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Abstract This paper proposes a run-time bytecode specialization (BCS)

technique that analyzes programs and generates specialized programs at

run-time in an intermediate language. By using an intermediate lan-

guage for code generation, a back-end system can optimize the specialized

programs after specialization. The system uses Java virtual machine lan-

guage (JVML) as the intermediate language, which allows the system

to easily achieve practical portability and to use existing sophisticated

just-in-time (JIT) compilers as its back-end. The binding-time analysis

algorithm is based on a type system, and covers a non-object-oriented

subset of JVML. The specializer generates programs on a per-instruction

basis, and can perform method inlining at run-time. Our performance

measurements show that a non-trivial application program specialized at

* To appear in Journal of New Generation Computing, 20(1), Nov. 2001.
This paper is an extended version of “A Portable Approach to Generating Optimized
Specialized Code”, in Proceedings of Second Symposium on Programs as Data Objects
(PADO-II), Lecture Notes in Computer Science, vol.2053, pp.138–154, Aarhus, Denmark,
May 200123).
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run-time by BCS runs approximately 3–4 times faster than the unspe-

cialized one. Despite the large overhead of JIT compilation of specialized

code, we observed that the overall performance of the application can be

improved.

Keywords Program Specialization, Partial Evaluation, Run-time Code

Generation, Just-In-Time Compilation, Java Virtual Machine Language,

Intermediate Language

§1 Introduction
Given a generic program and the values of some parameters, partial

evaluation techniques generate a specialized program with respect to the values

of those parameters13, 19). Most of those techniques have been studied as source-

to-source transformation systems; i.e., they analyze programs in a high-level

language and generate specialized programs in the same language. They have

been successful in the optimization of various programs, such as interpreters,

scientific application programs, and graphical application programs5, 15, 22).

Run-time specialization (RTS) techniques12, 14, 20, 24) efficiently perform

partial evaluation at run-time (1) by constructing a specializer (or a generating

extension) for each source program at compile-time and (2) by directly gener-

ating native machine code at run-time. The drastically improved specialization

speed enables programs to be specialized by using values that are computed

at run-time, which means that RTS provides more specialization opportunities

than compile-time specialization. Several studies reported that RTS can improve

performance of programs for numerical computation20, 24), an operating system

kernel27), an interpreter of a simple language20), etc.

One of the problems of RTS systems is a trade-off between efficiency of

specialization and efficiency of specialized code. For example, Tempo24) gener-

ates specialized programs by merely copying pre-compiled native machine code.

The performance of the generated code is 20% slower than that is generated by

compile-time specialization on average. Of course, we could optimize special-

ized programs at run-time by optimizing generated code after specialization. It

however makes amortization∗1 more difficult.

In this paper, we describe an alternative approach called run-time bytecode

∗1 In RTS systems, a specialization process of a procedure is amortized if the amount of
reduced execution time of the procedure becomes larger than the time elapsed for the
specialization process.
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specialization (BCS), which is an automatic bytecode-to-bytecode transformation

system. The characteristics of our approach are: (1) the system directly analyzes

program and constructs specializers in a bytecode language; and (2) the special-

izer generates programs in the bytecode language, which makes it possible to

apply optimizations after specialization by using just-in-time (JIT) compilation

techniques.

As the bytecode language, we choose the Java virtual machine language

(JVML)21), which provides us practical portability. The system can use existing

compilers as its front-end, and widely available Java virtual machines, which may

include sophisticated JIT compilers, as its back-end. The analysis of JVML

programs is based on a type system derived from the one for JVML31). A

specializer can be basically constructed from the result of the analysis, and can

perform method inlining at run-time.

Thus far, we have developed our prototype system for a non-object-

oriented subset of JVML; the system support only primitive types, arrays, and

static methods. Although the system does not yet support important language

features in Java, such as objects and virtual methods, it has sufficient function-

ality to demonstrate fundamental costs in our approach, such as efficiency of

specialized code and overheads of specialization and JIT compilation.

The rest of the paper is organized as follows. Section 2 overviews existing

RTS techniques and their problems. BCS is described in Section 3. Section 4

presents the performance measurement of our current implementation. Section 5

discusses related studies. Section 6 concludes the paper.

§2 Run-Time Specialization

2.1 Program Specialization
An offline partial evaluator processes programs in two phases: binding-

time analysis and specialization. The binding-time analysis phase takes a pro-

gram and a list of the binding-times of arguments of a method in the program

and returns an annotated program in which every sub-expression is associated

with binding-time. The binding-time of an expression is static if the value can

be computed at specialization time or dynamic if the value is to be computed

at execution time. For example, when a program shown in Fig. 1 (a) is ana-

lyzed with list [dynamic, static] as the binding-times of x and n, an annotated

program shown in Fig. 1 (b) is returned. In the annotated program, an un-
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class Power {

static int power(int x, int n)

{

if (n==0)

return 1;

else

return x*power(x,n-1);

}

}

class Power {

static int power(int x, int n)

{

if (n==0)

return 1;

else

return x*power(x,n-1);

}

}
(a) Original program (b) Binding-time annotated program

Fig. 1 An example program and its binding-time annotations

derlined expression denotes dynamic binding-time, and a non-underlined one

denotes static.

In the specialization phase, the annotated program is executed with

the values of the static parameters, and a specialized program is returned as a

result. The execution rules for static expressions are the same as the ordinary

ones. The rule for the dynamic expressions is to return the expression itself. For

example, execution of annotated power with argument 3 for static parameter

n proceeds as follows: it tests “n==0”, then selects the ‘else’ branch, computes

n-1, and recursively executes power with 2 (i.e., the current value of n-1) as an

argument. It eventually receives the result of the recursive call, which should

be “x*x*1”, and finally returns “x*x*x*1” by appending the received result to

“x*”.

2.2 Overview of Run-time Specialization

Run-time specialization (RTS) techniques efficiently specialize programs

by generating specialized programs at machine code level12, 14, 18, 20, 24, 33).

Given a source program and binding-time information, an RTS system

efficiently generates specialized programs at run-time in the following way. It

first performs binding-time analysis on the source program, similar to compile-

time specialization systems. It then generates a program called specializer from

a binding-time annotated program by substituting each dynamic expression with

a code generator, which generates machine instructions of the expression when

executed. At run-time, when a specializer is executed with a static input, it

executes the static expressions, and directly generates a specialized program at
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machine code level.

By directly generating a specialized program in a machine language,

RTS systems are fast enough to be executed at run-time. They thus give more

specialization opportunities; they can specialize programs with respect to values

that can only be obtained at run-time.

2.3 Problems

Implementation of a code generator is one of the problems of RTS sys-

tems. A code generator should be fast and should generate efficient code the

same time. Since a code generator have to generate machine instructions from

a fragment of the original program, a special-purpose compiler is needed.

[ 1 ] Efficiency.

A code generator in an RTS system should achieve both efficiency of

specialization processes and efficiency of specialized code.

A program that is specialized by an RTS system is usually slower than

that specialized by a compile-time specialization system. This is because RTS

systems apply less optimizations at specialization-time, such as instruction schedul-

ing and register allocation, to the specialized code for the sake of efficient spe-

cialization. Furthermore, programs that have a number of method invocations

(or function calls) would be much slower since method inlining is not performed

in several RTS systems. For example, Noël, et al. showed that the run-time

specialized programs have 20% overheads over the compile-time specialized ones

on average, in their study on Tempo24).

If an RTS system performed optimizations at run-time, specialized pro-

grams would become faster. In fact, there are several systems that optimizes

specialized code at run-time3, 20, 26). However, the time spent for the optimization

processes makes amortization more difficult.

Consequently, an RTS system that can flexibly balance a degree of op-

timization of specialized code and time for generating specialized code would be

beneficial.

[ 2 ] Portability.

In order to directly generate machine code, RTS systems often depend

on the target machine architecture. A typical RTS system includes a special

purpose compiler from source code (usually in a high-level language) to native
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machine code. This is because instructions in specialized program are derived

from a fragment of the source code, and not from a compilation unit of traditional

compilers, such as classes and methods.

Several techniques have been proposed to overcome the problem. For ex-

ample, Tempo uses output of a standard C compiler for building code generators9, 24).

C̀, which is a language with dynamic code generation mechanisms, generates

specialized code in retargetable virtual machine languages called vcode and

icode26).

[ 3 ] Reconciling Efficiency and Portability

The first problem suggests that: (1) RTS systems should have specialization-

time optimizations to achieve effective specialization, and (2) those optimizations

should be fast enough so that their overheads can be easily amortized.

Implementing such optimizations from scratch is extremely difficult be-

cause:

• There are many optimization algorithms. It is a hard task to incorporate

many of them into an RTS system.

• Most optimization algorithms are usually designed for applying at compile-

time. Developing their faster implementation could be difficult.

• Some optimization algorithms are dependent on architecture of an exe-

cution platform.

Instead of developing dedicated optimizers for an RTS system, a better

solution would have fast and effective optimizer independent of the RTS system,

and let the RTS system use those optimizers as an external module of the sys-

tem. The next section introduces our Bytecode Specialization approach, which

is based on those observations.

§3 Run-time Bytecode Specialization

3.1 Overview

Our proposed run-time bytecode specialization (BCS) technique uses a

virtual machine (bytecode) language as its source and target languages. It takes

a bytecode program as its input, and constructs a specializer in the same byte-

code language. At run-time, the specializer, which runs on a virtual machine,

generates specialized programs in the same bytecode language. As a virtual

machine language, we choose the Java virtual machine language (JVML)21).
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Fig. 2 Overview of BCS.

We aim to solve the problems in the previous section in the following

ways:

Efficiency. Instead of directly generating specialized code in a native machine

language, BCS generates it in an intermediate (bytecode) language.

When the system is running on a JVM with a JIT compiler, the

specialized code is optimized into a native machine language before

execution.

Another functionality of specializers in BCS is that they can per-

form method inlining at run-time. Although the specialized code with

method inlining has a certain amount of overheads for saving/restoring

local variables at bytecode level, a JIT compiler can remove most of

them according to our experiments.

Portability. As is shown in a previous run-time code generation system11, 26),

code generation at the virtual machine level can improve portabil-

ity. Current BCS system generates specialized code in the standard

JVML; the generated code can be executed on JVMs that are a widely

available to various platforms.

The input to the BCS system is a JVML program. This means that

the system does not depend on the syntax of high-level languages.

Instead, run-time specialization can be applied to any language for

which there exists a compiler into JVML. In fact, there are several

compilers from various high-level languages to JVML7, 4, etc.), which

would be used as a front-end when we extended our system to support

the fullset of JVML.

As shown in Fig. 2, a compiler first translates a source program written
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in a high-level language (e.g., Java) into JVML bytecode. The compiled program

is annotated by using our binding-time analysis algorithm. From the annotated

program, a specializer for generating the dynamic instructions is constructed.

At run-time, the specializer takes the values for the static parameters and gen-

erates a specialized program in bytecode by writing the dynamic instructions

in an array. Finally, the JVM’s class loader and the JIT compiler translate the

bytecode specialized program into machine code, which can be executed as a

method in the Java language.

In the following subsections, we present an outline of each process in

BCS briefly.

3.2 Source and Target Language
As mentioned, our source and target language is JVML, which is a stack-

machine language with local variables and instructions for manipulating objects.

Currently, a subset of the JVML instructions is supported. Restrictions are:

• Only primitive types are supported. (i.e., reference types such as arrays

and objects are not yet supported∗2.)

• All methods must be class methods (i.e., methods are declared static).

• Subroutines (jsr and ret), exceptions, and multi-threading are not sup-

ported.

Fig. 3 shows the result of compiling method power (Fig. 1) into JVML.

A method invocation creates a frame that holds an operand stack and local

variables. An instruction first pops zero or more values off the stack, performs

computation, and pushes zero or one value onto the stack.

The iconst n instruction pushes a constant n onto the stack. The isub

(or imul) instruction pops two values off the stack and pushes the difference (or

multiple) of them onto the stack. The iload x instruction pushes the current

value of local variable x onto the stack. The istore x instruction pops a value

off the stack and assigns it to local variable x. The ifne L instruction pops a

value off the stack and jumps to address L in the current method if the value

is not zero. The invokestatic t0 m(t1, . . . , tn) instruction invokes method m

with the first n values on the stack as arguments. The invokestatic instruction

(1) pops n values off the stack, (2) saves the current frame and program counter,

(3) assigns the popped values into variables 0, . . . , (n − 1) in a newly allocated

∗2 Our current prototype system can yet treat static arrays of primitive values in a restricted
context. A specialized program is correct only when arrays are modified under a static
control flow with no aliases.
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Method int Power.power(int,int)

0 iload 1 // push n

1 ifne 4 // go to 4 if n �= 0

2 iconst 1 // (case n = 0)push 1

3 ireturn // return 1

4 iload 0 // (case n �= 0)push x

5 iload 0 // push x as arg. #0

6 iload 1 // push n

7 iconst 1 // push 1

8 isub // compute (n− 1) as arg. #1

9 invokestatic int Power.power(int,int) // call method

10 imul // compute x× (return value)

11 ireturn // return x× (return value)

Fig. 3 Method power in JVML.

frame, and (4) jumps to the first address of method m. The ireturn instruction

(1) pops a value off the stack, (2) disposes of the current frame and restores the

saved one, (3) pushes the value on the restored stack, and (4) jumps to the next

address of the saved program counter. The caller uses the value at the top of

the stack as a returned value.

3.3 Binding-Time Analysis

Our binding-time analysis algorithm is a flow sensitive and monovariant

(context insensitive) analysis for the subset of JVML based on a type system.

From the viewpoint of binding-time analysis, the subset of JVML is mostly

similar to high-level imperative languages such as C. Therefore, the analysis

should be careful about the following respects, unlike the analyses for functional

languages:

• Since compilers may assign different variables to an operand-stack en-

try or a local variable, the analysis should be flow sensitive17); i.e., it

should allow an operand-stack entry or a local variable to have a different

binding-time at each program point in a method.

• As JVML is an unstructured language (i.e., it has a ‘goto’ instruction),

merge points of a conditional jump and loops are implicit. The algorithm

therefore has to somehow infer this information.

The binding-time analysis algorithm is based on a type system, following
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the algorithms used for functional languages2, 16). As the type system, we use a

type system of JVML proposed by Stata and Abadi31)∗3. The algorithm, which

is described in Appendix 1, consists of the following steps:

1. A preprocessor modifies the control flow of the given program so that

any conditional jump has at least one merge point within the method.

Specifically, it inserts a unique ireturn instruction at the end of the

method, and replace all ireturn instructions with goto instructions to

the inserted ireturn instruction.

2. In a given program, for each address in each method, it first gives three

type variables to an operand-stack, to a frame of local variables, and

to an instruction at the address. By giving different type variables to

local variables at each address, the system achieves flow sensitivity, as

well as the original Stata and Abadi’s system.

3. It then applies typing rules to each instruction of a method, and gen-

erates constraints among the type variables.

4. It also generates additional constraints that treat non-local side-effects

under dynamic control19, chapter 11) by using the result of a flow analysis.

5. It finally computes a minimal set of assignments to type variables that

satisfies all the generated constraints.

Example Fig. 4 shows a binding-time annotated power when the binding-

times of x and n are dynamic and static, respectively. The binding-time of

an instruction, which is displayed in the B column, is either S (static) or D

(dynamic). The binding-time of a stack, which is displayed in the T column, is

written as τ1·τ2 · · · τn·ε (a stack with n values whose types are τ1, τ2, . . ., from the

top value). The binding-time of a frame of local variables, which is displayed in

the F column, is denoted as ∅ (an empty frame) or [ik �→ τk] (a frame whose local

variable ik has type τk). Note that the domains of the frame types ‘shrink’ along

the execution paths. This is because our binding-time analysis rules generate

constraints on only types of live local variables, and the types of unused ones do

not appear in the result.

The result of the binding-time analysis is effectively the same as that

of the source-level binding-time analysis; i.e., instructions that correspond to a

∗3 They design their type system for formalizing the JVM’s verification rules in terms of
subroutines (jsr and ret). Here, our current analysis merely uses the style of their
formalization, and omits complicated rules for subroutines.
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instruction B T F

iload 1 S ε [0 �→ D, 1 �→ S]
ifne L2 S S · ε [0 �→ D, 1 �→ S]

L1 : iconst 1 S ε ∅
goto L0 S D · ε ∅

L2 : iload 0 D ε [0 �→ D, 1 �→ S]
iload 0 D D · ε [0 �→ D, 1 �→ S]
iload 1 S D ·D · ε [1 �→ S]
iconst 1 S S ·D ·D · ε ∅
isub S S · S ·D ·D · ε ∅
invokestatic

int Power.power(int,int)

S S ·D ·D · ε ∅

imul D D ·D · ε ∅
goto L0 S D · ε ∅

L0 : ireturn S D · ε ∅
Fig. 4 A binding-time annotated power.

static or dynamic expression at source-level have the static or dynamic types,

respectively.

3.4 Specializer Construction
From an original program and a result of binding-time analysis, a spe-

cializer is constructed in “pure” JVML. It generates specialized code on a per-

instruction basis at run-time20). For each dynamic instruction in the original

program, the specializer has a sequence of instructions that writes the bytecode

of the instruction into an array. The specializer also performs method inlining by

successively running specializers of a method caller and callee, and by inserting

a sequence of instructions that saves and restores local variables appropriately.

Here, we describe the construction of a specializer by using pseudo-

instructions. Note that those pseudo-instructions are used only for explanation,

and they are replaced with sequences of pure JVML instructions in the actual

specializer. The specializer is executable as a Java method.

The extended JVML for defining specializers contains the JVML in-

structions and pseudo-instructions, namely, GEN instruction, LIFT, LABEL L,

SAVE n [x0, . . .], RESTORE, and INVOKEGEN m [x0, . . .], where instruction is a

standard JVML instruction. Fig. 5 shows an example definition of specializer

power_gen with pseudo-instructions, constructed from method power. A spe-

cializer is constructed by translating each annotated instruction as follows.

• Static instruction i becomes instruction i of the specializer.
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• Dynamic instruction i is translated into pseudo-instruction GEN i. When

GEN i is executed at specialization time, the binary representation of i is

written in the last position of an array where specialized code is stored.

• When an instruction has a different binding-time than that of the value

pushed or popped by the instruction, pseudo-instruction LIFT is inserted.

More precisely, (1) when a static instruction at program counter pc pushes

a value onto the stack and T [pc+1] = D ·σ, where σ denotes an arbitrary

stack type, LIFT is inserted after the instruction. The iconst_1 at L1 in

Fig. 4 is an example. (2) When a dynamic instruction at pc pops a value

off the stack and T [pc] = S ·σ, LIFT is inserted before the instruction. The

execution of a LIFT instruction pops value n off the stack and generates

instruction “iconst n” as an instruction of the specialized program.

• Static invokestatic t0 m(t1, . . . , tn) is translated into pseudo-instruction

INVOKEGEN m_gen(tj1 , . . . , tjk) [x0, x1, . . .], where tj1 , . . . , tjk are the types

of static arguments, and x0, x1, . . . are the dynamic local variables at the

current address. When INVOKEGEN is executed, (1) instructions that save

local variables x0, x1, . . . to the stack and move values on top of the stack

to the local variables are generated, (2) a specializer m_gen is invoked,

and (3) instructions that restore saved local variables x0, x1, . . . are gen-

erated. The number of values moved from the stack to the local variables

in (1) is the number of dynamic arguments of m.

• When conditional jump ifne L is dynamic, the specializer has an in-

struction that generates ifne, followed by the instructions for the ‘then’

and ‘else’ branches. In other words, it generates specialized instruction

sequences of both branches, one of which is selected by the dynamic

condition. First, the jump instruction is translated into two pseudo-

instructions: GEN ifne L and SAVE n [x0, x1, . . .], where n and [x0, x1, . . .]

are the number of static values on the stack that will be popped during

the execution of the ‘then’ branch and a list of static local variables that

may be updated during execution of the ‘then’ branch, respectively. In

addition, pseudo-instruction sequence LABEL L; RESTORE is inserted at

label L. When SAVE is executed at specialization time, the top n values

on the current stack and the local variables x0, x1, . . . are saved. The

execution of RESTORE resets the saved values on the stack and in the

frame.
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Method Power.power_gen(int)

iload_1

ifne L2

L1:iconst_1

LIFT

goto L0

L2:GEN iload_0

GEN iload_0

iload_1

iconst_1

isub

INVOKEGEN Power. power_gen(int) []

GEN imul

goto L0

L0:return

Fig. 5 Specializer definition with pseudo-instructions.

3.5 Specializer Execution

The specializer definition is further translated into a Java method so

that it takes (1) several parameters needed for specialization including an array

that stores instructions of the specialized program and (2) the static arguments

of the original method.

When a program uses the specializer, the following operations are per-

formed: (CP creation) A ‘Constant Pool ’ (CP) object that records lifted val-

ues during specialization is created. (specializer execution) The specializer

method is invoked with static arguments and the other necessary information for

specialization. (class finalization) From the specialized instructions written in

a byte array and the CP object, a ClassFile image∗4 is created. (class loader

creation) A ClassLoader object is created∗5. (class loading) Using the

ClassLoader object, the ClassFile image is loaded into the JVM, which defines

a new class with the specialized method. (Instance creation) An instance of

∗4 Despite its name, a ClassFile image in our system is created as a byte array. No files are
explicitly created for class loading.

∗5 Since some JVM implementations significantly slowed down when a ClassLoader object
loads a number of classes in our experiment, we create a class loader for each specialized
code. Section 4.3 shows that the time for creating of a ClassLoader object is insignificant
among the overall specialization overheads.
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Method int power_2(int)

0 iload_0

1 iload_0

2 istore_0

3 iload_0

4 iload_0

5 istore_0

6 iconst_1

7 imul

8 imul

9 ireturn

Fig. 6 Specialized version of power with respect to 2.

the newly defined class is created. The program finally can call the specialized

method via a virtual method of the instance.

Fig. 6 shows the instructions for specialized power with 2 as a static

argument. Some instructions, such as those that load a value immediately after

storing the value, are unnecessary. Those instructions arise to save/restore local

variables around inlined methods.

§4 Performance Measurement

4.1 An Application Program: Mandelbrot Sets Drawer

As a target of specialization, we took a non-trivial application program

that interactively displays the Mandelbrot sets. The user of the program can

enter the definition of a function, and the program displays the image of the

Mandelbrot set that is defined by using the function. Since the function is given

interactively, the program defines an interpreter for evaluating mathematical

expressions. In order to draw an image of the set, the application have to

evaluate the function more than one million times. This means that run-time

specialization of the interpreter with respect to a given expression could improve

the performance of the drawing process.

In our performance measurements, the method eval and its auxiliary

methods in the interpreter, which take an expression and a store, and returns the

value of the expression, are specialized with respect to an expression “z*z+c”.

Since current BCS implementation does not support objects, we modified the
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Fig. 7 Execution times of loops of specialized and unspecialized eval.

method to use arrays for representing expressions and stores.

We measured execution times of the target methods on two JVMs with

different JIT compilers, namely, Sun “Classic” VM for JDK 1.2.1 with sunwjit

compiler, and Sun “HotSpot” VM (in “client” mode) for JDK 1.2.2, in order

to examine impacts of a JIT strategy on the specialization performance. All

programs are executed on Sun Enterprise 4000 with 14 UltraSPARCs at 167MHz,

1.2GB memory, and SunOS 5.6. Execution times are measured by inserting

gethrvtime system calls, which is called via a native method.

4.2 Performance of Specialized Method

We measured performance of three versions of the eval method on the

abovementioned JVMs. The first one is the ‘original’ unspecialized method.

The second one is a run-time specialized (‘RTS’) method generated by the BCS

system. The third one is a compile-time specialized (‘CTS’) method, which is

obtained by translating the original method into a C function, then applying

Tempo24), and finally translating specialized C function back into Java. At

bytecode-level, the RTS and CTS methods are not identical in terms of usage

of operand stack and local variables. The RTS method uses the operand stack

to save/restore local variables around inlined methods. The CTS method, on

the other hand, uses distinct (and thus many) local variables for the inlined

methods.
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Table 1 Execution times (µ seconds) of eval method.

original RTS CTS

VM BO JO BR JR S BC JC

Classic 6.405 2,513 2.255 1,330 2,658 2.257 1,792

HotSpot 2.774 245,156 0.691 146,795 3,129 0.659 159,688

Fig. 7 shows the execution times of the method, which are measured by

the following way. A ClassLoader object in our benchmark program first loads

a new class that contains the (either specialized or unspecialized) eval method.

The program then measures execution time of a loop that repeatedly invokes

the eval method. Note that the measured time does not include specialization

process, but does include the time of JIT compilation processes because JVMs

perform JIT compilation during method invocations. As a result, the curves of

the graph are not linear for small iteration numbers.

We therefore estimated, for each curve, execution times of the JIT-

compiled body of the method (hereafter referred to as B) and JIT compilation

process (J), by using an linear approximation of the curve at large iteration

numbers.

Table 1 shows the estimated execution times of the method. It also

shows specialization overheads (S), which are explained in the next subsection.

As we see in the JO, JR and JC columns, JIT compilation processes took from

one millisecond to a few hundred milliseconds, depending on the JIT compil-

ers. Table 2 shows the relative speed. As we see in the BO/BR and BR/BC

columns, the run-time specialized code runs 3–4 times faster than the unspecial-

ized one does, and achieves almost the same speedup factors as the compile-time

specialized code does.

Table 3 shows static properties of the specialized methods. Since the

original eval is defined with two more auxiliary methods, the sum of the values

of the three methods are displayed in the table. The ‘method size’ row shows

the bytecode instruction size of each version. Since RTS version has instructions

that save/restore local variables, it is longer than the CTS version, but uses less

local variables.

4.3 Specialization Overheads and Break-even Points
Elapsed times for the specialization processes (S) are measured by av-
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Table 2 Relative speeds of eval method.

VM BO/BR BO/BC BR/BC

Classic 2.841 2.838 0.999

HotSpot 4.014 4.212 1.049

Table 3 Static properties of specialized and unspecialized methods.

original RTS CTS

method size (bytes) (132 + 67 + 210 =)409 173 135

maximum stack depth (7 + 6 + 5 =) 18 7 5

number of local variables (9 + 9 + 13 =) 31 11 24

Table 4 Breakdown of specialization overheads with bytecode verifier.

VM Classic HotSpot

process time(µsec.) ( ratio ) time(µsec.) ( ratio )

CP creation 46.38 ( 1.7%) 95.91 ( 3.1%)

specializer execution 61.67 ( 2.3%) 194.81 ( 6.2%)

class finalization 55.77 ( 2.1%) 125.18 ( 4.0%)

class loader creation 16.68 ( 0.6%) 22.14 ( 0.7%)

class loading 1,907.33 ( 71.8%) 1,518.18 ( 48.5%)

instance creation 569.73 ( 21.4%) 1,172.96 ( 37.5%)

total (S) 2,657.57 ( 100.0%) 3,129.19 ( 100.0%)

Table 5 Breakdown of specialization overheads without bytecode verifier.

VM Classic HotSpot

process time(µsec.) ( ratio ) time(µsec.) ( ratio )

CP creation 46.24 ( 3.3%) 89.44 ( 3.8%)

specializer execution 66.27 ( 4.7%) 218.80 ( 9.2%)

class finalization 37.16 ( 2.7%) 103.65 ( 4.3%)

class loader creation 12.59 ( 0.9%) 19.18 ( 0.8%)

class loading 776.16 ( 55.7%) 1,708.72 ( 71.7%)

instance creation 455.00 ( 32.7%) 243.69 ( 10.2%)

total 1,393.43 ( 100.0%) 2,383.49 ( 100.0%)
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Table 6 Break-even points.

VM verifier over JIT compiled code over newly loaded code

Classic on 961 355

off 656 50

HotSpot on 71,975 (less than zero)

off 71,617 (less than zero)

eraging 10,000 runs. Table 4 and Table 5 shows the times for each sub-process,

which is explained in Section 3.5. Table 4 is the result of execution on JVMs

with bytecode verifiers, and Table 5 is on JVMs without verifiers (by using un-

documented “-Xverify:none” option of Sun’s JDK). As we see, 80–90% time

of the specialization process is spent for the ones inside the JVM, namely, class

loading and instance creation. More specifically, 25–50% of the specialization

process is spent for the JVM’s bytecode verification as the differences of numbers

between Table 4 and Table 5 suggest.

We presume that some of overheads could be removed if we integrated

our system with a JIT compiler so that the specializer directly generates spe-

cialized code in an intermediate representation in the JIT compiler.

A break-even point (BEP) is a number of runs of a specialized program

needed to amortize the specialization cost over the execution time of the unspe-

cialized program. In programming systems that perform dynamic optimizations,

even unspecialized programs have to pay overheads of the optimization, namely

JIT compilation time. We therefore calculated two BEPs. The first one assumes

that the unspecialized code is already JIT compiled. In this case, a BEP, which

is calculated by the formula (JR + S)/(BO −BR), is approximately 700–72,000

runs as shown in Table 6. The second one assumes that the unspecialized code

is newly loaded, and thus pays the cost of JIT compilation during its execution.

The BCS specialized code exhibits a small BEP in this case, which is computed

by the formula (JR+S−JO)/(BO−BR). Note that the benchmark application,

in order to draw an image of a given expression, executes the eval method for

much larger number of times than the BEPs. This means that BCS actually

improves the overall execution times of the application.

4.4 Comparison to a Native Code Run-time Specializa-
tion System
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Table 7 Execution and specialization times and break-even points of eval in Tempo.

execution times (µsec.) relative speed BEP

original RTS CTS

BO BR S BC BO/BR BO/BC BR/BC

1.318 0.675 23.829 0.311 1.95 4.24 2.17 37.1

In order to compare the speedup factors and specialization overheads

with a run-time native-code specialization system, we also wrote the same inter-

preter in C, and specialized by using Tempo 1.194∗6. The interpreter is compiled

by GCC 2.7.2 with -O2 option. All the other execution environments are the

same to the previous ones.

Table 7 shows the execution times and specialization times that are mea-

sured by averaging ten million runs. We observe that the run-time specialized

code is slower than the compile-time specialized one in Tempo∗7.

Comparing between the execution time in BCS and the one in Tempo,

we notice that compile-time specialized codes in those two systems show the

similar speedup factors (BO/BC). On the other hand, the speedup factors of

the run-time specialized code (BO/BR) in Tempo are worse than the one in

BCS. This can be an evidence of our premise: performing optimizations after

specialization could be useful to improve performance of run-time specialized

code.

§5 Related Work
Tempo is a compile-time and run-time specialization system for C language24).

Tempo achieves portability by using outputs of standard C compilers to con-

struct specializers. As the specializers simply copy machine instructions to

memory at run-time, their BEP numbers are low (3 to 87 runs in their real-

istic examples). On the other hand, the specializers perform no optimizations

and no function inlining at run-time specialization.

DyC is another RTS system for C language14). The analysis and spe-

∗6 We set both reentrant and post inlining options of Tempo to true, and the compiler
options for both templates and specializers to "-O2". We also implemented an efficient
memory allocator for residual code.

∗7 In the previous version of the paper the run-time specialized code in Tempo exhibited
tremendously bad performance—more than two hundred times slower than the original
code. Most of the overheads, however, turned out to be caused by a bug in the benchmark
program.
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cializers can directly handle unstructured C programs. The system generates

highly optimized code, by developing its own optimizing compiler for Digital Al-

pha 21164. It can perform optimizations at run-time specialization3). However,

the optimizations seem to make the BEP numbers larger (around 700 to 30,000),

similar to BCS.

Fabius is an RTS for pure-functional subset of ML, targeting MIPS

R300020). Because the source language is a pure functional language, the binding-

time analysis and specializer construction in Fabius are simpler than those for

imperative and unstructured languages. Similar to BCS, specializers in Fabius

are on a per-instruction basis and perform function inlining for tail recursive

functions. It is also suggested that the specializers would perform register allo-

cation at run-time.

Fujinami proposes a run-time specialization system for C++, targeting

MIPS R4000 and Intel x8612). A specialized program is his system runs twice

as fast as the one compiled by a statically optimizing compiler. His system

achieves this speedup by embedding a number of optimization algorithms into a

statically generated specializer. Our approach, on the other hand, is to optimize

a specialized code by using a JIT compiler, which is an independent module.

C̀ is a language with dynamic code generation mechanisms26). Unlike

other RTS systems, C̀ programmers have to explicitly specify binding-times of

expressions. Similar to BCS, the implementation of C̀ generates programs in

virtual machine languages called vcode and icode. The run-time system of

icode performs optimizations including register allocation for generated pro-

grams, similar to JIT compilers for JVMs.

Bertelsen proposes, independently of BCS, an algorithm for binding-time

analysis of a JVML subset6). His algorithm can treat arrays, and does not treat

objects. Also, it only targets a single method. A specialization process based on

the analysis is only informally discussed.

JSpec is an off-line, compile-time partial evaluator for Java30, 29, 28). The

system analyzes and specializes Java programs by applying Tempo, a partial

evaluator for C, after translating the Java programs into C. A specialized pro-

gram can be executed either by compiling the specialized C program into native

code, or by translating it back into Java. This approach can be compared to

ours that uses a compiler from a high-level language to a bytecode language as

a front-end. Unlike current BCS implementation, JSpec supports all the object-

oriented features of Java whose specialization strategies are specified through
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specialization classes32).

§6 Conclusion
In this paper, we have proposed run-time bytecode specialization (BCS),

which specializes Java virtual machine language (JVML) programs at run-time.

The characteristics of this approach are summarized as follows: (1) the system

directly analyzes a program and creates a specializer in an intermediate language

JVML; and (2) the specializer generates programs in JVML, which makes it

possible to apply optimizations after specialization by using existing JVMs with

just-in-time (JIT) compilers.

The binding-time analysis algorithm is based on a type system, and

also uses results of flow analysis to correctly handle stacks, local variables, and

side-effects.

Thus far, we have implemented a prototype BCS system for a JVML

subset and have shown that a method in a non-trivial program specialized by

our system runs approximately 3–4 times faster than the unspecialized method.

The specialization cost can be amortized by 1,000 to 72,000 runs, depending

on the JVMs. Those numbers are worse than the ones in the systems that are

rather focusing on the specialization speed20, 24), though.

We are now extending our system to support the full JVML. Since cur-

rent implementation only supports primitive types, rules that properly handle

references to objects and arrays should be devised. To support objects and ar-

rays, the system needs information whether data is modified by other methods

or other threads. Such information could be obtained by either static analysis

(e.g., the one studied by Choi, et al.8)) or through user declarations which could

be written in the style of specialization classes32). In practice, it is also impor-

tant to support other features, such as multi-threading, and subroutines (i.e.,

jsr and ret instructions in JVML) and exceptions. Some may consider that

templates of bytecode would reduce specialization costs. As our experiments

in Section 4 showed, however, the major sources of specialization overheads are

class loading and JIT-compilation. Rather than improving the performance of

the bytecode generation process, our current plan is to generate a specialized

program directly in an intermediate language of a JIT compiler, by using JVMs

with interfaces to JIT compilers25).
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§1 Rules for Binding-Time Analysis
The typing rules use S and D, respectively, for static and dynamic values.

The instruction types are also S and D; the sub-typing relation between them

is S ≤ D. A stack type is a string of value types, either ε or α · σ, where ε is

the empty stack type, α is a value type, and σ is a stack type. A frame type

is the map from a local variable to a value type. An extension of a value f of

24



frame type is defined as

(f [x �→ α])[y] ≡ if x = y then α, else f [y],

where x and y are local variables and α is a value type. An empty map is written

as φ, and we abbreviate φ[x1 �→ α1][x2 �→ α2] · · · as [x1 �→ α1, x2 �→ α2, . . .].

Program P is a vector of instructions indexed by program counters. Program

counter pc is a pair of method name m and instruction address i in a method;

it can be written as 〈m, i〉. An increment of program counter is defined as

〈m, i〉+ 1 ≡ 〈m, i + 1〉 .

Initial binding-time assignment I is given as a map from a method name to a

frame type.

Program P has valid binding-times with respect to initial binding-time

assignment I if there are vectors A, R, B, F, and T that satisfy the following

judgment:

A, R, B, F, T 
 P, I ,

where A, R, B, F, and T are the types of method arguments, return values, in-

structions, frames, and stacks, respectively.

The rule to prove the judgment is defined as the judgment for all meth-

ods, and constraints of I:

∀m ∈ Methods(P ). A, R, B, F, T, m 
 P, ∀m′ ∈ Dom(I).I[m′] ⊆ F [〈m′, 0〉]
A, R, B, F, T 
 P, I

,

where Dom(I) is the domain of map I, Methods(P ) is a set of method names in

P , and the inclusion between maps is defined as

∀x ∈ Dom(f). f [x] = f ′[x]

f ⊆ f ′
.

The judgment of a method is defined by the rule

∀i ∈ Addresses(P, m). A, R, B, F, T, 〈m, i〉 
 P T〈m,0〉 = ε F〈m,0〉 = Am

A, R, B, F, T, m 
 P
,

where Addresses(P, m) is a set of all instruction addresses of method m in pro-

gram P . The first hypothesis is a local judgment applied to each instruction

address in a method. The second and third are the initial conditions on the

stack and the frame.
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P [pc] = iconst n

Fpc+1 ⊆ Fpc

Tpc+1 = α · Tpc
B[pc] ≤ α

A, R, B, F, T, pc 
 P

P [pc] = iadd

Fpc+1 ⊆ Fpc

Tpc = α ·B[pc] · σ
Tpc+1 = β · σ
α ≤ B[pc] ≤ β

A, R, B, F, T, pc 
 P

P [pc] = iload x

Fpc+1 ⊆ Fpc

Tpc+1 = α · Tpc
Fpc [x] = B[pc] ≤ α

A, R, B, F, T, pc 
 P

P [pc] = istore x

Fpc+1 ⊆ Fpc [x �→ B[pc]]

α · Tpc+1 = Tpc

α ≤ B[pc]

A, R, B, F, T, pc 
 P

P [pc] = ifne L

Fpc+1 ⊆ Fpc, FL ⊆ Fpc

α · TL = α · Tpc+1 = Tpc

α ≤ B[pc]

A, R, B, F, T, pc 
 P

P [pc] = invokestatic m

Fpc+1 ⊆ Fpc

n = arity(m)

Tpc = Am[n− 1] · · ·Am[0] · σ
Tpc+1 = α · σ

R[m] ≤ α

A, R, B, F, T, pc 
 P

P [pc] = ireturn

Tpc = α · σ
α ≤ R[m]

pc = 〈m, i〉
A, R, B, F, T, pc 
 P

Fig. 8 Typing rules for binding-time analysis
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Fig. 8 shows rules∗8 for a judgment A, R, B, F, T, pc 
 P, which are ex-

plained as follows.

• When the instruction at pc pushes a value onto the stack, the type of the

top value of the stack at the next address is larger than or equal to the

instruction’s type. Those instructions include iconst, iadd, iload, and

invokestatic.

• When the instruction at pc pops values off the stack, the type of the

instruction is larger than or equal to the types of values on the stack at

pc. Those instructions include iadd, istore, and ifne.

• When the control moves from pc to pc′, types of live local variables are

propagated—i.e., a type of a local variable at pc′ must be the same as

that of the variable after executing the instruction at pc. This is repre-

sented by a constraint among frame types, like Fpc+1 ⊆ Fpc . For a jump

instruction (ifne), the frame types at the current and jump addresses

are also constrained by the same inclusion.

When the instruction reads or writes a local variable, the type of the

instruction and that of the variable are constrained∗9.

• When the instruction at pc is invokestatic, the argument types of the

target method and the types of values on the current stack are the same,

and the return type of the method and type to the top value at the next

address of the invokestatic instruction are the same. Since our rules

require that a method have only one combination of argument types, the

binding-time analysis is monovariant.

• When the instruction at pc is ireturn, the value on top of the current

stack has the same type as the return type of the current method.

Side-effects: The typing environments that satisfy the above rules are consis-

tent in terms of original execution order. That is, when an annotated program

is executed disregarding the annotations, the program does not “go wrong.”

However, a specializer, which is constructed from an annotated program, does

not have exactly the same execution order as the original program—it executes

both branches of a dynamic conditional jump. As a result, the specializer may

go wrong with side-effecting operations.

∗8 The rules are defined for seven typical JVM instructions. The rules for the other instruc-
tions such as “dup” can be easily derived by combining those displayed rules.

∗9 The current rules prohibit ‘lifting’ the values of local variables for simplicity.
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For example, consider a specializer constructed from the following method,

specifying that x and y are dynamic and static, respectively:

int f(int x, int y) {

if (x > 0)

y = y + 1;

else

y = y * 2;

return g(x, y / 2);

}

Since y is static, our typing rules give static types to the expressions

y=y+1, y=y*2, and y/2. However, a correct binding-time analysis would give a

dynamic type y/2 because the value of y after the if statement depends on the

value of x, which is dynamic.

We solve this problem by adding the following constraints. Assume

P [pc] = if L. Let Mpc be the set of addresses at which execution paths from

pc+1 and L merge. For each pc′ ∈Mpc, let lpc′ be the set of local variables that

are updated by the istore instruction during the execution paths from pc + 1

to pc′ and L to pc′, and npc′ be the maximum number of stack entries at pc′

that are pushed during the execution paths from pc + 1 to pc′ and L to pc′.
The following constraint requires that the local variables and stack entries that

are computed in a branch of a dynamic conditional jump be dynamic after the

merger of its branches:

∀pc′ ∈Mpc. Tpc′ = β1 · · ·βnpc′ · σ,

B[pc] ≤ β1 (i = 1, . . . , npc′) ∀x ∈ lpc′ .B[pc] ≤ Fpc′ [x],

where the second constraint specifies that the top npc′ stack entries at pc′ have

larger types than that of the instruction at pc, and the third specifies that the

updated local variables have larger types than that of the instruction at pc.
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