-functional requirements or for describing re-
quirements specifications of platforms such as operating systems
and frameworks. There are also a number of methods for analyzing
requirements that are not based on use cases. It is natural to raise
the question whether it is possible to apply methods similar to that
described in this paper to other requirements analysis methods.

Goal-oriented methods for requirements engineering [15, 33]
are complementary approaches suitable for eliciting requirements
variability and constraints. Non-functional requirements are de-
rived from their soft goals. Their variability and constraints may
depend on executing contexts. Although a goal-based approach for
contextualization is proposed in [3], further research should be con-
ducted to explore, for example, approaches to align goal-based ap-
proaches and use-case-driven approaches.

Feature modeling presents a compact representation of all prod-
ucts of a software product line (SPL). Feature models are repre-
sented by means of feature diagrams [27]. Features provide re-
quirements for architectures (including non-functional ones) and
reusable functions. At the programming language level, layers in
COP resemble features in FOP [5, 42]. This similarity indicates
that we may develop a context-oriented extension of FOSD [4].

Application of context-oriented software development described
in this paper to these major requirements engineering methods will
be our new challenge.

7.3 Evaluation
To ensure that our methodology is effective, it will be necessary
to perform further evaluation. For example, we need to evaluate
the costs and benefits of our methodology, and the validity of the
decision to use layers to implement context-dependent behavior in-
stead of other mechanisms, through control experiments that com-
pare our methodology with other software development methods.
It is difficult to conduct control experiments, and it will take a long
time to derive quantitative evaluations. Meanwhile, we think that
it is also important to conduct a number of demonstration experi-
ments and collect experiences of the application of our approach.
In particular, we believe that application of our methodology to in-
dustrial software development is notably important.

Since one purpose of our study is to enhance modularity, the
evaluation will be performed from the viewpoint of modularity. For
example, an experimental study of how our approach makes it easy
to deal with volatile requirements regarding contexts, and analysis
of effects of requirement changes should be performed.

7.4 Implicit Activation
In both case studies in this paper, contexts are implemented by
means of context conditions. As mentioned above, this fact implies
the importance of implicit layer activation. However, there is a per-
formance problem in implicit layer activation. A naive implemen-
tation strategy is to evaluate the condition that specifies when the
corresponding context is active at every call of the layered meth-
ods, and when that condition holds and the corresponding context
is not active, then that context is activated. This strategy will not
produce a serious problem if the number of layered method calls
is not so high. However, in the case where calls of layered meth-
ods frequently and repeatedly occur (e.g., in the case where calls of
layered methods are included within a loop statement), this strategy
may result in a serious performance problem.

Thus, to develop an optimization mechanism for implicit layer
activation so that the evaluation of the context condition occurs
only when necessary is an important research topic. There are
several approaches for this purpose.

One approach is to develop an ad hoc method that optimizes
parts of the program where calls of layered methods may frequently

96



occur, such as loop statements. For example, if we can determine
that the context condition will never change during the execution
of the loop, we may rewrite the loop so that the context condition
is evaluated just once at the entrance of that loop.

For a more effective approach, we may research a method to
statically analyze when the value of the context condition changes.
For example, assuming that c is a condition for the context C, if
we can derive a pair of predicates (p, q) for which it can easily be
checked that p =⇒ c and q =⇒ ¬c, we can insert evaluations of
c where the values for p or q change. We are currently considering
an application of predicate abstraction for model checking for this
purpose.

In both cases, the optimization requires whole program analy-
sis because the change of context condition may occur anywhere
in the program execution. To make the whole program analysis
lightweight and feasible in the case when the whole code is not
available for analysis, it is also necessary to study the application
of whole program analysis without the whole program [2] to COP
programs.

The emphasis on implicit activation does not mean that event-
based activation of contexts is not necessary. First, in the case
where layered methods are frequently called and optimization of
implicit layer activation is difficult for some reason, event-based
activation should be used. There are also some cases where the
specification of context is defined in terms of events (even though
this did not happen in our case studies). For example, there may
be a specification of stateless objects whose contexts are changed
by clicking buttons. In this case, it is better to implement context
activation in an event-based manner than to introduce a state for
each object to manage context activation using the implicit activa-
tion mechanism. There are also some cases where context changes
can be observed from both conditions and events.

The problem is that there are no clear guidelines about when
to use implicit activation and when to use the event-based mecha-
nism. To create such guidelines, we need to study this problem both
from the programming language perspective and the programming
practice one. From the programming language perspective, as men-
tioned above, it is necessary to figure out the feasibility of efficient
implementation of implicit activation. Meanwhile, formalization of
implicit activation is also desirable to precisely study the semantics
of implicit activation. We think that implicit activation is a spe-
cial case of functional reactive programming (FRP) [16] in that the
change of condition (value) reactively changes the result of activa-
tion (computation). Understanding implicit activation in terms of
FRP may further clarify the semantics of implicit activation.

From the programming practice perspective, through a number
of other case studies, we are planning to discover common patterns
in context activation, which will serve as guidelines.

7.5 Distributed, Multi-Language Environment
Both case studies in this paper are standalone applications writ-
ten in one single programming language. In real products, how-
ever, systems are implemented by using multiple programming lan-
guages and sometimes comprise a number of components and ser-
vices over networks. To apply our methodology to such systems,
there are two problems.

First, to our knowledge, ServalCJ is the only language that
has all the desirable properties shown in Section 6.3. We need to
explore how to realize the mechanism supported by ServalCJ in
a wide range of programming languages including those suitable
for high performance computing such as C and C++ and scripting
languages such as JavaScript.

Second, little research effort has been devoted in COP for shar-
ing the same context among multiple application processes. Shar-
ing context among processes over the network is possible in pro-

gramming languages supporting network-transparent communica-
tions between processes such as ContextErlang [39]. Further re-
search is necessary to support network-transparent context in other
programming models, and develop a mechanism to share contexts
among multiple programming languages, which possibly commu-
nicate with each other over the network.

On the basis of these technical elements, we will further study
the applicability of COSE to more realistic and sophisticated soft-
ware development situations.
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[40] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P.
Black. Traits: Composable units of behaviour. In ECOOP 2003,
volume 2743 of LNCS, pages 248–274, 2003.

[41] Alistair Sutcliffe, Stephen Fickas, and McKay Moore Sohlberg. PC-
RE: a method for personal and contextual requirements engineering
with some experience. Requirements Engineering, 11(3):157–173,
2006.

[42] Fuminobu Takeyama and Shigeru Chiba. Implementing feature inter-
actions with generic feature modules. In Software Composition 2013,
volume 8088 of LNCS, pages 81–96, 2013.

98




