
A Shell-like Model for General Purpose Programming
Jeanine Miller Adkisson

Tokyo Institute of Technology, Japan
jneen@jneen.net

Johannes Westlund
Tokyo Institute of Technology, Japan

KTH Royal Inst. of Technology, Sweden
jwestlun@kth.se

Hidehiko Masuhara
Tokyo Institute of Technology, Japan

masuhara@acm.org

Abstract
Shell scripting languages such as bash are designed to integrate with
an OS, which mainly involves managing processes with implicit
input and output streams. They also attempt to do this in a compact
way that could be reasonably typed on a command-line interface.

However, existing shell languages are not sufficient to serve as
general-purpose languages—values are not observable except in raw
streams of bytes, and they lack modern language features such as
lexical scope and higher-order functions.

By way of a new programming language, Magritte, we propose a
general-purpose programming language with semantics similar to
bash. In this paper, we discuss the early design of such a system, in
which the primary unit of composition, like bash, is processes with
input and output channels, which can be read from or written to at
any time, and which can be chained together via a pipe operator. We
also explore concurrency semantics for such a language.

CCS Concepts • Software and its engineering→ Scripting lan-
guages; Command and control languages; Concurrent program-
ming languages; Data flow languages.

ACM Reference Format:
Jeanine Miller Adkisson, Johannes Westlund, and Hidehiko Masuhara. 2019.
A Shell-like Model for General Purpose Programming. In Companion of the
3rd International Conference on Art, Science, and Engineering of Program-
ming (Programming ’19), April 1–4, 2019, Genova, Italy. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3328433.3328444

1 Motivation
The UNIX shell programming model has played an important role
in integrating applications and operating systems by composing
programs—spawning independent programs in parallel to commu-
nicate over operating-system pipes. Beyond the most simple tasks,
however, bash and similar tools break down, due to various language
deficiencies.

In this paper, we use the term pipe-based language to mean a
programming language intended to be used on a command line, with
the ability to spawn many processes which communicate through
synchronous channels or pipes in an ad-hoc manner—and in which
this facility is the primary method of composing different functions
or units.

*This work was presented at the 122nd IPSJ SIGPRO workshop on January 17, 2019.
The presentation was not refereed, and the same manuscript was distributed only to the
participants to the workshop.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Programming ’19, April 1–4, 2019, Genova, Italy
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6257-3/19/04. . . $15.00
https://doi.org/10.1145/3328433.3328444

Our overarching goal is to create a language and a programming
system that retains the pipe-based programming and interaction
model of bash, but allows for large programs in a way that existing
shell languages do not.

Outline
In this work, we present a new pipe-based language Magritte. Sec-
tion 2 describes design requirements for a language in this space.
Section 3 and 4 describe Magritte’s design and implementation. Sec-
tion 5 describes our future goals with this project, and in Section 6
we review various related work and alternative approaches.

2 Design Considerations
In this section we discuss several feature requirements and design
considerations for a pipe-based language to be viable for large pro-
grams.

2.1 Programming With Values
2.1.1 Value Pipes
It is desirable in a general purpose language to be able to create and
use complex data structures, and to use them freely throughout the
language. In particular, if we are to allow for pipe-based composition
to be the core composition method for large programs, we must allow
rich values to be passed through pipes.

Several projects[1, 4], including bash itself, have attempted to
add arrays and associative arrays as standard objects, but not as first
class values: they do not allow these data structures to be passed into
or returned from functions, or importantly, passed through pipes.

Furthermore, serialization through pipes is generally not possible
except in a single-threaded case, since complex data can be corrupted
through interleaving.

For example, consider the fairly common architecture of produc-
er/consumer: A producer process produces values that are processed
in parallel by multiple consumer processes, and the values are col-
lected in a single output. This might be expressed in bash as:

consume the stream, labeling every line
label() { while read x; do echo "1x"; done ;}

process the stream with two threads
split() { label a & label b & ;}

produce and process the numbers 1-100,

limiting output to the first 3 lines
seq 100 | split | head -3

With this code, a user might expect the output to be three lines, each
consisting of a letter a or b, and a number, for example:

1

https://doi.org/10.1145/3328433.3328444
https://doi.org/10.1145/3328433.3328444

Programming ’19, April 1–4, 2019, Genova, Italy Jeanine Miller Adkisson, Johannes Westlund, and Hidehiko Masuhara

a1
a2
a3

b1
a3
b2

a2
b1
a3

Unfortunately, when we run this process, the outputs from the label
function become interleaved1, resulting in outputs such as:

a2
b1
b

b12
a
a4

a
b12
a34

This behavior is in accordance with the Linux User’s Manual [7]:

The communication channel provided by a pipe is
a byte stream: there is no concept of message
boundaries.

In order to provide a channel implementation that is usable for large
programs, we must ensure that it is consistent—that is, that every
read corresponds to exactly one write. Value pipes accomplish this
by making a value the smallest atomic unit of communication.

2.1.2 Capture and Substitution
For processes that output values, we need to support a mechanism
to capture those values for use in variables, data structures, and
function arguments, similar to backticks or $(...) in bash. This
enables processes to be used like functions, which return data to
their caller.

But since in most shells, rich values are not writable to output
streams, the output cannot effectively be used as a return path for
values. Es Shell[4] accounts for this by introducing a return value
which is separate from stream output and can be accessed via special-
purpose call syntax.

If we allow values to be written to output streams, however, we
can directly capture values written to the output.

2.1.3 Modern Language Features
Users will expect a modern programming language to have:
∙ Lambda functions with closure. This requires the introduction

of lexically scoped variables.
∙ Dynamic variables. Most shell languages already include

these, as OS Environment variables are dynamic by nature.
∙ Product structures with support for open recursion. a prototype-

based object system is sufficient for this.
∙ Sum structures. In an untyped language, a method for pattern

matching over nestable heterogenous lists is sufficient.

2.2 Automatic Process Cleanup
2.2.1 Interruption
In shell programming, we tend to compose infinitely running pro-
cesses together as pipeline elements. Thus we require a well-defined
semantics of process interruption2: automatic clean-up of processes
that will no longer be used. Consider the following Magritte code:

read-lines tmp/large-file 1

1We have observed some behavior in the output that cannot be explained simply by
interleaving, suggesting there may be some other race conditions in play.
2We use the term interruption in the generic sense—to mean the halting of normal flow
in a process, due to some external event. It is unrelated to hardware or OS signalling.

| take 10 2
| each (?line => do-expensive-work $line) 3

In this example, three processes are spawned concurrently: (1) a
process with an open file that writes one line at a time to its output,
(2) a process that reads 10 times from its input, writes each entry to
the output, and then exits, and (3) a process that reads every input
and calls a function to perform an expensive task. A user’s intent
when typing such code may be to read 10 lines from a file and
synchronously perform an action on each line.

A user will also expect that, after the first 10 lines are processed
and the take function returns, the file will be closed, and all three
processes exit. This expectation is despite the fact that process (1) is
specified to read the entire file, and process (3) is an infinite loop.

In a naive implementation using synchronous channels, process
(1) will never be able to write more than 10 lines, and will remain
blocked on its output with the file open forever. Similarly, the call to
the each function will never be notified that its input has finished,
and will block forever on its input stream.

2.2.2 Compensation
In interacting with an operating system, it is necessary to mange
side effects, and gracefully recover or restore state in the case of an
interruption. Such an error-handling system would also be a way for
user code to directly observe interruption.

Without compensation of errors, the only way of observing forever-
blocked processes would be to inspect the process table, or to ob-
serve the memory footprint of the program. Thus, we can define
the primary task of the interruption system as running a process’s
compensation actions at the appropriate time.

2.2.3 Lazy Interruption vs. Eager Interruption
In a system such as this, there is a language design choice that must
be made—whether interruption is eager, in which processes are
interrupted immediately upon closing a channel, or lazy, in which
processes are only interrupted upon interaction with a closed channel.
Both approaches have advantages and drawbacks. In making this
choice, we desire that the behavior of interruption be predictable—
however, there are two competing viewpoints for predictability.

Consider the following example, with the assumption that
do-other-operation does not write to the standard output:

(put 1 2 3; do-other-operation) | take 3

The left-hand side of the pipe will write three times, and then con-
tinue to do other processing in-thread that does not write to the stan-
dard output. The final take 3 operation will return after 3 inputs are
read. It is important to decide, then, whether the process on the left
should be interrupted in the middle of do-other-operation (ea-
ger interruption), or whether it should be left alone until it attempts
to write a value (lazy interruption).

From the perspective of someone spawning a process, eager inter-
ruption can seem more predictable, as they can guarantee a point at
which the process has stopped doing work.

2

A Shell-like Model for General Purpose Programming Programming ’19, April 1–4, 2019, Genova, Italy

However, from the perspective of a function author, lazy inter-
ruption is more predictable, because the author can identify pre-
cisely which points in the code have the potential to be interrupted—
those points which run a put or a get. Contrast this with eager-
interruption semantics, where any point in the code may be inter-
rupted, introducing the need for users to either mark critical sections
and be very careful with implementing stateful algorithms.

On the other hand, lazy interruption has the disadvantage that a
producing process must do enough work to produce one more value
than will be consumed. If each value is relatively cheap to produce,
this is not a problem, but in the case that the values are expensive to
produce, this would result in a large amount of unnecessary work.

2.2.4 Closing of Channels
Given that multiple processes may be reading from and writing to a
channel, it is often the case that a communicating process will end
when there are other processes still communicating over the channel.
It would not be appropriate in this case to interrupt other processes
attached to the channel, as they are still able to communicate.

We define our guiding principle for the appropriate time to inter-
rupt a process as: A process is interrupted exactly when it can no
longer be woken up. When a process is blocked on a synchronous
channel, it will be woken up as soon as another process communi-
cates on the other end. Therefore the appropriate time for it to be
interrupted is when it is blocked on a channel that will never receive
any more operations.

This can be difficult to detect when a reference to a channel can
be passed anywhere in the program as a standard value. Luckily, the
arrangement of pipes and channels are usually specified at process
spawn time. We can therefore relax our constraint to guarantee that
channels will be closed at appropriate times in common architectures,
and that they never close if there are active readers or writers.

2.2.5 Reopening Channels
Some systems, like UNIX named pipes, allow a channel to be re-
used by new processes after it has been closed[7]. This is, however,
not a desirable feature, as it can lead to some unexpected races
between a channel closing and a new process spawning. Consider
the example:

c = (make-channel) # create a new channel
& count-forever > $c # write infinitely
& take 10 < $c # read 10 elements and exit
put 10 > $c # write once from a new process

This example represents an unavoidable race with first-class chan-
nels: between take 10 closing the channel and put 10 opening the
channel for writing. If we allow channel reopening, we will either
block forever, or insert the number 10 into the stream, depending on
which happens first. However if we do not allow channel reopening,
we can say that, if a process initiates a read or write on a closed
channel, it is immediately interrupted. In this case, both sides of
the former race have the same termination behavior—the process is
closed when take 10 returns.

2.2.6 Masking Interruptions
We must include a facility to control the extend of interruptions. This
is because an interruption semantics can make it difficult to perform
final calculations after a channel is closed.

Consider the following example, which sums all numbers from
the standard input:

(sum) = (
total = 0
each (?x => %total = (add %total %x))
put %total
)

In this example, the function each will consume the input stream
and mutate a lexical variable (marked with %). After the entire input
stream is consumed, we wish to output the resulting %total value.

However, with the semantics described above, the each function
will loop until it receives an interrupt signal from the input channel
closing, which will interrupt the entire process and not continue to
the following line.

3 Description of Magritte
We propose a language that meets the above requirements.

3.1 Values and Variables
3.1.1 Lexical vs. Dynamic Variables
In order to support both lexical and dynamic variables, we introduce
a separate syntax for lexically scoped variables at variable reference
and mutation points, using a % instead of $ (for example, %x). Let-
binding is left unadorned (x = 1), and will bind a variable both
lexically and dynamically.

Let-binding uses this plain syntax to maintain compatibility with
standard environment files. Variable binders in lambda arguments
use ? (e.g. ?x) to allow for unambiguous pattern matching, and are
also bound both lexically and dynamically.

For mutation, we use assignment syntax, but with the location
(dynamic or lexical) specified on the left-hand side, e.g. %x = 1
or $x = 1. In this way we avoid the need to declare variables, and
allow ourselves to throw an exception when trying to mutate a non-
existent variable, rather than silently creating a new local binding.

3.1.2 Lambda Functions
Lambda functions are specified with parenthesized expressions con-
taining the arrow symbol =>, which separates the bindings from the
body. Multiple matching clauses are possible, and can match simple
patterns. Clauses are separated at the beginning of lines that contain
=> (where "lines" are also terminated by ;, and do not consider
nested newlines), which avoids the need for any indentation-based
parsing. For example:

my-function = (
?x =>
put one-argument %x
?y ?z =>
put two-arguments
put %y %z
... => ...
)

Named functions can also be defined using a parenthesized expres-
sion as the left hand side of an assignment:

(my-function ?x ?y) = ...

3

Programming ’19, April 1–4, 2019, Genova, Italy Jeanine Miller Adkisson, Johannes Westlund, and Hidehiko Masuhara

equivalent to
my-function = (?x ?y => ...)

Functions maintain the scope of any free lexical variables in the
body, including for mutation.

3.1.3 Nestable Vectors
We extend the concept of an argv vector such that it is nestable, us-
ing the compact syntax []. Combined with bareword strings (string
literals without quotation), we can represent trees in a straightfor-
ward manner:

a-tree = [node [node [leaf 1] [leaf 2]] [leaf 3]]

These can be matched in lambda arguments by patterns such as
[node ?x]. A typical strategy for traversing this kind of structure
might be a function that puts all leaf node values to its output in a
predefined order, to be consumed by another process.

The builtin function for takes a vector as an argument and outputs
each element in order, so that a vector can be traversed with:

for [1 2 3 4 5] | each (?el => ...)

3.1.4 Environments as Objects
Variable environments can be captured directly as key-value maps
with a parent pointer. Environment capture uses { } syntax to run
a block of code, then remove the running environment from its
parent list. The resulting environment value is substituted in place of
the { } expression. Therefore all assignment syntaxes are available,
including function definition. For example:

(make-account ?balance) = {
balance = $balance
(deposit ?amt) = (%balance = (add %amt %balance))
(withdraw ?amt) = (%balance = (sub %amt %balance))
}

A planned extension would allow using special syntax to register
additional parents, allowing users to inherit by direct delegation.

Environment lookup uses the ! symbol, as in $env!key. We use
this symbol because it is already reserved by bash, unlike both / or .
which need to be available in bareword syntax to indicate file paths
for external programs. Environments can also be mutated using the
same access syntax. For example:

account = (make-account 10)
$account!withdraw 4
put $account!balance # => 6

3.1.5 Collection and Substitution
A priori, a capture mechanism such as described in Section 2.1.2
would have to return a list, as any process may output zero or more
values. However, as a function calling convention, that would require
callers to manually unwrap lists on every function call.

In order to simplify substitution, Magritte uses normal paren-
theses to collect and expand the resulting values into the current
command vector—increasing the argument number by the number
of values output from the function. For example:

A function defintion: output three values
(count-three) = (put 1; put 2; put 3)

Collect three writes and expand 1 2 3 in-place
other-fn 0 (count-three) 4

equivalent to
other-fn 0 1 2 3 4

These semantics are similar to the $(...) syntax in bash, with the
exception that we have the ability to properly separate values without
relying on whitespace.

This mechanism is also available in vector literals, allowing us to
collect outputs as a vector:

outputs = [(some-command)]

The list built-in function, which simply returns its argument vector,
is also available for this purpose. The for function mentioned above
can be used to splat vector arguments into function calls:

some-fn $arg1 $arg2 (for [$arg3 $arg4])

3.1.6 Blocks
A parenthesized grouping that is not in argument position is a block.
Blocks do not collect or modify the environment’s channels in any
way, but instead simply run the code contained within them, and
output values normally. These are mostly used to group commands
within a pipeline, and in the body of function definitions:

generate-values | (process; process; process)

In the case that a user might want to use a substitution at the root
level—i.e. to generate a function and immediately call it, we provide
the exec builtin which executes its arguments as a command.

3.2 Channels and Processes
3.2.1 Synchronous Channels
Channels in Magritte are synchronous—readers and writers cannot
continue until a communication is completed successfully. Given
the decision to allow rich values to be passed through channels,
we have decided that a buffer is not as necessary for performance
purposes, since a single write may contain an arbitrarily large amount
of data—or for that matter a process handle or object reference.
Additionally, synchronous channels have simpler semantics both for
implementation and for users, and we leave open the possibility of
user-implemented queues, such as:

producer | buffer 10 | consumer

3.2.2 Spawning and Redirecting
Spawning uses an ampersand (&), similar to bash, at the beginning
of a command indicating that it should be spawned in a new thread.

Standard input and output may be redirected into and from chan-
nels using the > and < symbols, or chained together with the pipe (|)
symbol, much like bash. Commands in pipelines will all be spawned
in their own threads, with the exception of the final command, which
will be run in the current process.

4

A Shell-like Model for General Purpose Programming Programming ’19, April 1–4, 2019, Genova, Italy

3.3 Interruption and Compensation
3.3.1 Lazy Interruption
We have decided that the predictability of lazy interruption is worth
the tradeoff for the extra-values problem discussed in Section 2.2.3,
and we discuss some ways to mitigate this problem in Section 5.

3.3.2 Process Registration
In order to satisfy the constraints of Section 2.2.4, we maintain a
process register inside of each channel, so that we can decide when
all readers or all writers have returned or been interrupted, at which
time we can guarantee that processes on the other side of the channel
cannot be woken up without spawning new processes. Therefore this
covers the architecture of pipelines, in which many processes are
spawned together in fixed configurations. Other architectures will
have to manually manage process shutdown in some cases.

3.3.3 Compensation and Unconditional Compensation
We employ a variant of the compensation mechanism introduced
by Inoue et al.[6] using the %% operator to indicate a compensation
action, which is run in case of an interruption in the left hand side
or subsequent lines. Compensations are cleared at the end of the
current function body:

(my-function) = (
action %% cleanup-action
in effect until the end of the function
)

Additionally, we define unconditional compensations using the %%!
operator, which run both in the case of an interruption and in the
case of a normal return. In this way, they are analogous to finally
or ensure sections of standard exception handling. For example,
the function read-lines above could be implemented as:

(read-lines ?fname) =
(f = (open-file $fname) %%! close-file $fname
until (=> eof? $f) (=> read-until "\n" $f))

In this way, we can ensure that the file is closed when the function
exits, whether by a normal return or by interruption.

3.3.4 Interrupt Handling
While we plan to explore more general mechanisms for exception
handling, we find that it suffices for most applications to provide two
builtin functions, produce and consume, to indicate the intent to fill
or consume the entirety of the output or input streams, respectively.
Each of these functions takes a single zero-argument function which
will loop forever until the standard output or standard input respec-
tively is closed, whereby control flow continues after the invocation.
Using these functions, we might define each as:

(each ?fn) = (consume (=> %fn (get)))

With this definition, the call to consume will mask the interruption
from the standard input closing, and control flow after any each
invocation will continue as normal. This is enough to resolve the
issue discussed in Section 2.2.6.

4 Implementation of Magritte
The current version of Magritte is implemented as a straightforward
interpreter written in Ruby, using Ruby’s builtin threads, exceptions,
and mutexes to implement processes and channels.

4.1 Channel Registry
Our channel implementation is a standard implementation of syn-
chronous channels, with the addition of four intrinsic methods, used
only internally by the interpreter: add_reader, remove_reader,
add_writer, and remove_writer, which register and deregister
processes as described in Section 3.3.2. When a remove_* method
results in an empty set, it will additionally close the channel and
raise an internal exception in every blocked thread.

Once the channel is closed, every call to read and write will
interrupt the calling process as described in Section 2.2.5.

In order to reduce unnecessary use of Ruby threads, we also find it
is simpler, instead of registering processes to the channels, to register
stack frames. In this way, we can register all inputs and outputs on
frame entry, and use standard Ruby exception handling to ensure
we properly run compensations and deregister inputs and outputs
on frame exit. This means that different frames in the same process
can be connected to different channels, which makes the > and <
redirection syntax straightforward to implement—we simply push a
new frame with different channels attached.

Interruptions then cascade naturally—when a channel closes, a
process is interrupted, causing it to unwind its stack and deregister
channels, thereby potentially causing other channels to close.

4.2 Spawning Order Dependency
It is necessary to take some care with the implementation of the
spawning primitive (&), that we wait until the spawned process has
finished registering its channels before the spawning process con-
tinues. Consider the following example, which outputs 10 numbers,
possibly out of order:

(drain) = (each (?x => put %x))
count-forever | (& drain; & drain) | take 10

The middle process is responsible for spawning two processes that
funnel data from their input to their output. However, since they are
both spawned in the background, the spawning process will imme-
diately return. In general, the drain processes should be keeping
the two pipes open. However, if we do not take care to wait until
they have finished registering their channels, there is a risk that the
spawning process will return first and close the two pipes.

4.3 Collectors
In order to implement the return semantics described in Section
2.1.2, we also implement a write-only channel called a collector,
and an intrinsic that waits for channel closing. Collectors cannot be
created directly by users, but only appear in the interpreter when we
evaluate parentheses in argument position.

Naively, collectors would ignore registration commands and sim-
ply append written elements to an array. However, it is still necessary
to track registered writers. Consider the example:

(range ?n) = (count-forever | take %n)
my-list = [(range 10 | (& drain; & drain))]

5

Programming ’19, April 1–4, 2019, Genova, Italy Jeanine Miller Adkisson, Johannes Westlund, and Hidehiko Masuhara

In this example, there is an open question of how long we should
wait until reading the collection and continuing. If we naively wait
until the base command is finished, we will continue early and miss
values that may be written later. Thus substitution waits until all
writers to the collector have deregistered.

To implement this, we add a wait_for_close intrinsic to col-
lectors, which returns immediately if closed, and otherwise adds the
current thread to a waiting set and sleeps. Upon closing the channel,
all elements of this waiting set are awoken, and flow continues. Thus
the algorithm for substituting a block is:

* Create a new collector $c
* Run the parenthesized expressions with ←↩

standard output set to the collector
* Run $c.wait_for_close

In the most common case, there will only be a single thread writing
to the collector, so that the channel will be closed by the time the
evaluation is finished, making wait_for_close a null operation.

5 Discussion
5.1 Open Checking
Because our system implements lazy interruption, we must mitigate
the problem of producers creating one extra element than is needed,
in the case that elements are expensive to produce. One possibility is
to introduce the concept of open checking, so that producer processes
can periodically run a builtin command that will interrupt if the
output is closed, without actually writing any data to the channel.

5.2 OS Integration
In order to be viable as a shell, we must integrate seamlessly with a
POSIX-like environment. This involves marshalling values to strings
and byte streams in order to communicate with external processes,
and allowing external processes to interact with Magritte values. We
plan to use a suite of parsing and unparsing functions for linewise
and table data, along with a custom JSON streaming format to allow
integration with most languages. We also plan to use a socket and
a static executable to allow external programs to call back into
Magritte lambda functions.

5.3 Performance
The current Ruby interpreter is slow. We plan to bootstrap using a
JIT-compiled virtual machine implemented in RPython.

5.4 Desktop Scripting
We believe Magritte offers a promising solution to the desktop script-
ing problem: an interface for end users to integrate and automate
independent programs, a problem attempted by projects such as
Guile Scheme[12] and TCL[9]. What differentiates our approach is
that our platform should be able to integrate with programs as they
are currently written, without the need for further integration on the
part of application developers.

6 Related Work
6.1 General-Purpose Languages
Many general purpose languages, including Go[3] and Clojure[5],
contain robust channel implementations, which can be used to imple-
ment a variety of concurrent algorithms. In such a system we could

implement something similar to our system by adding input and
output channels to every function and heavily currying functions.

However, such a system would still require manual use of input
and output channels when a simple pipeline would suffice—and the
user must still translate between returning vs. outputting functions
and expressions. Additionally, these systems do not contain any kind
of channel closing semantics or automatic process cleanup.

6.2 Shell Extensions
Many systems, such as xonsh[11] and Es Shell[4], attempt to extend
traditional shells with object or functional semantics, but do not
sufficiently integrate their semantics with pipes, leaving pipes to
remain bytes-only.

Systems that extend existing languages with shell semantics, such
as scheme-shell, also do not integrate fully with pipes.

6.3 Object Shells
Projects such as powershell[8] and mash[10] allow objects (.NET
objects and Scala objects, respectively) to be passed through pipelines.
However, this approach still ties the language to one specific platform
or object system and makes it difficult to integrate with programs
written for other platforms. By only relying on the most universal
OS concepts of standard input/output, argument vectors, and inter-
rupt signals, we should be able to integrate programs across a wide
variety of languages and platforms.

6.4 PUSH Shell
The PUSH shell[2] extends a traditional shell with fan-out and fan-in
operators which separate data into discrete records. This enables it to
be used safely to orchestrate distributed computing tasks. However,
the underlying pipe implementation remains byte-based, so that
features like Magritte’s collection and expansion remain impossible.

7 Conclusion
We proposed Magritte, which is both capable of integrating closely
with operating systems, and serving as a general-purpose language
for larger applications. Our channel implementation allows for ro-
bust composition of concurrent algorithms, and can also serve as
the fundamental unit of composition for our language, which inte-
grates with modern general-purpose language features like rich data
structures and lambda functionsn with lexical scoping.

At the same time, the language stays close enough to the common
OS spawning model that we believe it should be straightforward
to integrate with an operating system. Because of this, we believe
Magritte is capable of filling a currently unserved niche as a desktop
integration language, and also provides an interesting platform for
experimenting and building concurrent algorithms.

Acknowledgments
This work was supported by JSPS KAKENHI Grant Number 18H03219.
J. Westlund’s contribution to this research was made possible by The
Sweden-Japan Foundation and Stockholms Grosshandelssocietet.

References
[1] Tom Duff. 1990. RC—a Shell for Plan 9 and UNIX. In UNIX Vol. II, A. G. Hume

and M. D. McIlroy (Eds.). W. B. Saunders Company, Philadelphia, PA, USA,
283–296.

[2] Noah Paul Evans and Eric Van Hensbergen. 2009. Brief Announcement: PUSH,
a DISC Shell. In Proceedings of the 28th ACM Symposium on Principles of

6

A Shell-like Model for General Purpose Programming Programming ’19, April 1–4, 2019, Genova, Italy

Distributed Computing (PODC ’09). ACM, New York, NY, USA, 306–307. https:
//doi.org/10.1145/1582716.1582780

[3] Robert Griesemer, Rob Pike, and Ken Thompson. 2018. The Go Programming
Language. Retrieved Dec 2018 from http://golang.org/.

[4] Paul Haahr and Byron Rakitzis. 1993. Es: A shell with higher-order functions. In
Proceedings of the USENIX Winter 1993 Conference Proceedings on USENIX Win-
ter 1993 Conference Proceedings (USENIX’93). USENIX Association, Berkeley,
CA, USA, 53–62.

[5] Richard Hickey. 2008. The Clojure Programming Language. In Proceedings of
the 2008 Symposium on Dynamic Languages. ACM, New York, NY, USA.

[6] Hiroaki Inoue, Tomoyuki Aotani, and Atsushi Igarashi. 2018. ContextWork-
flow: A Monadic DSL for Compensable and Interruptible Executions. In 32nd
European Conference on Object-Oriented Programming (ECOOP 2018) (Leibniz
International Proceedings in Informatics (LIPIcs)), Todd Millstein (Ed.), Vol. 109.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2:1–2:33.
https://doi.org/10.4230/LIPIcs.ECOOP.2018.2

[7] Linux man-pages Project. 2018. pipe(7) Linux User’s Manual (4.16 ed.). The
Linux Foundation, https://www.kernel.org/doc/man-pages/.

[8] Microsoft. 2018. PowerShell Documentation. Retrieved Dec 2018 from
https://docs.microsoft.com/en-us/powershell/.

[9] John K. Ousterhout. 1989. Tcl: An Embeddable Command Language. Technical
Report. Berkeley, CA, USA.

[10] Matt Russell. 2018. Mash: An object shell for UNIX. Retrieved Dec 2018 from
http://mash-shell.org/.

[11] Anthony Scopatz. 2018. The Xonsh Shell. Retrieved Dec 2018 from
https://xon.sh/.

[12] The GNU Project. 2018. The Guile Programming Language. Retreived Dec 2018
from http://gnu.org/s/guile.

7

https://doi.org/10.1145/1582716.1582780
https://doi.org/10.1145/1582716.1582780
https://doi.org/10.4230/LIPIcs.ECOOP.2018.2

	Abstract
	1 Motivation
	2 Design Considerations
	2.1 Programming With Values
	2.2 Automatic Process Cleanup

	3 Description of Magritte
	3.1 Values and Variables
	3.2 Channels and Processes
	3.3 Interruption and Compensation

	4 Implementation of Magritte
	4.1 Channel Registry
	4.2 Spawning Order Dependency
	4.3 Collectors

	5 Discussion
	5.1 Open Checking
	5.2 OS Integration
	5.3 Performance
	5.4 Desktop Scripting

	6 Related Work
	6.1 General-Purpose Languages
	6.2 Shell Extensions
	6.3 Object Shells
	6.4 PUSH Shell

	7 Conclusion
	Acknowledgments
	References

