
Matriona: Class Nesting with
Parameterization in Squeak/Smalltalk

Matthias Springer†,‡ Fabio Niephaus† Robert Hirschfeld†,§ Hidehiko Masuhara‡

† Hasso Plattner Institute, University of Potsdam, Germany
‡ Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Japan

§ Communications Design Group (CDG), SAP Labs, USA; Viewpoints Research Institute, USA
matthias.springer@acm.org fniephaus@acm.org robert.hirschfeld@hpi.de masuhara@acm.org

Abstract
We present Matriona, a module system for Squeak, a Smalltalk
dialect. It supports class nesting and parameterization and is
based on a hierarchical name lookup mechanism. Matriona
solves a range of modularity issues in Squeak. Instead of a flat
class organization, it provides a hierarchical namespace, that
avoids name clashes and allows for shorter local names. Fur-
thermore, it provides a way to share behavior among classes
and modules using mixins and class hierarchy inheritance
(a form of inheritance that subclasses an entire class fam-
ily), respectively. Finally, it allows modules to be externally
configurable, which is a form of dependency management
decoupling a module from the actual implementation of its
dependencies.

Matriona is implemented on top of Squeak by introducing
a new keyword for run-time name lookups through a reflec-
tive mechanism, without modifying the underlying virtual
machine. We evaluate Matriona with a series of small ap-
plications and will demonstrate how its features can benefit
modularity when porting a simple application written in plain
Squeak to Matriona.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—Inheritance,
Modules, Packages

General Terms Languages

Keywords Class nesting, class parameterization, mixin
modularity, class hierarchy inheritance

1. Introduction
A popular description of modularity claims that a design
method should satisfy five requirements [29] if we want to
call it modular: decomposablity, composability, understand-
ability, continuity, and protection. In this paper, we present
the Matriona1 module system for Squeak/Smalltalk, which
supports class nesting and class parameterization and aims
for supporting the first three modularity requirements.

1.1 Modularity Requirements
In this work, we focus on a selection of common modular-
ity issues. We decided to demonstrate our approach using
Smalltalk, because it is a language suitable for prototyping.
In Section 5, we show how we solved these problems with
class nesting and parameterized classes.

Running Example SpaceCleanup2 is a Bomberman clone,
implemented in Squeak using the Morphic framework. This
game will serve as a running example in the remainder of this
paper. Figure 1 illustrates the architecture of SpaceCleanup.
The game consists of a level, which is a matrix arrangement
of tiles. A tile is a game field and can contain multiple
items, such as the player, a monster (enemy), slime or a wall
(blocking items), a street (walkable terrain), or a bucket used
to wash away slime. The goal of the game is to remove all
slime and monsters by placing exploding buckets.

SpaceCleanup uses the class Morph provided by Squeak’s
Morphic framework [21, 28]. For example, the classes Level,
Item, and Tile are subclasses of Morph. A morph is a user
interface element that can have a certain shape, background
color, image, and multiple submorphs which are contained
in and rendered on top of the morph. Morphs can step; the
Morphic framework invokes every morph’s step method re-
peatedly and the return value of the method stepTime deter-
mines the duration between these invocations. The method

1 The word “Matriona” has its origin in the Russian word “Matryoshka”,
which is the name for a set of wooden dolls that can be nested within each
other [16].
2 https://github.com/HPI-SWA-Lab/mod16-matriona
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Figure 1: Screenshot and Architecture of SpaceCleanup

Level»stepTime essentially determines the speed of the entire
game.

Hierarchical Namespaces In plain Smalltalk, all classes
are organized in a single global dictionary mapping identi-
fiers to class objects. Therefore, it is not possible to install
two applications which provide classes with the same name.
For example, another game providing a Level class cannot
be installed side by side with SpaceCleanup in a Squeak im-
age. Even though namespaces (environments) were recently
introduced in Squeak and aim at solving this issue, it is still
common to use unique class name prefixes as a workaround
because of missing tool support and conceptual difficulties
(Section 6.4).

Namespaces benefit modular composability by removing
restrictions on which software components can be installed
side by side. Hierarchical namespaces allow for a class
organization that is easy to understand. The basic idea is
to “group together what belongs together” [8]. For example,
in SpaceCleanup, class Item can only be used as part of a
tile. Making these kinds of relationships obvious can benefit
modular understandability. If programmers new to the code
base are interested in how Item-related functionality works,
it is probably sufficient to take a look at class Item and all
classes that “belong” to Item. This is particularly useful for
large applications with hundreds or thousands of classes.

Application Customization It is sometimes necessary to
change an application while keeping the original code around.
This is needed for experiments at development time or in the
light of software product lines [6]. Consider, for example, that
Speedy SpaceCleanup, a variant of SpaceCleanup, should be
designed, where the game runs twice as fast as before. To
achieve this, the method Level»stepTime can be modified. As
another example, imagine that Damage SpaceCleanup should
be designed, where items have a health value and some items
can cause damage on others. To achieve this, classes Item and
its subclasses (e.g., Player and Monster) should be modified.

Programmers could make a copy of the entire application
and change the required parts. The downside of this approach
is that both copies can easily get out of sync. Every change
made to the original application must be manually applied to
the copy. A good implementation approach should not require

code duplication and changes to the original game should be
effective immediately in the modified game.

Sharing Behavior Among Classes There are cases where
a group of methods is shared among multiple classes. The
most obvious approach is to duplicate the methods in all of
these classes. A good module system should provide a better
a way to share common behavior among multiple classes
which does not require code duplication and applies changes
to shared code to respective classes automatically.

For example, consider tiles in SpaceCleanup. A tile is
a container for items and should provide methods like
allSatisfy: to ensure that there is no item on top of a
tile which would prohibit the player from entering. Such
methods are required frequently, possibly multiple times in
SpaceCleanup. The programming language should provide a
mechanism to modularize such functionality as an extension
“without pre-determining what exactly it can extend” [36].
For example, basic collection functionality should be pro-
vided by the execution environment in such a way that it can
be reused at arbitrary points in an application.

External Configuration In Smalltalk, application depen-
dencies (libraries etc.) are usually bound to specific imple-
mentations in the application source code by referencing a
class from a certain implementation, i.e., dependencies are
bound at compile time (specific versions cannot be speci-
fied; Smalltalk uses whatever version is currently present in
the image). A more modular approach binds dependencies at
run-time such that an application can be instantiated with dif-
ferent implementations, without modifying the application.
Smalltalk applications can already be developed in such a
way that dependencies are passed in as part of the run-time
parameters; however, this approach reaches its limits if the
class hierarchy should depend on those parameters.

As an example, consider that programmers or users would
like to run SpaceCleanup with different versions of the Mor-
phic framework or with a Morphic alternative that imple-
ments the Morphic interface but uses the host operating sys-
tem for rendering. If SpaceCleanup is externally configurable,
its users can provide a Morphic implementation as a run-time
argument (similar to command line arguments). Most classes
in SpaceCleanup are subclasses of Morph; therefore, the class
hierarchy (superclasses) would depend on the parameters for
external configuration.

1.2 Contributions
We propose a new class organization for Smalltalk based on a
hierarchical namespace, where classes can be parameterized
and nested within other classes. Matriona is our first proto-
type for Squeak/Smalltalk. This paper makes the following
contributions.

• A backward-compatible module system for Smalltalk sup-
porting class nesting and class parameterization
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• A nested class and parameter lookup mechanism support-
ing application customization and external configuration

Section 3 and 4 will describe the abstract concept and
its implementation in Matriona. Section 5 shows how the
previously mentioned problems can be solved in Matriona.
Section 6 and 7 compare Matriona with related work and give
an overview of future work. Section 8 gives a brief conclusion
of our work.

2. Background
Squeak is an open-source Smalltalk programming system.
Three fundamental concepts of Smalltalk are the program-
ming language with its libraries and tools, and the image [20].

A Smalltalk image3 is a snapshot of an object space, i.e., it
is the collection of all objects managed by the virtual machine
at a time. Classes are accessible through an image-wide
dictionary, which represents Smalltalk’s global namespace.

Matriona is module system for Squeak; Smalltalk’s archi-
tecture and meta object protocol have proven to be a suit-
able platform for our language design experiments. Neverthe-
less, the findings of this paper are amenable to other class-
based, object-oriented programming languages with single
inheritance if they support dynamic class generation and in-
stalling methods at runtime. In the following, we gibe a brief
overview of Smalltalk-specific notation.

The name of a method is called selector. The number of
colons in a selector is equal to the number of parameters of
the corresponding method. When calling a method, the ith
argument is written after the ith colon, similar to Objective-
C syntax. The term message send is used as a synonym for
method call. The first line of every method listing has the
form A»foo, which means that foo is defined as an instance
method of A. A class»foo means that foo is defined as a class
method (static method). Class methods are instance methods
of the meta class (class’s class) which is created automatically
whenever a new class is defined [20]. Both instance-side and
class-side methods can be overridden. Inside a method body,
the upward arrow (↑) denotes a return statement.

Control flow constructs such as if branches and loops are
message sends with a block closure (anonymous function)
containing the conditional control flow (e.g., loop body) as
an argument. For example, do: is Smalltalk’s equivalent of a
for-each loop.

3. Concept
In Matriona, classes are organized in a hierarchical names-
pace based on class nesting and they can be parameterized.

3.1 Nested Class Definition
Matriona supports class nesting as a means of establishing
a global hierarchical namespace. Classes can have multiple
nested classes as class-side members. The parent of a nested

3 Smalltalk systems without an image exist, e.g., GNU Smalltalk.

class is called the enclosing class. A nested class can be
accessed via a message send to its enclosing class. The single
root of the namespace is the top-level class Smalltalk. Nested
classes are virtual, i.e., they can be overridden in subclasses
of their respective enclosing classes.

Nested classes are inherited in subclasses, similarly to
methods. However, in contrast to method inheritance, the
original class and the inherited class are not equal with re-
spect to object identity. In the examples presented in this sec-
tion, inherited classes do not differ from their counterparts in
the superclass, e.g., they have the same methods, the same
instance variables, and the same superclass. However, they
are different classes with different enclosing classes. There-
fore, such a class is called an inherited class copy. Superclass
statements are virtual, i.e., they can evaluate to different re-
sults depending on the runtime enclosing class4; the name
lookup for the superclass is part of the class initialization.

Notation For readability reasons, we use the following
abbreviations for class names in the context of this paper:
St for Smalltalk, C for Collection, QC for QuickCollection,
and Scu for SpaceCleanup. If C1 is an inherited class copy of
C2, we write C1[C2].

Class Lookup without Inheritance Classes can be refer-
enced by either specifying their fully qualified name (a chain
of message sends) or using a relative name. The fully quali-
fied name of a class is defined as the fully qualified name of
its enclosing class concatenated with the name of the nested
class. The fully qualified name of top-level class Smalltalk

is simply Smalltalk.
The lookup for a relative class name starts in the class

containing the method referencing the class (lexical scope
lookup). The lookup continues in enclosing classes, until the
top-level class St is reached. If no nested class is found in
St, an error is raised. As described in the next paragraph,
the class lookup becomes more complicated in the light of
inheritance.

Class Lookup with Inheritance A subclass of an enclosing
class inherits all its nested classes, similarly to its methods.
Furthermore, nested classes are virtual members, i.e., they
can be overridden in subclasses. Consider the example in Fig-
ure 2(b). Class St.C contains two nested classes St.C.Array

and St.C.Algorithm. The latter class is only used internally
by collection classes such as St.C.Array, for example to per-
form sorting operations. The method St.C.Array.sort uses
the method St.C.Algorithm. Sorting.sort (via a relative
lookup of class Algorithm).

In Figure 2(a), an optimized collection library is defined.
The only difference compared to the library in Figure 2(b)
is that it uses a different sorting algorithm. Class St.QC is a
subclass of St.C, therefore, class St.QC.Array[St.C.Array]

4 Consequently, an inherited class copy can have a superclass different from
its original class’s superclass. This fact will be particularly important for
single inheritance-based class hierarchy linearization (Section 5.3).
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Smalltalk

Collection

Algorithm

Sorting

sort(...)

Array

sort(...)
void sort(...) {

result = Algorithm.Sorting.sort(...)
...

}

QuickCollection

Algorithm

Sorting

sort(...)

Array

extends Smalltalk.Collection

extends super.Algorithm

extends super.Sorting

SpaceCleanup

Algorithm

Graph

ResizingArray
extends Smalltalk.Collection.Array
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A

C

C.1C.2

C.3

C.4
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Figure 2: Array Class Organization. Dashed lines indicate inherited class copies. Dotted inheritance arrows indicate that the
superclass is an inherited class copy. For example, St.QC.Algorithm is a subclass of St.QC.Algorithm[St.C.Algorithm].

is inherited from St.C. The class lookup should be designed
such that St.QC.Array.sort uses St.QC.Algorithm.Sorting

instead of St.C.Algorithm.Sorting.
In Figure 2(c), the application SpaceCleanup extends

class St.C.Array using subclassing. SpaceCleanup pro-
vides a class St.Scu.Algorithm of its own, but this class
is specific to SpaceCleanup and does not contain algo-
rithm functionality required by St.C.Array. The class lookup
should be designed such that St.Scu.ResizingArray.sort

uses St.C.Algorithm. Sorting and does not attempt to use
St.Scu.Algorithm.Sorting.

On the one hand, class St.QC.Algorithm should be looked
up by following the class nesting structure in Figure 2(a),
i.e., the enclosing class St.C with its nested class Algorithm

should be late bound (enclosing class lookup). On the other
hand, St.C.Algorithm should be looked up according to
the lexical scope of method St.C.Array.sort in Figure 2(c)
(lexical scope lookup).

Name Lookup Mechanism We need a name lookup mech-
anism that lets programmers refine class hierarchies and con-
trol the scope of their refinements. Our mechanism uses inher-
itance relationships to indicate that the name lookup should
traverse a new class nesting hierarchy and can be seen as a
generalization of polymorphic method lookup to class nest-
ing hierarchies: Class c′ can override methods defined in class
c if c′ B c (c′ is a subclass of c). An enclosing class e′ of a
subclass c′ can override a name defined in the enclosing class
e of superclass c only if e′ B e (and c′ B c).

Class hierarchy extensions and refinements like St.QC

follow that subclassing pattern. Note that, in Figure 2(a), class
St.C is being refined and not St.C.Array because sorting
logic is part of St.C and not St.C.Array. In Figure 2(c),
St.C.Array is being extended but not St.C, which is why
St.Scu 6B St.C.

Definition. We denote the run-time class nesting hierarchy
(used for enclosing class lookup) by R and the lexical class

nesting hierarchy (used for lexical scope lookup) by L. Tra-
verse R and L in parallel. Let r be the current class from R
and l be the corresponding class on the same level from L.
First try to lookup the name in r and its superclasses, then
in l and its superclasses. Ensure that one of the following
conditions holds true.

• r = l, i.e., r and l are the same classes
• r B l, i.e., r is a subclass of l
• r  l, i.e., r is an inherited class copy of l
• r B l, i.e., r is a subclass of an inherited class copy of l

If, at some point, none of these conditions is satisfied or
the end of R is reached, continue the lookup in L only. If the
end of L is reached, raise a lookup error.

As an example, observe how the lookup of Algorithm

in St.QC.Array[St.C.Array].sort in Figure 2(a) traverses
the following classes, with R = (St.QC.Array[St.C.Array],
St.QC, St) and L = (St.C.Array, St.C, St).

1. St.QC.Array[St.C.Array] and superclasses, because St.

QC.Array[St.C.Array] St.C.Array (failure)

2. St.QC and superclasses, because St.QC B St.C (success)

3. St, because St = St (however, lookup already ended)

The lookup of Algorithm in St.Scu.ResizingArray.sort

in Figure 2(c) traverses these classes, with R = (St.Scu.
ResizingArray, St.Scu, St) and L = (St.C.Array, St.C, St).

1. St.Scu.ResizingArray and superclasses, because St.Scu.

ResizingArray B St.C.Array (failure)

2. St.C, because St.Scu is not equal to/subclass of/inherited
copy of/subclass of inherited copy of St.C (success)

3. St, only L from now on (however, lookup already ended)

Algorithm 1 describes the relative class lookup as pseudo
code. The parameters name, cls, and method denote the name
of the class to be looked up, the run-time class (polymorphic
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Algorithm 1 Relative Name Lookup

1: procedure RELATIVELOOKUP(name, cls, method)
2: r← cls
3: l← method.class
4: checkRuntime← true
5: repeat
6: if checkRuntime ∧ name ∈ r
7: return r[name]
8: else if name ∈ l
9: return l[name]

10: end if
11: l← enclosing(l)
12: if checkRuntime
13: r← enclosing(r)
14: if r = null ∨ !(r = l∨r B l∨r  l∨r B l)
15: checkRuntime← false
16: end if
17: end if
18: until r = null
19: raise lookup failed
20: end procedure

class) of the executing method, and the executing method,
respectively. The function enclosing(class) returns the enclos-
ing class of class. In Figure 2(a), method = St.C.Array.sort

and cls = St.QC.Array[St.C.Array].

3.2 Parameterized Classes
A parameterized class is a class template which must be
instantiated with arguments before use. Parameters can be
accessed from within the class and all of its nested classes.
They are first-class members and can be used during class
definition, e.g., as a superclass.

The lookup mechanism for parameters is identical to that
for nested classes; parameters are class-side members just
as nested classes are class-side members. A subclass can
override the parameter of a superclass if it has the same
name. Otherwise, the parameter will be treated as a different
one. Note that a subclass can define parameters which are
entirely different from the superclass’s parameters. However,
the parameters of the superclass must be specified when
referencing the superclass during subclass definition.

Smalltalk

A(a, b)

B
extends Smalltalk.A(c + 10, c + 20)

C(c)

D(d)

A'(c)

B(b)

C

D(d)

extends super.B

extends super.C(a + 30)

Figure 3: Parameterized Classes

Consider Figure 3 as an example. Let us assume that a
method foo is defined in St.A.B.C.D which returns the tuple
(a, b, c, d). An invocation of St.A(1, 2).B.C(3).D(4).foo

returns a tuple with the following values.

(a) St.A.a = 1

(b) St.A.b = 2

(c) St.A.B.C.c = 3

(d) St.A.B.C.D.d = 4

An invocation of St.A’(1).B(2).C.D(4).foo returns a
tuple with the following values. This example resembles a
fictitious case meant to demonstrate intricate details of the
lookup mechanism. Real use cases are typically simpler.

(a) St.A’.a[St.A.a] = St.A’.c + 10 = 11

(b) St.A’.B.b = 2

(c) St.A’.B.C[St.A.B.C].c = St.A’.a[St.A.a] + 30 = 41

(d) St.A’.B.C.D[St.A.B.C.D].d = 4

Algorithm 1 is used for looking up both nested classes and
class parameters. In case there are a nested class and a class
parameter with the same name defined in the same class, the
nested class will take precedence in the lookup.

Note that a newly-introduced name in a subclass of a
nested class can also shadow a name in its superclass, since
the lookup ends as soon as the first occurrence of a name is
found. In the previous example, St.A’.B.b shadows St.A.b.

4. Implementation
In this section we describe Matriona’s implementation on top
of Squeak. Matriona leaves existing Squeak classes mostly
unchanged; therefore, it can run next to the original Squeak
toolchain and other Squeak applications. Minor changes were
made to the Smalltalk compiler, but not to the virtual machine.
The Matriona user interface is based on Vivide, a framework
for dataflow-driven tool development [39].

4.1 Syntax
In Squeak/Smalltalk, classes are created by sending a subclass:

message to the class’s superclass. The newly-created class is
then added to the globals dictionary, a collection of all glob-
ally accessible objects. For example, the following listing
shows how class ScuGame is defined as a subclass of Morph.

Morph subclass: #ScuGame

instanceVariableNames: ’state’

classVariableNames: ’’

category: ’SpaceCleanup-Core’

In Matriona, Smalltalk is the only global object and top-
level class. Nested classes are defined as a special kind of
method with a <class> pragma, which is similar to a method
annotation in Java. Such a method is called a class generator
method and is expected to return the new class object. Class
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generator methods can return different results in subclasses,
which is why superclasses of nested classes are virtual. The
following listing shows how class SpaceCleanup is defined
as a subclass of Object and nested within Smalltalk. This
new class acts as a container/namespace for all classes that
belong to SpaceCleanup. Class Game is defined as a nested
class within SpaceCleanup.

Smalltalk class»SpaceCleanup < class >

↑ Smalltalk Kernel Object subclass

Smalltalk SpaceCleanup class»Game < class >

↑ Smalltalk Morphic Morph

subclassWithInstVars: ’state’

classVars: ’’

Classes in Squeak/Smalltalk are defined by interacting
with its superclass (executing code in the system browser
or workspace). In contrast, nested classes in Matriona
are defined by adding a method to a class. The method
Class»subclassWithInstVars: is provided by Matriona and
does not require the class name as a parameter, because the
class name is defined as the name of the enclosing class
concatenated with the selector of the method. The method
Class»subclass is a shortcut in case no additional instance
or class variables are needed.

4.2 Class Accessor Methods
A nested class can be accessed with a message send to its
enclosing class. Whenever the compiler encounters a <class>

pragma during method compilation, two methods are gener-
ated: a class generator method with a name-mangled selector
(and the code that programmers specify) and a class acces-
sor method with the selector specified by programmers. The
class accessor method invokes its corresponding class gener-
ator method and performs an additional class initialization.
The return value of the class generator method is called the
target class. The following list gives an overview of the steps
that are performed when a class accessor method is executed.

1. Return the nested class if it is cached5.

2. Invoke the class generator method.

3. Set the target class name.

4. Install/compile all instance methods.

5. Install/compile all class methods.

6. Invoke the class initializer.

7. Add the nested class to the cache.

8. Return the nested class.

Two classes a and b are inherited class copies if they were
initialized using the same class specification.

5 Caching is important to ensure class object identity of subsequent class
accessor method invocations and substantially improves performance. Class
caches are parameter-specific.

4.3 Accessing the Lexical Scope
Matriona adds a new scope keyword to the Smalltalk lan-
guage for looking up both classes and parameters. Messages
sent to scope are treated as names to be looked up according
to Algorithm 1. The following listing shows how scope can
be used in methods and class definitions. In the following
example (Figure 2(b)), scope is used to lookup Algorithm.

Smalltalk Collection Array»sort

| sorted |

sorted := scope Algorithm Sorting sort: self.

" ... "

In the next example, scope is used to reference the super-
class Item, nested in Tile, during class definition. Values for
defining instance variables and class variables do not have to
be known at compile time of the class generator method.

Smalltalk SpaceCleanup Level Tile class»Monster

< class >

↑ scope Item subclassWithInstVars: ’...’

The nested lookup must necessarily be performed dynam-
ically. Otherwise, class references could not be overridden,
when a method is executed in the context of a subclass. scope
is currently implemented as an object with no methods ex-
cept for a handler for all unsuccessful message sends. That
handler performs the lookup and invokes the correct method.

The object referred to by scope is a first-class object
and can be passed around without any restrictions. In that
sense, it is similar to thisContext for accessing stack frames.
However, references to thisContext are compiled to a special
byte code instruction, whereas scope is generated during
compilation and bound as a method literal, which avoids
changes to the virtual machine, but has its pitfalls (Section 7).

outer is a keyword similar to scope, but the lookup starts
in the innermost enclosing class instead of the run-time class
of the executing method. scope is to outer as self is to super.

Nested classes and methods can be overridden with each
other in a subclass because, from Smalltalk’s point of view,
referencing a nested class and invoking a method is the same
as sending a message to the enclosing class object. Conse-
quently, scope and outer do not only look up nested classes
and class parameters, but also regular class-side methods.

5. Use Cases
This section gives an overview of how Matriona can be used
to solve the problems described in Section 1.

5.1 Hierarchical Namespaces
In plain Smalltalk, the class namespace is flat. Therefore, two
classes with the same name from two different applications
cannot coexist in the same Smalltalk image. With nested
classes, every application or library can be represented by
a dedicated class nested in Smalltalk. All classes that belong
to the application are then nested within that class, regardless
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of the names of classes that belong to other applications. In
Matriona, such a class is called a module.

5.2 External Configuration
A module is externally configurable if its users (clients) can
control its configuration from the outside. When talking about
configuration, we refer to application input parameters and
module dependencies. In case the configuration does not af-
fect the class structure, the same class structure can be reused
for multiple configurations (cases in which class-side/static
state is used may be an exception). In case the configura-
tion affects the class structure (e.g., Level is a subclass of
Morphic Morph), a separate class structure is necessary, be-
cause a class generator method is only executed once and its
result is cached. Consequently, passing the configuration as
part of the arguments for a factory method does not work. We
focus on the latter case in this section.

In the following listing, the Morphic dependency can be
configured externally. The parameter of class SpaceCleanup

WithMorphic: must be a class or object implementing the
interface of the Morphic framework (e.g., there must be a
class Morph accessible via a message send to the parameter).

Smalltalk class»SpaceCleanupWithMorphic: Morphic

< class >

↑ Smalltalk Kernel Object subclass

Smalltalk SpaceCleanupWithMorphic: class»Level

< class >

↑ scope Morphic Morph subclass

(Smalltalk SpaceCleanupWithMorphic: Smalltalk ←↩
Morphic) open.

(Smalltalk SpaceCleanupWithMorphic: Smalltalk ←↩
NativeRenderingFramework) open

The parameter Morphic does not necessarily have to be a
version of the Morphic framework. It can be any graphics
rendering framework (such as a fictious native rendering
framework), as long as it implements the same interface.

5.3 Application Customization
With class hierarchy inheritance [10, 12, 14], it is possible
to inherit from an entire application and change it in a way
that was not foreseen by the application developer. The basic
idea is to define a subclass of the module. Methods and
nested classes are inherited, but can be overridden. Methods
and nested classes are lately bound (virtual), i.e., the exact
method/nested class is determined at runtime.

Overriding Single Methods In this example, a modified
version SpaceCleanup should be defined which supports
changing the speed of the game by modifying the method
Level»stepTime. The following listing shows how new in-
stances of Level are created in SpaceCleanup. At some point,
scope Level (relative lookup) is used to reference class Level
and create a new instance of it.

Smalltalk SpaceCleanup»loadLevel: levelId

level := scope Level new

loadFromString: (levels at: levelId);

yourself

In the following listing, SpeedySpaceCleanup is defined
as a subclass of SpaceCleanup and does not only inherit
methods and variables, but also nested classes. Class Level is
overridden with a subclass of its inherited class copy, where
the step time is variable.

Smalltalk class»SpeedySpaceCleanup < class >

↑ Smalltalk SpaceCleanup subclass

Smalltalk SpeedySpaceCleanup class»Level < class >

↑ super Level subclassWithInstVars: ’stepTime’

Smalltalk SpeedySpaceCleanup Level»stepTime

↑ stepTime

Smalltalk SpeedSpaceCleanup Level»speed: anInteger

stepTime := anInteger

Smalltalk SpeedySpaceCleanup»speed: anInteger

level speed: anInteger

Whenever a new instance of SpeedySpaceCleanup is
started, the method SpaceCleanup»loadLevel: will be exe-
cuted in the context class of SpeedySpaceCleanup and the
scope lookup will return SpeedySpaceCleanup Level, be-
cause SpeedySpaceCleanup B SpaceCleanup. From now on,
the speed of the game can be adjusted as follows.

| game |

game := Smalltalk SpeedySpaceCleanup new.

game speed: 500

Class Hierarchy Linearization In this example, Space-
Cleanup should be modified such that items cause damage
on other items. Every item should have a damage method re-
turning a dictionary mapping item symbols to damage values.
For example, monsters cause a damage value of 0.25 if they
meet with the player. Additional methods should be defined
on Item, but are not described here for brevity reasons.

This example is interesting, because both Item and some
subclasses of Item should be extended (Figure 4), result-
ing in a case where multiple inheritance is desired. Class
St.DScu.Tile.Monster should inherit from both St.Scu.Tile.

Item and St.DScu.Tile.Monster6.
St.Scu.Tile.Monster is a subclass of scope Item, i.e.,

Item is referenced relatively and subject to the lookup mech-
anism in Algorithm 1. St.DScu.Tile.Monster a subclass of
super.Monster, i.e., a subclass of the inherited class copy
St.DScu.Tile.Monster[St.Scu.Tile.Monster]. This inher-
ited class copy is a subclass of Item, whose lookup results in
St.DScu.Tile.Item, because St.DScu.TileB St.Scu.Tile.
Similarly, St.DScu.Tile.Item is a subclass of the inherited

6 For readability reasons, we use DScu as a shortcut for DamageSpaceCleanup.
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Smalltalk

SpaceCleanup

Tile

Item

Player
extends Item

Monster
extends Item

extends Smalltalk.Morphic.Morph

DamageSpaceCleanup

Tile

Item

Player

Monster
extends super.Monster

damage

extends super.Item

damage

extends Smalltalk.SpaceCleanup

extends super.Tile

damage
    ^ { #player -> 0.25. 
         #slime -> 0.33 }

 

damage
    ^ {  }

...

Figure 4: Linearization of Multiple Inheritance

class copy St.DScu.Tile.Item[St.Scu.Tile.Item]. Conse-
quently, St.DScu.Tile.Monster has the following superclass
hierarchy.

1. St.DScu.Tile.Monster[St.Scu.Tile.Monster]

2. St.DScu.Tile.Item

3. St.DScu.Tile.Item[St.Scu.Tile.Item]

4. St.Morphic.Morph

The inheritance hierarchy of St.DScu.Tile.Monster is a
linearization of multiple inheritance from St.DScu.Tile.Item

and St.Scu.Tile.Monster. This mechanism can be general-
ized to more than two hierarchies and results in a linearization
that traverses hierarchies in a zigzag way (Figure 5).
...

A

X

B

extends super.X

C

X X

Y Y Y

Z Z Z

extends super.X

extends super.Yextends super.Y

extends super.Z extends super.Z

extends X

extends Y

Figure 5: Zigzag Linearization with Three Hierarchies.
Dashed arrows indicate the effective class hierarchy for C.Z.

5.4 Mixins
Mixins can be used as a form of inter-class code reuse and
be seen as class transformers. Given a base class, a mixin
application generates a subclass with additional or changed
behavior [11]. They are also called abstract subclasses [13].

In Matriona, parameterized classes can be used to imple-
ment mixins. The parameter of the parameterized class is
used as the superclass of the new class in the class generator
method. In the following example, two mixins LogicMixin

and FilterMixin should be defined. The methods of these
mixins rely on an implementation of do: in a subclass of the
mixin application (Figure 6).

Smalltalk

Collection

LogicMixin(base)

allSatisfy(...)

extends base

extends base

SpaceCleanup

Tile

do(...)

extends Smalltalk.Collection.LogicMixin(
    Smalltalk.Collection.FilterMixin(
        Smalltalk.Morphic.Morph))

 

anySatisfy(...)

FilterMixin(base)

select(...)

reject(...)

do(...)

do(...)

Item

Figure 6: Collection Mixins

The following listing shows how to define the mixin St.C.

LogicMixin:, which provides the helper methods allSatisfy:
and anySatisfy:, given that the method do: for iterating over
all elements of the collection is defined.

Smalltalk Collection class»LogicMixin: base

< class >

↑ base subclass

Smalltalk Collection LogicMixin:»allSatisfy: aBlock

self do: [ :el |

(aBlock value: el) ifFalse: [ ↑ false ] ].

↑ true

Smalltalk Collection LogicMixin:»do: aBlock

self subclassResponsibility

The following listing shows how Tile can be defined
as a subclass of Morph with the LogicMixin: and another
mixin mixed in. Tile must implement the do: method to
iterate over all submorphs. In fact, Tile»do: overrides the
method LogicMixin:»do:. Based on LogicMixin, the method
canPlayerEnter ensures that a player cannot enter a tile if it
contains a wall as an item.

Smalltalk SpaceCleanup Level class»Tile < class >

↑ (Smalltalk Collection LogicMixin:

(Smalltalk Collection: FilterMixin:

scope Morphic Morph)) subclass

Smalltalk SpaceCleanup Level Tile»do: aBlock

" Iterate over all items on top of the tile. "

self submorphsDo: aBlock

Smalltalk SpaceCleanup Level Tile»canPlayerEnter

" Example usage of mixed in method. "

↑ self allSatisfy: [ :item | item isWall not ]

The resulting class Tile contains two mixin applications
and has the following inheritance hierarchy (superclasses).

1. An instantiation of St.C.LogicMixin:

2. An instantiation of St.C.FilterMixin:

125



3. St.Morphic.Morph

Mixin applications as shown before have two downsides.
Firstly, the source code does not reflect the correct order of
mixin applications. For example, in Smalltalk Collection

LogicMixin: (Smalltalk Collection FilterMixin: scope

Morphic Morph), FilterMixin: is applied before LogicMixin:,
but their selectors appear in an inversed order in the source
code. Secondly, parameterized classes cannot be easily
passed around, because they are not objects or classes, but
only exist as “methods” (class accessor methods).

To overcome these shortcomings, a parameterized mixin
class can be wrapped in an unparameterized class, as shown
in the following listing. LogicMixin is now a class and first-
class object. Matriona provides a convenience method << for
mixin application.

Smalltalk Kernel Class»<< aMixin

↑ aMixin Mixin: self

Smalltalk Collections class»LogicMixin < class >

↑ Smalltalk Matriona Mixin subclass

Smalltalk Collections LogicMixin class»Mixin: base

< class >

↑ base subclass

Smalltalk SpaceCleanup Level class»Tile < class >

↑ (Smalltalk Morphic Morph

<< Smalltalk Collection FilterMixin

<< Smalltalk Collection LogicMixin)

subclass

Mixins should be subclasses of class Mixin. That class
provides functionality for pre-mixin and post-mixin hooks,
as well as an associative << operation (method) for combining
two mixins. For example, pre-mixin hooks can ensure that the
base class satisfies certain conditions required by the mixin.
Post-mixin hooks can mimic trait composition conflicts [35].
Pre/post-mixin hooks can apply mixins transitively.

6. Related Work
Class nesting and parameterized classes are well-established
ideas and have been subject to research in the past years. They
are supported by several programming languages. However,
these concepts differ conceptually and in their implementa-
tion when looking at individual languages (Figure 7). In this
section we give an overview of different implementation ap-
proaches and compare them with Matriona.

6.1 Class Nesting
Class nesting is supported by a variety of mainstream pro-
gramming languages such as Java, C++, Python, and Ruby. A
nested class always results in a new (nested) namespace. How
members from other namespaces are looked up differs among
programming languages. In many languages, message sends
have implicit receivers, i.e., programmers do not have to spec-
ify the receiver, which is similar to Matriona’s scope keyword.

Lookup mechanisms for members differ among languages.
For example, Java starts the lookup in the current class and
its superclass hierarchy, and then progresses with the lexi-
cal scope (enclosing classes). In Newspeak, the lookup starts
in the current class, continues with the lexical scope, and
checks the superclass hierarchy afterwards [14]. In Python,
the lookup always starts at the top level, i.e., members defined
in enclosing classes cannot be accessed relatively [12].

In many module systems, including Matriona, classes
are only supported as class-side members. Class-side nested
classes can be generated during compile time. Matriona is
based on Squeak and does not have a edit/compile/run cy-
cle [30]; nested classes are generated when they are accessed
for the first time. Instance-side nested classes are supported
in Java, but all instances of an enclosing class share the same
nested classes. As a consequence, all nested classes have
the same superclass, which makes it impossible to use class
nesting to implement mixins (Section 6.3). Another use case
for instance-side nested classes is the Adapter design pat-
tern [19]: a class can expose different interfaces by providing
one nested class per interface [8].

Virtual classes [25, 27] can be overridden in subclasses
and form the basis for class hierarchy inheritance [17] (also
known as nested inheritance in the context of Jx [32]). Exten-
sions of the Java programming language have been proposed
in the last years to add support for them [4, 41]. In Jx, an
overriding class is always a subclass of the overridden class
(class enhancement).

6.2 Parameterized Classes
C++ class templates [38] are generators for classes and a form
of compile-time polymorphism [34] which allows for partial
evaluation [42]. Templates must be instantiated before they
can be used. Template instantiations for different parameters
result in different classes. In Java, generic classes are used for
type checking reasons. Generic type information is erased
during compilation and all generic instantiations share the
same class [31]. Matriona uses parameterized classes for
mixins and external configuration.

In Matriona, class parameters are first-class objects and
can be used during class definition. An arbitrary object can
serve as a class parameter. Only type names/classes are
allowed as class parameters in Java, which is why class
parameterization cannot be used for external configuration as
described in this paper.

In Beta [26, 27], Matriona, and Newspeak [14], virtual
classes can be overridden/specialized in subclasses and be
used as a form of class parameterization. In addition, a
Newspeak class’s “factory method” can take arbitrary argu-
ments, which are only visible inside a class if they are stored
in instance variables.

6.3 Mixins
Mixins [13] are a way of sharing behavior among multiple
classes. Mixins are “abstract subclasses” [13] and typically
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instance-side nesting (7) 7 7 3 3 (3) (3) (3) 7 7 7
class-side nesting 3 7 7 7 7 3 3 3 3 3 3
virtual nested classes 3 7 7 3 3 7 3 7 7 7 7
virtual superclass 3 7 7 3 7 7 3 7 7 7 7

parameterization
parameterized classes 3 7 7 3 (3) 3 3 3 3 7 7
non-type parameters 3 n/a n/a 3 7 7 7 7 (3) n/a n/a
parameter as superclass 3 n/a n/a 7 7 7 7 3 3 n/a n/a
namespace
global 3 3 3 7 3 3 3 3 3 3 3
hierarchical 3 3 3 3 3 3 3 3 3 3 3

mixin support 3 7 7 3 3 7 7 3 3 3 (3)
traits support 7 3 (3) 7 7 7 7 7 7 (7) (7)
method/class visibility 7 7 3 3 7 3 3 3 3 3 (7)

Figure 7: Overview of Programming Language Features

based on single inheritance. Mixin layers have been proposed
for collaboration-based designs [7, 37] and implemented and
evaluated in C++ [36]. Similarly to the C++ implementation,
in Matriona a collaboration (role) can be represented as
nested class (mixin layer) containing mixins. The single
parameter of the mixin layer is either the application of
another mixin layer or a class containing all base classes.

Squeak and Pharo support traits [35], which have been
proposed as an alternative to mixins. Traits are collections of
methods and can be applied during class definition. Conflicts
between colliding methods from different traits must be re-
solved manually. External libraries exist for Ruby and Python,
which implement traits using metaprogramming. Traits do
not integrate as well with Matriona’s class parameterization
mechanism as mixins, which can be seen “classes parameter-
ized over superclasses” [9].

In some programming languages, mixins are supported
through a special syntactical construct [3, 18, 24, 40]. In
principal, mixins can also be implemented with an instance-
side nested class whose superclass is passed as an argument
to its enclosing class constructor. Mixins can also be seen as
a linearization of multiple inheritance [5, 11, 33]. Matriona,
C++ [36], MixGen [2], and other extensions of Java [1] use
parameterized classes.

6.4 Namespaces
Squeak supports namespaces through environments. An envi-
ronment is a dictionary mapping identifiers to objects. Every
class has a reference to an environment which is used dur-

ing compilation time (of methods) to resolve references to
global objects. An environment can be imported into other
environments, making environments hierarchical. Name poli-
cies can be used to solve class name clashes. For example, a
name policy could add a unique prefix to all imported iden-
tifiers. Early ideas for Matriona used Squeak environments
instead of message sends for accessing nested classes. How-
ever, nested classes would be non-virtual and could not be
overridden in subclasses. Furthermore, it is unclear how to im-
plement parameterized classes using Squeak environments.

Newspeak is based on class nesting without a global
namespace [14]. Every module definition is represented by
a top-level class. External dependencies can be loaded from
the file system using object graph deserialization; the file
system acts as a replacement for the global namespace. Name
collisions between classes from two modules cannot occur.

Many languages with support for class nesting have a sec-
ond namespacing concept for organizing top-level classes
and functions. It is called package in Java, module/package in
Python, and namespace in C++. VisualWorks is a Smalltalk
implementation with nested namespaces. Classes can be ref-
erenced using their fully qualified name or imported from an-
other namespace, unless they are declared as “private” [15].

7. Future Work
The implementation of the lexical scope keywords outer and
scope are mostly based on metaprogramming. No changes
to the virtual machine were necessary to implement the rela-
tive class lookup. The downside of this approach is reduced
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run-time performance and some special cases in which a mes-
sage selector collides with a method defined on ProtoObject.
For example, the message isNil will not be picked up by
the doesNotUnderstand: handler, because ProtoObject de-
fines such a method. An alternative implementation approach
could introduce a new bytecode for a nested message sends,
similarly to Newspeak message sends.

In Matriona, all methods and classes are public. Early
ideas for Matriona provided for a visibility control mech-
anism, where members could be declared as private (only
accessible from methods within the class), public (accessible
from every method), or import-public. Methods annotated
with the latter keyword are accessible from methods defined
within a class where one of its enclosing classes or the class
itself imports the class (or one of its enclosing classes) con-
taining the method of interest. However, this approach turned
out to be unintuitive to Smalltalk programmers.

In Smalltalk, extension methods are methods which be-
long to a class that was defined in another package. Exten-
sion methods are used to add functionality to already existing
classes. Extension methods suffer from modularity issues:
Method collisions are not handled properly, i.e., the lastly
defined extension method overwrites previously defined ex-
tension methods or even regular methods with the same name.
Context-oriented programming [22] seems to be a promising
alternative. Every module could act as a layer which is auto-
matically activated for message sends originating from the
module or as long as a method defined within the module
is executing. Extension methods would be defined as partial
methods in the module. As soon as the control flow leaves
the module, the original module behavior would be restored.

Versioning conflicts are a problem particularly in environ-
ments where one process/execution environment is used to
run a variety of applications. If these applications require
the same libraries in different versions, there must be a way
to represent multiple versions in one namespace (to avoid
class name clashes) and to specify which version to use. One
promising idea makes the version number part of the class
nesting hierarchy and will be investigated in future work.

8. Conclusion
We presented the Matriona module system for Squeak/S-
malltalk. It is based on a hierarchical name lookup mech-
anism and supports class nesting and parameterized classes.
Its implementation does not change the virtual machine, but
is based on extensions to the Smalltalk compiler. Matriona
promotes modular source code with respect to composability,
decomposability, and understandability [29].

Although Matriona is a module system for Smalltalk, we
think that other programming languages can benefit from
our findings. Our name lookup mechanism can be seen as
a generalization of polymorphic method lookup to nested
classes, allowing programmers to specify the scope of class
refinements. Furthermore, it can be applied to other program-

ming languages supporting dynamic class generation such
as Ruby and Python. Enclosing class lookup is the founda-
tion of application inheritance. In a broader sense, we see
application inheritance as a future mechanism for customiz-
ing the middleware layer of a programming language (e.g.,
the standard library) that is shared by multiple applications
running in the same execution environment or for using a
framework. For example, the Eclipse IDE could provide a
more direct way for customization using application inheri-
tance as opposed to the current plugin system to support other
programming languages. Together with a future versioning
concept, application inheritance is also a first step towards
an environment where multiple applications are executed in
a constantly-running virtual machine.

Matriona is also a module system in the Smalltalk tradi-
tion and backward-compatible to Squeak/Smalltalk. Except
for class definitions, the notation and syntax of Matriona is a
superset of Smalltalk. The Matriona user interface is similar
to existing Squeak development tools, but provides function-
ality for traversing the class nesting tree. One of the design
principles behind Smalltalk is to provide a “system [that]
should be built with a minimum set of unchangeable parts;
these parts should be as general as possible” [23]. Matriona
introduces a small number of new features: class nesting,
class parameterization, and a new name lookup mechanism.
Class nesting and class parameterization use the notion and
syntax of methods and message sends. In a sense, this makes
the concept of methods in Smalltalk more general.
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