
Extending a Meta-Tracing Compiler to Mix Method and Tracing
Compilation

Yusuke Izawa
Department of Mathematical and

Computing Science
Tokyo Institute of Technology

izawa@prg.is.titech.ac.jp

Hidehiko Masuhara
Department of Mathematical and

Computing Science
Tokyo Institute of Technology

masuhara@acm.org

Tomoyuki Aotani
Department of Mathematical and

Computing Science
Tokyo Institute of Technology

aotani@is.titech.ac.jp

ABSTRACT
Meta-interpreter-based just-in-time compiler frameworks provide
a convenient way for language designers to implement efficient
virtual machines. Those frameworks either employ tracing-based or
method- (or partial evaluation) based strategies, which have their
own pros and cons. This paper proposes an approach to enable
both tracing- and method-based compilation so that the runtime
can selectively apply an appropriate strategy to different parts of a
program. The proposal basically extends a meta-tracing compiler to
method-based compilation by roll backing at conditional branches,
trace-splitting at loop entries, and not following at function calls. As
a proof-of-concept, we implemented a tiny meta-tracing compiler
in MinCaml by following the RPython’s architecture and extended
it to support both tracing- and method-based compilation.

CCS CONCEPTS
• Software and its engineering→ Just-in-time compilers; Source
code generation.

KEYWORDS
Language implementation frameworks, tracing JIT compilation,
RPython

ACM Reference Format:
Yusuke Izawa, Hidehiko Masuhara, and Tomoyuki Aotani. 2019. Extending
a Meta-Tracing Compiler to Mix Method and Tracing Compilation. In Com-
panion of the 3rd International Conference on Art, Science, and Engineering of
Programming (Programming ’19), April 1–4, 2019, Genova, Italy. ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/3328433.3328439

1 INTRODUCTION
Meta-interpreter-based just-in-time compiler frameworks [2, 3,
12, 13] are useful to conveniently build a language runtime with
reasonable execution performance, successfully implemented for
Smalltalk [4, 7], Racket [1], Python [8, 11], and Ruby [5, 9].

Two of the most successful frameworks, namely RPython [3] and
Truffle/Graal [13], employ different strategies in terms of compila-
tion units. RPython utilizes the trace-based strategy that compiles

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Programming ’19, April 1–4, 2019, Genova, Italy
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6257-3/19/04.
https://doi.org/10.1145/3328433.3328439

a straightline execution path, inlines method calls and ignores un-
taken branches. Truffle/Graal takes the method-based strategy that
mainly compiles all execution paths in a method.

These strategies have their own advantages and disadvantages.
The trace-based strategy is good at compiling programs with many
branching possibilities, which are common in dynamically-typed
languages. However, it sometimes works poorly for programs that
have varying control flow, for example the Fibonacci function[6],
which often takes different execution paths from the one traced for
compilation. The method-based strategy is more robust with those
kinds of programs. However, it relies on carefully planned method
inline to achieve good performance.

2 META-HYBRID COMPILATION APPROACH
In this paper, we propose a meta-hybrid JIT compilation framework,
and its experimental implementation called BacCaml. The goal of
the framework is to enable both method- and trace-based compila-
tion by using a single interpreter definition. It compiles different
parts of a programwith different strategies. Choosing a compilation
strategy is left for future work, though we plan to apply the trace-
based compilation first, and to apply the method-based compilation
for methods that causes frequent guard failures.

While there are many approaches to support the two strategies,
our framework extends a trace-based meta-compilation framework
to realize method-based compilation as well. BacCaml, a proof-
of-concept implementation of our framework, follows the basic
architecture of RPython, but implemented in OCaml 1. The tracing
and code generation parts are written by modifying the MinCaml
compiler [10].

Currently, we designed and implemented the core compiler parts
of BacCaml, while most of the runtime support (e.g., profiler and
dispatcher) and optimizations are left as future work. The rest of
the paper explains how we achieve method-based compilation by
using a meta-tracing compiler.

3 COMPILING A METHOD BY USING A
META-TRACING COMPILER

With our framework, the language designer provides a single in-
terpreter definition. The compiler engine performs both method-
and tracing-compilation by using the same definition. Furthermore,
the compiler engine shares a large part of the implementation for
both strategies, which is principally achieved by applying a tracing-
compiler to all possible paths in a method.

1Since we did not know the requirements to the compilation frameworks in
order to support method-based compilation, we implemnted from scratch rather than
extending existing frameworks like RPython.

1

https://doi.org/10.1145/3328433.3328439
https://doi.org/10.1145/3328433.3328439


Programming ’19, April 1–4, 2019, Genova, Italy Yusuke Izawa, Hidehiko Masuhara, and Tomoyuki Aotani

Of course, it is not trivial to compile a method by using a meta-
tracing compiler. The following are the techniques we devised for
that purpose.

Conditional Branches. Since tracing compilers basically generate
code only for one of two subsequent paths of a conditional branch,
we modify a tracer so that it can roll back its states including the
values in the registers and the heap, at the branch at the branch, and
generate code for the untaken branch after it has traced the taken
branch. Note that our tracer only roll backs at conditional branches
in the base-program (which shall be annotated in the interpreter
definition).

Loops. In order to compile a loop in a base-program without
guard failures, our compiler compiles in the following way 2. First,
we assume that the interpreter explicitly handles loops in the base-
program so that we know where the entry-point and the back-edge
of the loop are. Second, the tracer splits traces at the entry-point
of a loop. It then traces the loop body until it reaches a back-edge
of a loop. Instead of following the back-edge, it finishes tracing on
generating a jump instruction to the trace entry of the loop body.

Function Calls. Fundamentally, we compile a function call in the
base-program by not tracing into the destination of the respective
call instruction in the interpreter, but by generating a call instruc-
tion in the compiled code. Though it is a simple idea, it requires
the interpreter to use the host language’s stack for function calling,
which does not work well with trace-based compilation. To over-
come this, we provide a special syntax for defining two versions of
a method-call handler in an interpreter. It was possible to define
such an interpreter with reasonable amount of effort as far as we
experimented.

Figure 1 shows an example of method-based compilation of a
function with one conditional branch and a function call in a loop.
The left- and right-hand sides are respectively the control-flows of
the base and the compiled programs, respectively. As can be seen in
the figure, the compiled code consists of two traces: (1) duplicated
code after the conditional branch (2) the function call that isn’t
being inlined.

4 PRELIMINARY BENCHMARK TEST
In order to confirm that our framework can perform both two strate-
gies, we wrote a small interpreter that executed two microbench-
mark programs, namely sum and fib. The latter has two cases of
non-tail recursion, which causes the path divergence problem with
tracing compilers. Note that this preliminary bechmark tests merely
use two compilation strategies separately. Mixed compilation is left
for future work.

We only implemented the core part of BacCaml at this moment.
For both tracing- and method-based compilation, we ran the tracer
offline by manually specifying the entry/exit points of the traces.
Therefore, the execution times do not include the time for profiling
and dynamic compilation. For trace-based compilation of fib, we
specified two traces as it was not possible to compile all the possible
traces.

2The existing meta-tracing compilers like RPython would generate similar com-
piled code after sufficient amount of tracing at failed guards. Our method-based
compilation aims at generating the compiled code for a whole method body at once.

A’

A loop entry

B C

D

E

F

G

Iback edge

J

K

L

other fun.

call

return

A’

A

B C

D

E

F

G

I I

J J

trace 1

trace 2 jump

Figure 1: An example of the method-based compilation. A
base-program with the control-flow depicted on the left-
hand side will be compiled into a code with the control-flow
depicted on the right-hand side.

sum fib

5

10

15

20

25

4.04

15

4.53
3.47

19.8

23.8

Ex
ec
tio

n
tim

e
re
la
tiv

e
to

M
in
Ca

m
l

BacCaml T.J. BacCaml M.J. BacCaml interp.

Figure 2: Execution times of microbenchmark programs.
The bars for each program show the execution times of
the trace-based compiled,method-based compiled and inter-
preted code, relative to theMinCaml compiled code (shorter
is better).

Figure 2 shows the execution times of the two programs com-
piled by the method- and trace-based compilation strategies 3. The
numbers are relative to the programs directly compiled by Min-
Caml 4.

From the figure, we can see that the code compiled by themethod-
based compilation is faster than the interpreted execution by more
than a factor of 4. In contrast, the code compiled by the trace-based
compilation is slow for fib, because the compiled trace can only
cover some of the execution paths. The performance of the compiled
code is still worse than the MinCaml compiled code by the factors
of 3 to 4. This is mainly because we have not implemented trace-
optimizers, which leaves a lot of unnecessary memory and register
accesses in the compiled code.

3For taking data, we used Mac Pro (Late 2013) with CPU: 3.5 GHz 6-Core Intel
Xeon E5, and Mem: 16 GB 1866 MHz DDR3, running macOS Mojave version 10.14.2.

4MinCaml is known to generate as efficient code as the mainstream optimizing
compilers like GCC and OCamlOpt [10].

2



Programming ’19, April 1–4, 2019, Genova, Italy

5 CONCLUSION
We propose a hybrid meta-compilation framework that can per-
form method-based and trace-based compilation by using a single
interpreter definition, implemented the core part of the framework,
and demonstrated both method- and tracing-based compilation
for a very small language. Further, we plan to complete the imple-
mentation of the framework called BacCaml as well as investigate
strategies of switching compilers and a good programming interface
for defining interpreters.

ACKNOWLEDGMENTS
This work was supported by KAKENHI (18H03219).

REFERENCES
[1] Spenser Bauman, Carl Friedrich Bolz, Robert Hirschfeld, Vasily Kirilichev, Tobias

Pape, Jeremy G. Siek, and Sam Tobin-Hochstadt. 2015. Pycket: a tracing JIT
for a functional language. ACM SIGPLAN Notices 50, 9 (2015), 22–34. https:
//doi.org/10.1145/2858949.2784740

[2] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijałkowski, Michael Leuschel, Samuele
Pedroni, and Armin Rigo. 2011. Runtime feedback in a meta-tracing JIT for
efficient dynamic languages. Proceedings of the 6th Workshop on Implementation,
Compilation, Optimization of Object-Oriented Languages, Programs and Systems -
ICOOOLPS ’11 (2011), 1–8. https://doi.org/10.1145/2069172.2069181

[3] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. 2009.
Tracing the meta-level: PyPy’s tracing JIT compiler. Proceedings of the 4th
workshop on the Implementation, Compilation, Optimization of Object-Oriented
Languages and Programming Systems - ICOOOLPS ’09 (2009), 18–25. https:
//doi.org/10.1145/1565824.1565827

[4] Carl Friedrich Bolz, Adrian Kuhn, Adrian Lienhard, Nicholas D. Matsakis, Oscar
Nierstrasz, Lukas Renggli, Armin Rigo, and Toon Verwaest. 2008. Back to the

Future in One Week — Implementing a Smalltalk VM in PyPy. In Self-Sustaining
Systems, Robert Hirschfeld and Kim Rose (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 123–139.

[5] Tim Felgentreff. 2013. Topaz Ruby. https://github.com/topazproject/topaz
[6] Ruochen Huang, Hidehiko Masuhara, and Tomoyuki Aotani. 2016. Improving

Sequential Performance of Erlang Based on aMeta-tracing Just-In-Time Compiler.
In Post-Proceeding of the 17th Symposium on Trends in Functional Programming.
https://tfp2016.org/papers/TFP_2016_paper_16.pdf

[7] Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld. 2018. GraalSqueak A
Fast Smalltalk Bytecode Interpreter Written in an AST Interpreter Framework.
ICOOOLPS 18 (2018). https://doi.org/10.1145/3242947.3242948

[8] Armin Rigo and Samuele Pedroni. 2006. PyPy ’ s Approach to Virtual Machine
Construction. Companion to the 21st ACM SIGPLAN symposium (2006), 944–953.
https://doi.org/10.1145/1176617.1176753

[9] Chris Seaton, Benoit Daloze, Kevin Menard, Petr Chalupa, Brandon Fish, and
Duncan MacGregor. 2017. TruffleRuby – A High Performance Implementa-
tion of the Ruby Programming Language. https://www.graalvm.org/docs/
reference-manual/languages/ruby/

[10] Eijiro Sumii. 2005. MinCaml: A Simple and Efficient Compiler for a Minimal
Functional Language. FDPE: Workshop on Functional and Declaritive Programming
in Education (2005), 27–38. https://doi.org/10.1145/1085114.1085122

[11] Christian Wimmer and Stefan Brunthaler. 2013. ZipPy on Truffle: A Fast
and Simple Implementation of Python. In Proceedings of the 2013 Compan-
ion Publication for Conference on Systems, Programming, & Applications: Soft-
ware for Humanity (SPLASH ’13). ACM, New York, NY, USA, 17–18. https:
//doi.org/10.1145/2508075.2514572

[12] Christian Wimmer and Thomas Würthinger. 2012. Truffle: A Self-optimizing
Runtime System. In Proceedings of the 3rd Annual Conference on Systems, Pro-
gramming, and Applications: Software for Humanity (SPLASH ’12). ACM, New
York, NY, USA, 13–14. https://doi.org/10.1145/2384716.2384723

[13] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Doug Simon,
and Christian Wimmer. 2012. Self-optimizing AST interpreters. Proceedings of
the 8th symposium on Dynamic languages - DLS ’12 (2012), 73. https://doi.org/10.
1145/2384577.2384587

3

https://doi.org/10.1145/2858949.2784740
https://doi.org/10.1145/2858949.2784740
https://doi.org/10.1145/2069172.2069181
https://doi.org/10.1145/1565824.1565827
https://doi.org/10.1145/1565824.1565827
https://github.com/topazproject/topaz
https://tfp2016.org/papers/TFP_2016_paper_16.pdf
https://doi.org/10.1145/3242947.3242948
https://doi.org/10.1145/1176617.1176753
https://www.graalvm.org/docs/reference-manual/languages/ruby/
https://www.graalvm.org/docs/reference-manual/languages/ruby/
https://doi.org/10.1145/1085114.1085122
https://doi.org/10.1145/2508075.2514572
https://doi.org/10.1145/2508075.2514572
https://doi.org/10.1145/2384716.2384723
https://doi.org/10.1145/2384577.2384587
https://doi.org/10.1145/2384577.2384587

	Abstract
	1 Introduction
	2 Meta-Hybrid Compilation Approach
	3 Compiling a Method by Using a Meta-tracing Compiler
	4 Preliminary Benchmark Test
	5 Conclusion
	Acknowledgments
	References

