
Live, Synchronized, and Mental Map Preserving
Visualization for Data Structure Programming

Akio Oka
Tokyo Institute of Technology

School of Computing
Tokyo, Japan

a.oka@prg.is.titech.ac.jp

Hidehiko Masuhara
Tokyo Institute of Technology

School of Computing
Tokyo, Japan

masuhara@acm.org

Tomoyuki Aotani
Tokyo Institute of Technology

School of Computing
Tokyo, Japan

aotani@is.titech.ac.jp

Abstract
Live programming is an activity in which the programmer
edits code while observing the result of the program. It has
been exercised mainly for pedagogical and artistic purposes,
where outputs of a program are not straightforwardly imag-
ined. While most live programming environments so far
target programs that explicitly generate visual or acoustic
outputs, we believe that live programming is also useful for
data structure programming, where the programmer often
has a hard time to grasp a behavior of programs. However, it
is not clear what features a live programming environment
should provide for such kind of programs. In this paper, we
present a design of live programming environment for data
structure programming, identify the problems of synchro-
nization andmental map preservation, and propose solutions
based on a calling-context sensitive identification technique.
We implemented a live programming environment called
Kanon, and tested with 13 programmers.

CCS Concepts • Software and its engineering → Inte-
grated and visual development environments;

Keywords Live programming, data structures, object graph

ACM Reference Format:
Akio Oka, Hidehiko Masuhara, and Tomoyuki Aotani. 2018. Live,
Synchronized, and Mental Map Preserving Visualization for Data
Structure Programming. In Proceedings of the 2018 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Re-
flections on Programming and Software (Onward! ’18), November
7–8, 2018, Boston, MA, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3276954.3276962

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Onward! ’18, November 7–8, 2018, Boston, MA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6031-9/18/11. . . $15.00
https://doi.org/10.1145/3276954.3276962

1 Introduction
Live programming has been researched [Hancock, 2003; Vic-
tor, 2012] as one way to enable easier programming. Tra-
ditional programming is divided into a phase for editing a
program and a phase for confirming whether the program
is working as expected. The programmer needs to return
to editing the program if the execution result of the edited
program differs from the expected result.

On the other hand, live programming assists the program-
mer by giving an “immediate connection” between a program
and its execution result without requiring the programmer
to run the program in their mind. Most past demonstrations
of live programming target programs whose results are not
obvious from their texts, including the programs for drawing
pictures [Victor, 2012], for synthesizing music [Aaron and
Blackwell, 2013], for animating game characters [McDirmid,
2007], and for teaching algorithms [Khan Academy, 2018].
Data structure programs fall into the same category, and

therefore we believe live programming can be helpful in
this domain as well. By data structure programs, we here
mean definitions of data structures and their operations at
various levels of abstractions, ranging from generic ones like
a doubly-linked list to application-specific ones like “data
for a hospital medical record system.” In object-oriented
programming languages, data structure programs are usually
defined as class and method definitions.
We propose a live data structure programming environ-

ment that provides the immediate connection between the
program text and graphical images of data structures in the
programmer’s mind1 . Though the programmers could have
a variety of mental images for data structures, we assume
that images with boxes and arrows are common enough.
Figure 1 is an example of such an image for a doubly-linked
list.

3 1 4 1

Figure 1. A mental image of a doubly-linked list.

1The early stages of the work is reported as the workshop papers [Oka et al.,
2017a,b,c].

72

https://doi.org/10.1145/3276954.3276962
https://doi.org/10.1145/3276954.3276962

Onward! ’18, November 7–8, 2018, Boston, MA, USA Akio Oka, Hidehiko Masuhara, and Tomoyuki Aotani

While it is a straightforward idea and there is a tremendous
amount of research that visualizes data structures, it is not
obvious what features programming environments should
provide in the context of live programming. Though there are
many programming environments, like ZStep [Lieberman
and Fry, 1995], jGRASP [Hendrix et al., 2004] and Python
Tutor [Guo, 2013], that visualize user-defined data struc-
tures, they mainly focus on the situation when the developer
tries to examine the behavior of programs in a post-mortem
fashion. In other words, development and examination are
separated processes in those environments.
In order to provide a more live experience of data struc-

ture programming, we need to consider the problem of vi-
sualization while the developer is writing and changing a
fragment of code2. In the following sections, we discuss the
background of this research (Section 2). We then describe the
design of our proposed programming environment, Kanon
(Section 3) and its implementation issues (Section 4). We re-
port a summary of our findings when we let the developers
use Kanon (Section 5, an excerpt of Appendix A). Finally,
we discuss related work (Section 6) and conclude the paper
(Section 7).

2 Background
2.1 Data Structure Programming
Data structure programming is the act of programming data
structures as well as operations that manipulate those struc-
tures. Data structures include common ones like lists and
problem specific ones, and appear in many programs.
Data structure programming is sometimes difficult and

frustrating, as it is often involved with multiple references.
When we define an operation on a data structure, the opera-
tion needs to take several steps to modify the structure such
as by changing references. In such a case, we need to think
about the next step by imagining the shape of the structure
modified by the steps written so far. The problem can be
even harder when there is aliasing of references and cyclic
references.
When we are defining a complicated operation that ma-

nipulates a data structure, we sometimes write a test case
and examine the (partly) modified structure. However, tex-
tual printouts of data structures, which would be the most
widely taken approach, are often hard to read, especially
when the structures become complicated. It is also difficult
to recognize changes in a data structure from its textual
outputs.

2While we primarily focus on the activities of writing and modifying code
for data structures, we do not exclude the situations of debugging and
code-understanding. When writing a new code fragment often involves
identifying problems in the written code, and understanding the existing
code related to the one being written. This would be especially true with
live programming.

2.2 Live Programming Environments
We can classify live programming environments into two
groups with respect to the types of the programs they sup-
port. The first group’s environments enable code editing of a
running program (e.g., SonicPi [Aaron and Blackwell, 2013]).
The second group’s environments automatically re-execute
a program to show the effects of changes immediately (e.g.,
Live Editor [Resig, 2012] and YinYang [McDirmid, 2013]).
The former group is mainly used for artistic performances,
like improvising music and animated graphics. The latter
is mainly used for software development and pedagogical
purposes.
We can also classify live programming by the types of

outputs from programs. Many environments mainly target
programs that generate visual or acoustic outputs. Addition-
ally, environments for artistic performances, demonstrations
for educational usages often use programs that draw pic-
tures.
A few exercises are reported to use live programming

for programs that do not output visual or acoustic outputs.
Live Editor [Resig, 2012] and YinYang [McDirmid, 2013],
for example, live-update textual outputs from a program
being edited. These tools are used to show the course of
computation taken place in a loop of a numerical function,
such as the square root of numbers.

If we apply live programming to data structures programs,
the current environments are not suitable for the following
reasons: in the first case, the programmer has to write a
program that explicitly generates visual, acoustic or textual
outputs. This is clearly tedious for operations that manip-
ulate data structures. In the latter, the only standard way
to output data structures is printing in text, which is not
friendly to the programmer’s eyes as we discussed in the
previous section.

2.3 Algorithm Animation
Many algorithm animation systems, including Balsa [Brown
and Sedgewick, 1984], Zeus [Brown, 1991] and Tango [Stasko,
1989], can graphically display data structures. Some of these
systems provide frameworks where we can easily develop
an animation by instrumenting an implementation of an
algorithm like sorting.
While these algorithm animation systems could be used

for program understanding, they are fundamentally different
from live programming, as they do not have a live updating
feature. In other words, they are designed for visualizing
behaviors of completed programs; they would not work well
for partly-written and frequently edited programs. Though
it would be hypothetically possible to automatically apply
an algorithm animation system to a program being edited, it
would not provide continuous feedback as we will discuss
in the later section.

73

Live, Sync, and Mental Map Preserving Visualization for DSP Onward! ’18, November 7–8, 2018, Boston, MA, USA

Figure 2. A Screenshot of Kanon.

3 Kanon: A Live Data Structure
Programming Environment

We propose a live programming environment, called Kanon,
specialized for data structure programming. As the design
space for such an environment is very large, we will first
discuss our design decisions. We will then introduce two
unique features of Kanon.

3.1 Design Overview and Assumptions
Figure 2 is a screenshot of Kanon. The left- and right-hand
sides are the editor pane in which a program is written, and a
visualization pane that displays data structures, respectively.
It is designed under the following assumptions.
• We assume that a program is written in JavaScript3 in
a single file. It consists of definitions of data structures
and their operations, followed by top-level expressions
that serve as test cases.
• We draw data structures as a node-link diagram. Each
oval in the visualization pane represents an object that
is created during an execution, labeled with the class
name of the object. The blue arrows from the ovals

3We chose JavaScript as a general-purpose programming language that
supports data structures. Therefore, we do not consider use-cases specific
to JavaScript, such as DOM and async.

show the field values in the object, which point to
either other objects or primitive values, and the green
arrows with no origin (e.g. the arrow labeled list)
show which object the local variables refer to.
• We visualize all objects created from the beginning up
to a certain point of execution in a run of a program.
Selection of the execution point will be discussed in
Section 4.2.

3.2 Visualization of Changes and Two View Modes
3.2.1 Visualization of Changes
When a live programming environment visualizes data, the
data can change during execution. For example, given a pro-
gram that repeatedly approximates a mathematical function,
we might want to see the changes of intermediate results
during a run. Existing environments can show such changes
as a series of values [Imai et al., 2015; McDirmid, 2007] or
as a line chart [Apple Computer, 2016]. For programs that
produce visual images (i.e., drawing programs), there have
been attempts to use a stroboscopic visualization [Granger,
2012] or a timeline visualization [Kato et al., 2012].

74

Onward! ’18, November 7–8, 2018, Boston, MA, USA Akio Oka, Hidehiko Masuhara, and Tomoyuki Aotani

Listing 1. Partially defined add.
class DLList {...

// add the given val at the end of the list
add(val) {

var temp = new Node(val);
if (this.head === null) { // when the list is empty

this.head = temp;
this.tail = temp;

} else { // when the list is not empty

}
}

}
var l = new DLList ();
l.add (3); l.add (4); l.add (5);

Figure 3. A snapshot view in the context of
l.add(4).

Listing 2. Finished (yet incorrect) definition of add.
class DLList {...

// add the given val at the end of the list
add(val) {

var temp = new Node(val);
if (this.head === null) { // when the list is empty

this.head = temp;
this.tail = temp;

} else { // when the list is not empty
temp.prev = this.tail;
this.head.next = temp;
this.tail = temp;

}
}

}
var l = new DLList ();
l.add (3); l.add (4); l.add (5); Figure 4. A summarized view for the program in

Listing 2.

For data structures, there is no definitive way to visualize
changes. Though there have been a number of studies on al-
gorithm animation, those studies tend to develop techniques
specialized to specific algorithms.

3.2.2 Snapshot and Summarized View Modes
We provide two ways of showing changes in a program run:
one is called the snapshot view mode, which animates the
graphical representation using cursor movement in the text
editor, and the other is called the summarized view mode,
which shows summarized effects of changes in one graphical
representation.
With the snapshot view mode, the view shows the object

graph with variable references when the program execution
reaches the cursor position. If the execution reaches the

cursor position multiple times (due to multiple function calls
or loops), the execution of a specific context is chosen4.

Figure 3 is an example of a snapshot view for the program
text in Listing 1 (in which the cursor position is denoted by
a black rectangle), in the context of l.add(4). The green
arrows in Figure 3, which are labeled this and temp, repre-
sent the references by the this expression and the variables
available in the specified calling-context. In this example, the
programmer is defining the add method for doubly-linked
lists and has finished defining the case when the list is empty.
The view shows the object graph when the execution of

4The current implementation shows just the count of the context speci-
fied by each function and each loop. Showing more intuitively is left for
future work. Drawing a segmented line that connects the call sites as done
in Dr. Racket (https://racket-lang.org/) or the macro visualization in Sey-
mour [Kasibatla and Warth, 2018] are possibilities.

75

https://racket-lang.org/

Live, Sync, and Mental Map Preserving Visualization for DSP Onward! ’18, November 7–8, 2018, Boston, MA, USA

l.add(4) reaches the cursor position. Note that the node
for 5 is not yet created in this view.
With the summarized view mode, the view shows effects

of a statement5 at the cursor position over the object graph
at the end of the execution. The view summarizes the effects
by two means: (1) when the statement is executed more
than once, it visualizes all the effects performed in those
executions; and (2) when the statement contains a function
call, it visualizes all the effects performed in the call.

Figure 4 is an example of a summarized view for the pro-
gram text in Listing 2, where the programmer has finished
definition of add. This view shows an object graph at the
end of execution. At the same time, the view illustrates the
effects of the code at the cursor position, in this case, the
assignment “this.head.next = temp;”, where the orange
solid arrow (3⃝) shows the reference found at the end of
execution. The dashed arrows (1⃝, 2⃝) denote the overwrit-
ten references, i.e., once created by this (orange 1⃝) or other
(green 2⃝) assignment, and then disappeared due to later
assignments.
From the diagram, the programmer can observe that the

final graph is incorrect. The next field of the leftmost Node
should reference the middle Node, where instead it refer-
ences the rightmost Node in the final state. The program-
mer can also see that the reference was initially correct (as
shown with the green dashed arrow 2⃝) and then overwrit-
ten by the assignment at the cursor position. In fact, the
cursor line should assign to this.tail.next, instead of
this.head.next.

3.3 Backward Connection to Code from Graphical
View

3.3.1 Relating Visualized and Program Elements
It is important to the programmer to be able to establish a
connection between visualized information and program ele-
ments. For example, consider an environment that visualizes
a time-series of values of multiple variables in a program. We
then need to find out the correspondence between a series of
values to a variable, as well as a value in a series to a specific
moment in an execution.
YinYang’s solution to this issue is a probe that displays

a value of an expression just below the expression, and a
tracing construct that produces a clickable output, which
rewinds the program state to the time when the output is
produced.
For data structures, since a visual representation (i.e., a

node-link diagram) has a structure, environments should
help to establish a connection between those visual elements
and program elements.

5Though our current implementation only shows effects of one statement,
it is not difficult to extend it to show the effects of a series of statements. It
is a part of our future work.

3.3.2 Jump to Construction
We provide a mechanism that helps to connect visual ele-
ments to program elements. The mechanism is called jump-
to-construction, which is invoked by a double-click on a
graphical element, and moves the cursor position to the
program element that corresponds to the graphical element
(either a new expression or a field-assignment statement).

4 Implementation
We implemented a prototype of Kanon for JavaScript run-
ning on web browsers. It is available online6. Below, we first
overview the implementation and then describe a technique
to preserve mental map.

4.1 Overview
Figure 5 overviews the implementation. We will explain the
structure by following the operations taken place upon a
program modification.

We use a modified version of the Ace editor [Jakobs, 2018]
for editing a program text. When the programmer edits a
piece of text, it notifies the visualization engine.

1⃝ The visualization engine uses Esprima [Hidayat, 2018]
to parse the program text in the editor. It then traverses the
syntax tree by applying the following modifications:
• It inserts declarations of global variables for keeping
track of calling contexts and the virtual timestamp.
• For each new expression, it appends a piece of code
that records object ID in a special field of the created
object.
• For each statement and new expression, it inserts check-
pointing code before and after the statement. The
checkpointing code is an expression that applies a
list of global and local variables to the object traversal
function.
• At the beginning of each loop body and function body,
it inserts counting code.

2⃝ The engine then evaluates it using eval. When the
checkpointing code runs, it collects JavaScript objects that
are reachable from the variables in the scope. We use the
object reflection mechanism to obtain field values from an
object. The objects and their references are recorded as graph
data (i.e., nodes and links) with a virtual timestamp that
increases every checkpointing execution.

3⃝ To update graphical representation, the engine first ob-
tains the cursor position from the editor and then identifies
the nearest checkpoint to the cursor position. It then calcu-
lates a range of virtual timestamps which corresponds to
the current visualization context. Finally, it selects the object
graph that is recorded at the nearest checkpoint within the
calculated timestamp range.

6https://github.com/prg-titech/Kanon (source code), https://prg-titech.
github.io/Kanon/ (executable in web browsers)

76

https://github.com/prg-titech/Kanon
https://prg-titech.github.io/Kanon/
https://prg-titech.github.io/Kanon/

Onward! ’18, November 7–8, 2018, Boston, MA, USA Akio Oka, Hidehiko Masuhara, and Tomoyuki Aotani

a	snapshot
bd

e
c

a
instrumented

code

editor(Ace)

snapshots	of
graph	structure
during	execution

cursor
position

only	when	the	program	is	edited

when	the	program	is	edited
or	when	the	cursor	is	moved

① instrument
checkpoints

② execute

③ select	a	snapshot

④make	layouts

initial	layout

b

a

c d

e
structure	aware	
layout

b

a

e c d
⑤ smoothly
transit
(animation)

displayed	information

Figure 5. Overview of the implementation.

4⃝ The engine computes the initial layout of the nodes of
the objects in the object graph, and draws the graph. The
layout is computed by using the currently shown layout (for
an older object graph) in combination with a physics-based
graph layout algorithm. First, it determines the set of the
nodes in the new object graph that are included in the old
object graph (explained in Section 4.3). It pins those nodes
down to the same geometric locations as in the layout cur-
rently shown. Second, it runs a physics-based graph layout
algorithm so that the newly created nodes will be placed
aesthetically-pleasing positions. We use the vis.js visualiza-
tion library [B.V., 2018] both for calculating the layout as
well as for drawing the resulted layout.

5⃝ Finally, the engine computes the structure-aware layout
and smoothly moves the visualized graph from the initial
layout to the new one. The current algorithm simply recog-
nizes a list or binary-tree structure based on field names, and
then places the nodes of the structure on a horizontal line or
a tree shape.

4.2 Synchronizing Visualization Context with
Cursor

Kanon equips two view modes for visualization of data struc-
tures which are changed as execution progresses. Here we
explain which object structure is selected in these two view
modes as a graph displayed in Kanon.

In the snapshot view mode, Kanon displays an object struc-
ture stored at the closest checkpoint before the current cursor
position. Because the selected checkpoint might be executed
multiple times, the user can specify a context of the closest
loop or method surrounding the cursor position. In the case

of Figure 6, “the closest checkpoint before the cursor posi-
tion” indicates checkpoint 1⃝ and Kanon selects 1⃝n from the
specified loop count n.

In the case of the summarized view mode, Kanon displays
an object structure stored at the final checkpoint. Addition-
ally, Kanon calculates the difference between the object struc-
tures stored directly before and after the cursor position for
each loop iteration. When the two checkpoints are directly
within the same loop or method, we highlight the difference
in the graph. In the case of Figure 6, we display the object
graph stored at the final checkpoint, namely 3⃝, and high-
light the nodes and links that are different either between
1⃝1 and 2⃝1, and between 1⃝2 and 2⃝2.

4.3 Mental Map Preservation
4.3.1 Motivation
Live programming environments should preserve the mental
map when a program is modified. Here, the mental map7
means a representation in the developer’s mind who saw a
visual image of a program output. Preservation of the mental
map is achieved, when the system displays a visual image of
an output of a new program, by keeping the differences of
those visual images as small as possible.

For example, adjusting constant parameters in a drawing
program is one of the well-known demonstrations of live pro-
gramming. By immediately executing (i.e., drawing pictures)

7The concept of the mental map preservation was proposed for drawing
algorithms for dynamically changing graphs [Archambault and Purchase,
2012; Lee et al., 2006]. It should not be confused with the concept of navi-
gability, which concerns about the connection between a code fragment
and a visualization element in live programming environment [Burckhardt
et al., 2013]. We discuss the features related to navigability in Section 3.3.

77

Live, Sync, and Mental Map Preserving Visualization for DSP Onward! ’18, November 7–8, 2018, Boston, MA, USA

add (val) {
let n = new Node(val);
// add new node to the tail of this list

}
list.add(1);
list.add(2);

execution	time

… … …

① ②

③

object	graphs	stored
at	each	checkpoint

①1 ②1 ①2 ②2 ③

(a) An example program inserted checkpoints.

add (val) {
let n = new Node(val);
// add new node to the tail of this list

}
list.add(1);
list.add(2);

execution	time

… … …

① ②

③

object	graphs	stored
at	each	checkpoint

①1 ②1 ①2 ②2 ③

(b) Object graphs stored at each checkpoint.

Figure 6. Which checkpoint is chosen?

a modified program, the programmer can observe the effect
of changes as animation. Some environments provide spe-
cial mechanisms like slider bars for continuously modifying
constant values [Khan Academy, 2018].
In Kanon, the mental map preservation means keeping

the differences of the graph layouts as small as possible,
when it draws a modified object graph. This property is
known to be important in the studies of dynamic graph
drawing [Archambault and Purchase, 2012; Lee et al., 2006]
because the human who saw a graph would need a lot of
time to grasp the structure of the graph.

4.3.2 Problem of a Naïve Implementation
It is not a trivial task for Kanon to preserve of the mental
map. Assume that a programmer is writing a function make
that creates a binary tree. Figure 7(a) shows an incomplete
function definition that merely creates right children of the
tree, which effectively creates a linked-list. The programmer
moves the cursor at line 9 in order to insert a piece of code,
and sets the visualization context to the second call to make,
where Figure 7(b) is the object graph at this moment. Note
that the programmer is thinking about a Node object referenced
by a next field of the root node, whose visual representation is
at just right of the root node.
Now the programmer inserts a statement “node.left =

make(n-1);” to line 9, which lets the program create a binary
tree. The questions are:Where should the nodes of the binary
tree be placed? Where should the visualization context be
set?

If there were a naïve algorithm that places the nodes cre-
ated by the modified program based on the order of object
creation, its visualization would be like Figure 7(c). The Node
object (linked with next from the root) the programmer was
thinking about is now located at a upper-right position from
the root (the dashed oval in the figure). At the position the
programmer was focused on, there is a Node object referenced
by the left field of the root node because it is created by the
second execution of line 8. Another problem is that a context

that differs from the context they were focusing on is speci-
fied. They must expect the context of function call of line 10
during an execution of function call of line 14 as a context of
the snapshot view mode. However, a specified context after
the insertion differs from the expected context because an
addition of several functions calls by the insertion changes
the focused context of function call from second execution
to ninth execution.

4.3.3 Context-Sensitive Identification for Mental
Map Preservation

When a program ismodified, Kanon visualizes the new object
graph and maintains the context (in the snapshot viewmode)
so as to preserve the mental map. Here we first explain the
requirements for this feature and then describe the proposed
mechanism.

Since Kanon executes the modified program under a fresh
environment, it needs to identify (1) a visualization context
that corresponds to the one previously displayed, and (2)
mapping between objects created in the execution of the
modified program and those created in the previous program.
in Figure 7, this means (1) identifying one of seven executions
of line 8 that corresponds to the second execution in the
previous program, and (2) identifying three of seven Node
objects that correspond to the ones created in the execution
of the previous program.
We propose a novel technique, called calling-context sen-

sitive identification, for preserving mental map of object
graphs8. The technique gives a calling-context based iden-
tifier, called context-sensitive ID, to each function call, and
records each object graph by associating the context-sensitive
IDs.When it executes a modified program, it selects an object
graph matching the context-sensitive ID, and draws nodes

8The use of calling-contexts per se is not a novel idea as there are systems
that use calling-context for identifying corresponding execution points
before and after program modification. The novelty of the paper is the use
of calling-context for visualization of object graphs. We discuss the existing
systems in Section 6.

78

Onward! ’18, November 7–8, 2018, Boston, MA, USA Akio Oka, Hidehiko Masuhara, and Tomoyuki Aotani

1 class Node {...}
4
5 function make(n) {
6 if (n === 0)
7 return null;
8 let node = new Node();
9
10 node.next = make(n-1);
11 return node;
12 }
13
14 let tree = make(3);

node

left

no
de

insert

node.left = make(n-1);

2

Node Node

Node Node Node

node
Node Node

Node

NodeNode

Node

left
left

left

next

(a) An incomplete program that creates a binary tree.

1 class Node {...}
4
5 function make(n) {
6 if (n === 0)
7 return null;
8 let node = new Node();
9
10 node.next = make(n-1);
11 return node;
12 }
13
14 let tree = make(3);

node

left

no
de

insert

node.left = make(n-1);

2

Node Node

Node Node Node
node

Node Node

Node

NodeNode

Node

left
left

left

next

(b) The visualization before insertion. The dashed node
is the programmer’s focus.

1 class Node {...}
4
5 function make(n) {
6 if (n === 0)
7 return null;
8 let node = new Node();
9
10 node.next = make(n-1);
11 return node;
12 }
13
14 let tree = make(3);

node

left

no
de

insert

node.left = make(n-1);

2

Node Node

Node Node Node

node

Node Node

Node

NodeNode

Node

left
left

left

next

(c) A naïve visualization after insertion. The position
of the dashed node (the next of the root) is moved.

1 class Node {...}
4
5 function make(n) {
6 if (n === 0)
7 return null;
8 let node = new Node();
9
10 node.next = make(n-1);
11 return node;
12 }
13
14 let tree = make(3);

node

left

no
de

insert

node.left = make(n-1);

2

Node Node

Node Node Node

node

Node Node

Node

NodeNode

Node

left
left

left

next

(d) A mental-map-preserved visualization. The dashed
node stays at the original position.

Figure 7. Naïve and mental-map-preserved visualizations after code editing. (For the ease of understanding, the nodes that
are created beyond the current visualization context are also drawn.)

so that the objects with the same context-sensitive ID will
be placed at the same positions.
Figure 8 shows two call graphs that explain the calling-

context sensitive identification. Those call graphs (note that
they are not Kanon’s visualization) respectively represent
the executions of the programs before and after the insertion.
A node of the call graphs is either a function call or object
creation, attributed with a label (e.g., call1 and new1) that
denotes a source code location. A context-sensitive ID of a
call graph node is a list of the labels on the path from the
root node.

Kanon uses the context-sensitive IDs, when a program text
is modified, to identify the “same” visualization context and
to identify the “same” object. In Figure 8, when the current
context was the second call to make in the older program,

the context-sensitive ID of the context is "call2-call3". In
the call graph of the modified program, the context that has
the same context-sensitive ID is the right child of make(3).
This means that the executions triggered by the newly added
line are successfully skipped even in the modified program.
In addition, it uses the context-sensitive ID of the new

expression as the object ID. In Figure 8, the secondly created
Node object in the older program has "call2-call1-new1".
When the program is modified, the object that has the same
ID in the new call graph will be placed at the same position.

Our proposal can be summarized in this way:

• We give a unique label to each program location (pre-
cisely, we only maintain labels for new expressions,
object literal, method call expressions, and loops.) We

79

Live, Sync, and Mental Map Preserving Visualization for DSP Onward! ’18, November 7–8, 2018, Boston, MA, USA

main

make(3)

make(2)

make(1)

make(0)

make(1) make(1)

make(2) make(2)

main

make(3)
call1

call1

call2 call2

call1

call1

call1call3

call3

8 let node = new Node();
9
10 node.next = make(n-1);
�
14 let tree = make(3);

node.left = make(n-1);

call1

call2

call3

new1

edit

the programmer
is focusing
before editing

selected when
naive implementation

selected by the
calling-context
sensitive identification

new
Node()

new1

new
Node()

new1

new
Node()

new1

new
Node()

new1

new
Node()

new1

Figure 8. An example of labeling and simplified call trees before and after editing on Figure 7. A new expression is also
regarded as a node of the call tree.

preserve the labels by tracking the modification when
the programmer edits the program text.
• We give a context-sensitive ID to each execution of an
expression such as function call and new expression. In
order to determine each object’s context-sensitive ID,
a stack (each frame of which is configured by either
method call label, new expression label or a pair of
loop label and loop count) manages the context during
execution.
• When new expression is executed, we use the stack
information for context-sensitive ID as the ID of the
created object.
• When we draw an object graph obtained from an exe-
cution of a modified program, we lay it out so that each
object will be placed at the same position of the ob-
ject with the same ID in the execution of the previous
program.
• When a program modification changes the call tree,
we change the context for snapshot view mode so that
the context after the change is the same as the context-
sensitive ID before editing.

Intuitively, we consider two objects to be the same when
they are created by the same expression, and the execution
of the new expression has the same calling context and the
same loop count.

Kanon manages a table of program locations for associat-
ing expressions with labels, which is robust for most type of
editing operations, but has some limitations. When Kanon
finds an expression in a program, it gives a new label and
records the beginning and ending locations. Upon an editing
operation like insertion or deletion of characters, it shifts
those locations if necessary. Therefore, it can identify the
“same” expressions before and after editing in most cases.
There are some operations, such as cut-and-paste and un-
doing, that the current implementation cannot keep track

of, but we believe some of those operations can also be sup-
ported by bookkeeping the labels for the text inside the cut-
and undo-buffers in the editor.

4.4 Automatic Layout Engine
The current automatic layout engine implemented in Kanon
specifies special layout behavior for some structures. Cur-
rently, these include binary trees and linked lists. In the case
of binary trees, the nodes are specially arranged only if each
element is constructed by a Node class and the left element
and the right element are represented by left and right
properties. In the case of linked lists, the nodes are specially
arranged only if each element is constructed by a Node class
and the next element is represented by the next property.

In order to implement the above, it is necessary to identify
the specified structures from the set of objects. First, in order
to find the root of the tree or the head of the list, we must
check both sides of each edge. If the root of the tree or the
head of the list is found, we then calculate the position of
each element. In the case of binary trees, we position each
element so that the distance between elements at the deepest
level is kept above a threshold. We then set the horizontal
position of the parent element to the center of the horizontal
position of its child elements. In the case of linked lists, we
position each element so that the distance between elements
is kept above a threshold. At this time, we adjust the entire
graph to preserve the center of gravity of the elements.
However, this layout engine still needs more improve-

ments. The layout engine should recognize arbitrary data
structures other than lists and trees. It should also provide a
mechanism to shrink or fold unimportant nodes so that the
programmer can see a large data structure within a limited
drawing area. Supporting customized visualization, where
the programmer can control the presentations of data struc-
tures, is also important.

80

Onward! ’18, November 7–8, 2018, Boston, MA, USA Akio Oka, Hidehiko Masuhara, and Tomoyuki Aotani

4.5 Steadiness
Following the lessons from Hancock and Victor [Hancock,
2003; Victor, 2012], we implemented several mechanisms to
stabilize the visualization in Kanon, though there are still
many challenges. We here explain those mechanisms and
then present the remaining challenges.

Similar to many live programming environment, it keeps
the previous visualization when the program has a syntax
error. This prevents the visualization flicks while editing the
program text.

When the execution of a program causes a runtime error
(e.g., null pointer dereferencing), it either updates the visual-
ization if the error happens after the previous visualization
context, or keeps the previous visualization with translucent
colors9. The former case is useful to see the immediate ef-
fect of the code fragment being edited, regardless the future
errors. Surprisingly, some live programming environment,
such as Khan Academy’s Live Editor, does not have this
feature. For the latter case, an alternative is not hide the vi-
sualization. We did not do so because in Javascript programs
often cause runtime errors while they are being edited. For
example, when we are typing a long variable name, the pro-
gram causes an unbound variable error at runtime until we
finish typing. Making the visualization translucent in the
latter case is important to alert the programmer of the error;
otherwise the programmer sometimes misinterpret that the
program runs up to the previous visualization context yet
no changes were made to the objects.
When it updates the visualization with a new snapshot

(either selected by cursor movement or by editing the text),
it suppresses re-drawing the object graph as long as the
graph is topologically equivalent to the shown one. This is a
workaround to avoid the inconvenient feature of underlying
visualization library, namely vis.js, that randomly changes
the geometric positions of edges every time it draws the
same graph.

5 Initial Evaluation
As an initial evaluation, we carried out a user experiment
with 13 participants. The purpose of this experiment is to
collect programmers’ opinions about the current implemen-
tation of Kanon and to clarify future improvements of Kanon.
Due to the limitation of the space, the detailed report on the
experiment is written in Appendix A. This section presents
a summary of notable findings from the experiment.
In the experiment, each participant is asked to solve two

tasks using Kanon and using a simple textual live program-
ming environment (TLPE) after taking a short tutorial ses-
sion. The first task we gave to the participants, is to define
a rotating method for a binary tree. The second task is to
create a reverse method for a doubly-linked tree. We then
9This feature was not available when we carried out the user experiment in
Section 5.

had an interview session to collect the overall impression
and the opinions about Kanon’s features.

From the participants’ opinions, we found the majority of
them were positive about Kanon. We also found that some
participants drew object diagrams by hand with TLPE, which
would indicate necessity of this kind of visualization envi-
ronment.
As for the time to complete tasks, we could not observe

clear difference between two environments. For a simpler
task, TLPE seems to be slightly better. Though the time to
complete tasks is not our primary interest of the evaluation,
we would think that Kanon is as usable as TLPE.

We found that the participants make and handle errors
differently with Kanon and TLPE. The first difference is that
the time to resolve runtime errors. With TLPE, the partici-
pants spent longer time with erroneous states for a task that
needs to define a loop. Though we do not have clear expla-
nation for this, one possible reason would be that Kanon
helped finding an incorrect state that will cause an error in
the subsequent execution.
The second difference is that, with Kanon, several par-

ticipants took an inappropriate plan to solve the problem.
Since the task is to reverse a doubly-linked list, the func-
tion must have a loop scanning over the nodes. A correct
plan is to let each iteration of the loop modify the forward
and backward references of a focused node. However, some
participants with Kanon planned to modify the forward ref-
erence of the focused node and the backward reference of
the next node in one iteration (which was at least not easy
to maintain references consistently across iterations, and all
of them eventually gave up the plan). Though we cannot
investigate the cause of this mistake, we conjecture that the
visual representation might mislead the programmer at the
planning of a solution. With Kanon, the programmer starts
defining reverse with visual representation, where the first
and the second nodes reference each other. With this visual
clue, one might plan to modify those two references.10
The third difference is that, with Kanon, several partic-

ipants took, when using Kanon, took more time to notice
occurrence of errors. Though this would be mainly because
of the way of presenting an error of the current implementa-
tion, this would also be due to the policy of our visualization,
which keeps showing a previous visual image when an er-
ror occurs. This policy is based on the fact that, when the
programmer is editing a program, it transiently becomes in-
correct either syntactically or semantically. By preserving a
previous image, the next image from a successfully executed
run is smoothly connected with an animation. At the same

10The current implementation draws nothing for a field with null. Hence
the first node has only one outgoing reference. This could also be the cause
of the mistake.

81

Live, Sync, and Mental Map Preserving Visualization for DSP Onward! ’18, November 7–8, 2018, Boston, MA, USA

time, by seeing the previous image, the participants some-
time misunderstood as the program was executed without
errors but the object graph was not changed.

6 Related Work
Among the programming environments with data visualiza-
tion, Python Tutor [Guo, 2013] has a ‘live’ feature. When a
program is edited, it automatically re-executes the program
and updates the visual representations. However, there are
several limitations. (1) There is no synchronization mecha-
nism that automatically selects a program state at the cursor
position for visualization. Hence the programmer needs to
manually seek the point of visualization by using the forward
and backward buttons. (2) When a program is edited, the exe-
cution point for visualization can be shifted to an unexpected
point. As far as the authors observed, when the system is
showing at the N -th step a program, it will show, when the
program is changed, at N -th step of the modified program.
Therefore, a change to the code that has been executed until
the N -th step can lead the system to an unexpected point
of execution. (3) It does not have a mental map preserva-
tion mechanism when a program is edited. Instead, when a
program is edited, it redraws a newly obtain object graph
without using past information.

The Morphic environment in Self [Ungar and Smith, 1987]
lively integrates the code editor and the object inspector,
which displays objects as a node-link diagram. The selection
of visualized objects is manual. It always displays the current
state of objects; i.e., it is not possible to show the paste state
in an execution without resorting to a breakpoint debugger.

The calling-context sensitive identification technique (Sec-
tion 4.3) can be used for problems that need to align execu-
tions of two versions of a program. For example, example-
centric programming [Edwards, 2004] uses a similar tech-
nique to identify a context of a test case that is created for
an older version of a program.

Zimmermann and Zeller propose to display a visual object
graph in a debugger [Zimmermann and Zeller, 2002]. They
also propose to highlight the difference between two object
graphs. Their approach calculates a correspondence graph to
determine the same objects.
Back-in-time debuggers [Lewis, 2003] can show a state

of a program at an arbitrary time in the execution. Similar
to Kanon, they record program execution through program
instrumentation. However, research in debuggers mainly
focuses on recording more detailed information than mere
object graphs. It is not clear if those techniques can be di-
rectly applied to live programming environments, where
programs are frequently modified.

Kanon assumes that the programmer writes a program in
a test-driven development [Beck, 2003] style. Such a style can
be commonly found in live programming [Imai et al., 2015;

Victor, 2012] as well as in example-centric programming
[Edwards, 2004].

7 Conclusion
We propose Kanon, a live data structure programming envi-
ronment. The notable feature is the mechanism that helps
to connect the visual representation and the program code.
The snapshot view mode shows the object graph when the
program execution is reached at the cursor position, which
should be relevant to the programmer’s mental state. The
summarized view mode shows the effect of an expression
under the cursor throughout the execution. This helps the
programmer to check whether the current expression be-
haves as expected. The jump-to-construction mechanism
helps to connect a graphical element to an element in a
program. We proposed the calling-context sensitive object
identification technique to preserve mental map of represen-
tation between the graphs generated by modified programs.
Finally, we carried out qualitative user experiment and it
was found that Kanon could help programmer imagine data
structures and most of the participants have positive impres-
sion. However, Kanon still has some improvements, further
improvements will make data structure programming easier
and more enjoyable.
Future work includes the development of a better object

graph layout algorithm that is closer to the programmer’s
expectations, improvement of feedback performance, a selec-
tive visualization mechanism for larger object graphs, more
efficient display and selection method for the calling-context,
and introduction of direct manipulation mechanism.

A Initial Evaluation
As an initial evaluation, we carried out a user experiment11
in order to collect programmers’ opinions about the cur-
rent implementation of Kanon. Since we have not yet imple-
mented many practical features such as code completion, we
do not believe that we can do the meaningful quantitative
evaluation. (In the experiment, we measured time to task
completion, which is not a primary purpose of the experi-
ment.) Nevertheless, as we will see in our experiment, we
observed interesting programming behaviors with Kanon,
positive opinions on the Kanon’s features, and several future
improvements.

A.1 Design of the Experiment
In our experiment, we let the participants use Kanon to solve
several programming tasks in order to observe their usage
of the Kanon’s features, and to gather their opinions. In
addition, we designed the experiment with the following
questions in our mind.

11This experiment was carried out in Japanese all the time. In this paper,
the participants’ opinions have been translated into English.

82

Onward! ’18, November 7–8, 2018, Boston, MA, USA Akio Oka, Hidehiko Masuhara, and Tomoyuki Aotani

• Do graphical outputs make difference in programmer’s
behavior from textual outputs?
We build a textual live programming environment
(called TLPE hereafter) as a counterpart of Kanon and
let the participants use both environments.
• Does the amount of programming experience affect the
usage of Kanon?
Our experiment had 13 participants consisting of 9 stu-
dents (at the senior undergraduate and graduate levels)
and 4 computer scientists in a corporate research lab-
oratory. Note that all the students and one scientist
have heard about Kanon before the experiment, but
none of them have ever used it.
• Does difficulty of programming tasks affect the usability
of Kanon?
We prepared two tasks with different difficulties and
let the participants solve them. The simple one merely
requires to modify a few object references. The difficult
one requires to traverse references while modifying
the references themselves.

A.2 Experimental Procedure
We carried out the experiment for each participant one
by one. The participant took the four phases, namely tu-
torial, practice, main and interview, which amount to ap-
proximately one and a half hours in total. We recorded the
participant’s activity by recording the computer’s screen and
participants’ voice. Throughout the experiment, we asked
the participants to speak out their thoughts, for example
“I’m confused now”, “Why is the figure displayed like this?”
and “Oh, this program includes an error.” What the partici-
pants are thinking tells us where they are paying attention
to during programming.

A.2.1 Tutorial
In the tutorial phase, the participant is asked to read a 67-
pages document that describes the usage of Kanon and the
format of the tasks. In this experiment, all the tasks are to de-
fine a method for a common data structure. The participants
were given the definition of the data structure, a definition of
the method without an empty body, and a series of method
call expressions that serve as test cases, which cover all the
situations. The document uses the scene in which a program-
mer defines the LinkedList.add method as an example. At
the same time that the participants read the document, they
are allowed to use Kanon to grasp how Kanon works.

A.2.2 Practice Phase
In the practice phase, the participant is asked to define a
LinkedList.insert method as the exercise simple task us-
ing Kanon in order to get used to Kanon and the format of
tasks.The excercise task took up to approximately 15 min-
utes. Throughout this phase, we allowed the participants to
question anything. After they have completed the task or

time is over, we commented the feedback and the answer to
the task to them.

A.2.3 Main Phase
In the main phase, the participant tasked to solve two tasks,
namely rotate and reverse, in this order. We grouped the
participants into two, and assigned Kanon or TLPE to those
tasks according to Table 2. Each task was given a 20 minutes
time limit.

The rotate and reverse tasks are to define a method that
rotates a root node of binary tree, and a method that re-
verses a doubly-linked list, respectively. The former task can
be accomplished by merely modifying a few references in
the given tree nodes. The latter task is rather difficult, as
it requires to follow links between nodes while modifying
those links.

TLPE is a simple live programming environment as shown
in Figure 9. It provides a customized println function that
prints out data on the right-hand side of the screen. It is
live in the sense that the output is immediately updated
whenever the code on the left-hand side changes, which is
similar to Khan Academy’s Live Editor [Resig, 2012] and
YinYang [McDirmid, 2013]. Unlike the built-in print func-
tion in JavaScript, the println function displays internal
elements in a nested data structures. It also supports cyclic
structures (by showing #n as in the figure).

A.2.4 Interview
In the interview phase, one of the authors asked the partici-
pants several questions. The first question is about difficulties
throughout the experiment. The role of this question is to
clearly remind the participants of their thoughts during the
experiment. Then, for each feature of Kanon, we asked the
participants their opinion. We encouraged them to answer,
not just “good” or “bad”, but rather concrete opinions on spe-
cific parts of the feature, and possible improvements. Finally,
we asked an overall impression of Kanon. The participants
may answer the impression of Kanon itself, or in comparison
with TLPE.

A.3 Results
Table 1 and Table 2 show a quantitative result of this experi-
ment such as time taken to complete the tasks and a count of
using features of Kanon. The qualitative opinions received
in the interview are described below.

A.4 Opinions about Kanon’s Features
About the snapshot view, there are several positive opin-
ions like:

• “The feature was very helpful for changing references”,
and

83

Live, Sync, and Mental Map Preserving Visualization for DSP Onward! ’18, November 7–8, 2018, Boston, MA, USA

Figure 9. Textual Live Programming Environment (TLPE).

Table 1. Average number of times of uses of each feature. (“Snap:Summ” means the proportion of each in the overall task. The
column of “Context” is constructed the number of (correct usage : incorrect usage). Each column of “JtoC” and “print” is the
number of using jump to construction and print statement, respectively.)

(a) task1

Snap : Summ Context print JtoC
80.6% : 19.4% 2.57 : 3.57 2.17 0.29

(b) task2

Snap : Summ Context print JtoC
96.9% : 3.1% 7.5 : 3.17 6.29 0.17

Table 2. The participant information.

Group A Group B total min/ave/max exp #js
task1 (rotate) Kanon TLPE

task2 (reverse) TLPE Kanon
#Students 5 4 9 2 / 4.4 / 10 2

#Researchers 2 2 4 14 / 17 / 25 1
#total 7 6 13 2 / 8.3 / 25 3

min/ave/max exp 2 / 7.3 / 14 3 / 9.5 / 25 2 / 8.3 / 25
#js 3 0 3

task1

task2

 8 10 12 14 16 18 20

time [minutes]

Figure 10. Time taken to solve the tasks.

task1

task2

 0 2 4 6 8 10 12 14 16

time [minutes]

Student Kanon
Researcher Kanon

Student TLPE
Researcher TLPE

Figure 11. Error time.

• “The feature is reasonable because we often want to see
the states (of the program) around the code fragment
being written.”

Visualization of variable references (e.g., the arrows la-
beled this and temp in Figure 3) are also positively taken
by most participants, but also had suggestions like:
• “I also wanted to see arrows for function arguments12

when I was writing a recursive function,” and
• “It looks strange that the arrows for variables lacks orig-
inating ovals.”

The summarized view was not used by the most partic-
ipants. One participant gave the reason:
• “I only needed the snapshot view mode”.

However, there are opinions that suggest its potential like:
• “The visualization with orange and green arrows was
very easy to recognize,” and “I used it to show the final

12The current implementation of the snapshot view merely displays locally
declared variables and this, but not function arguments.

84

Onward! ’18, November 7–8, 2018, Boston, MA, USA Akio Oka, Hidehiko Masuhara, and Tomoyuki Aotani

state of the program, and completed the task by imagin-
ing the other states,” (This participant mainly used the
summarized view mode.)
• “It might be useful when it is hard to understand an
overview of a program”, and
• “It might be useful for tasks of fixing bugs.”

A few participants used the jump-to-construction fea-
ture but they thought that the feature was not so helpful.
The opinions are:
• “I had no chance to use it,”
• “It might be useful for larger programs because it would
be difficult to understand the overview,” and
• “Construction sites are not so relevant when we modify
fields in existing objects.”

The automatic layout engine had positive comments
like:
• “The visualization was similar to what I imagined,” and
• “The figure after the completion of the task was cleanly
arranged without moving the node ourselves.”

At the same time, it also had suggestions like:
• “Though the final layout looks good, it does not in the
middle of programming,” and
• “I wanted to undo the (automatic) layout as it became
messy.”

A.5 Overall Impression
Overall, the participants gave positive comments like:
• “It is amazing. I want to use it,”
• “With visualization, it was easy to program since I often
draw pictures when I reason about data structures,” and
• “I felt it is wonderful when I was solving a task with
TLPE.”

and also several suggestions for future improvements like:
• “It was helpful for those tasks, but not sure if it will be
so for other situations and for large programs,”
• “When the object graph disappears, I wanted to know
the reason13,” and
• “After I thought about (the strategy) based on the visu-
alization, I had to think again based on the program. I
wish I could generate code fragments by directly manip-
ulating the object graph. ”

A.6 Discussion
This section discusses finding in the results of the experiment
as well as the observations of the participants’ behavior by
the authors.

13In the version we used for the experiment, Kanon will erase the object
graph when a runtime error occurs. The error message was actually dis-
played bottom of the screen.

A.6.1 Kanon vs. TLPE
The experiment did not give a clear answer whether the
graphical representation as opposed to the textual represen-
tation is useful. With respect to the task completion times
on Figure 10, TLPE is faster than Kanon for the rotate task,
or is as fast as Kanon for the reverse task. (Again, due to
the limitations of the current implementation, we do not
consider the task completion times are the primary factor of
the experiment. Also, the number of participants is not large
enough to evaluate statistical significance of those figures.)
From the closer observations, we had the following find-

ings and insights.

• Roughly the half of the participantsmisused the Kanon’s
features related to changing specified context. As the
“Context” column on Table 1 shows, selection of the
execution context seems to be difficult. This suggests
that Kanon needs more improvements on its GUI.
• Some participants, when they were using TLPE, drew
object graphs on a paper. This suggests usefulness of
graphical representation regardless the environment
used.
• The styles of problem solving are different by the par-
ticipants. Some carefully thought out algorithms be-
fore writing code, and some others carried out the trial-
and-error style programming. Those difference in the
styles and the difference programming environment
could affect each other, which should be investigated
in future.
• We observed interesting difference in the participants’
behaviors when errors occurred. First, from the obser-
vations of the behaviors, we found that many partici-
pants took, when using Kanon, longer time to notice
occurrence of errors. This would be partly because
the current design of the environment that reports er-
rors as a plain text at the bottom of the screen, which
hardly attract the programmer’s attention. However,
this would also due to the policy of our visualization,
which keeps showing a previous visual image when an
error occurs. This policy is based on the fact that, when
the programmer is editing a program, it transiently
becomes incorrect either syntactically or semantically.
By preserving a previous image, the next image from
a successfully executed run is smoothly connected
with an animation. At the same time, by seeing the
previous image, the participants sometime misunder-
stood as the program was executed without errors but
the object graph was not changed. With TLPE, the
programmers can immediately notice runtime errors
because an error will prevent execution of subsequent
println calls, which results in disappearance of the
output.
Second, for the reverse task, the participants with
TLPE spent longer time with erroneous states. Though

85

Live, Sync, and Mental Map Preserving Visualization for DSP Onward! ’18, November 7–8, 2018, Boston, MA, USA

we do not have clear explanation for this, one possible
reason would be that Kanon helped finding an incor-
rect state that will cause an error in the subsequent
execution.
• Even though we do not observe clear difference in the
task completion times, the participants opinions favor
Kanon as reported in Section A.5. We would like to
consider the reasons why they thought like that.

A.6.2 Students vs. Researchers
With respect to the task completion times, we did not observe
clear differences between inexperienced and experienced
participants (i.e., the students and the research laboratory
scientists, respectively). This might be because the students
took the courses on programming and data structures more
recently.
We noticed difference a difference between students and

researchers in their programming styles.While the researchers
tried to add more test cases on top of the provided cases, the
students declare completion by only considering the pro-
vided test cases.

A.6.3 Difficulty of the Tasks
Difficulty of tasks and visualization can affect the types of
mistakes that the programmer makes. While the types of
the mistakes with Kanon and TLPE are not different for the
easier task (rotate), we observed a unique kind of mistakes
with Kanon for the more difficult task (reverse).

For the reverse task, several participants with Kanon took
an inappropriate plan to solve the problem. Since the task is
to reverse a doubly-linked list, the function must have a loop
scanning over the nodes. A common and correct plan is to let
each iteration of the loop modify the forward and backward
references of a focused node. However, some participants
with Kanon planned to modify the forward reference of the
focused node and the backward reference of the next node
in one iteration (which was at least not easy to maintain
references consistently across iterations, and all of them
eventually gave up the plan).
Though we cannot investigate the cause of this mistake,

we conjecture that the visual representation might mislead
the programmer at the planning of a solution. With Kanon,
the programmer starts defining reverse with visual repre-
sentation, where the first and the second nodes reference
each other. With this visual clue, one might plan to modify
those two references.14
In general, we believe that making a correct plan is cru-

cial for solving difficult programming tasks regardless the

14The current implementation draws nothing for a field with null. Hence
the first node has only one outgoing reference. This could also be the cause
of the mistake.

programming environment used. With a new type of pro-
gramming environment, we would probably need more expe-
rience to develop good recipes for typical types of problems.

A.6.4 Is Kanon Helpful?
In the experiment, we observed rare usage of some features,
namely the summarized view mode and jump-to-construction.
We presume that this is due to the type of the tasks used in
our experiment, which are to define a new function body. We
design the summarized view mode and jump-to-construction
for the situations of modifying a program and of understand-
ing program behavior, respectively. We might have observed
more usage with those features if the experiment included
such tasks.

As mentioned in Section A.6.1, notifying the programmer
an error as early as possible is crucial. We found that the
problem is not trivial. In a live programming environment, a
program transiently becomes an erroneous state when the
programmer edits a code fragment. The environment should
also delay notification so as to smoothly connect visual im-
ages between the states without errors. The problem is even
more difficult when a program correctly runs around the
code being edited, but causes an error at the later execution
point.

Acknowledgments
The authors would like to thank Tomoki Imai for his advice
on the implementation techniques, Jun Kato for his valuable
comments, and Sean McDirmid for shepherding the paper
through the review process. We also thank all the user ex-
periment participants. This work was supported by JSPS
KAKENHI Grant Numbers 26330078 and 18H03219.

References
Samuel Aaron and Alan F. Blackwell. 2013. From Sonic Pi to Overtone:

Creative Musical Experiences with Domain-specific and Functional Lan-
guages. In Proceedings of the First ACM SIGPLAN Workshop on Functional
Art, Music, Modeling & Design (FARM ’13). ACM, New York, NY, USA,
35–46.

Apple Computer. 2016. Swift Playgrounds. http://www.apple.com/swift/
playgrounds/. Accessed February 2017.

D. Archambault andH. C. Purchase. 2012. TheMentalMap andMemorability
in Dynamic Graphs. In 2012 IEEE Pacific Visualization Symposium. 89–96.

Kent Beck. 2003. Test-Driven Development: by Example. Addison-Wesley
Professional.

M. H. Brown. 1991. Zeus: a system for algorithm animation and multi-view
editing. In Proceedings 1991 IEEE Workshop on Visual Languages. 4–9.

Marc H. Brown and Robert Sedgewick. 1984. A System for Algorithm
Animation. In Proceedings of the 11th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’84). ACM, New York,
NY, USA, 177–186.

Sebastian Burckhardt, Manuel Fahndrich, Peli de Halleux, Sean McDirmid,
Michal Moskal, Nikolai Tillmann, and Jun Kato. 2013. It’s Alive! Con-
tinuous Feedback in UI Programming. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI ’13). ACM, New York, NY, USA, 95–104.

86

http://www.apple.com/swift/playgrounds/
http://www.apple.com/swift/playgrounds/

Onward! ’18, November 7–8, 2018, Boston, MA, USA Akio Oka, Hidehiko Masuhara, and Tomoyuki Aotani

Almende B.V. 2018. vis.js - A dynamic, browser based visualization library.
Retrieved April 23, 2018 from http://visjs.org/

Jonathan Edwards. 2004. Example Centric Programming. In Proceedings
of Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’04), Doug Schmidt (Ed.). ACM, New York, NY, USA, 84–91.

Chris Granger. 2012. Light Table. http://www.chris-granger.com/lighttable/.
Accessed February 2017.

Philip J Guo. 2013. Online Python Tutor: Embeddable Web-based Program
Visualization for CS Education. In Proceeding of the 44th ACM Technical
Symposium on Computer Science Education. ACM, 579–584.

Christopher Michael Hancock. 2003. Real-time Programming and the Big
Ideas of Computational Literacy. Ph.D. Dissertation. Massachusetts Insti-
tute of Technology, Cambridge, MA, USA.

T. Dean Hendrix, James H. Cross, II, and Larry A. Barowski. 2004. An
Extensible Framework for Providing Dynamic Data Structure Visualiza-
tions in a Lightweight IDE. In Proceedings of the 35th SIGCSE Technical
Symposium on Computer Science Education (SIGCSE ’04). ACM, New York,
NY, USA, 387–391.

Ariya Hidayat. 2018. Esprima. Retrieved April 23, 2018 from http://esprima.
org

Tomoki Imai, Hidehiko Masuhara, and Tomoyuki Aotani. 2015. Making Live
Programming Practical by Bridging the Gap Between Trial-and-error
Development and Unit Testing. In Companion Proceedings of the 2015
ACM SIGPLAN International Conference on Systems, Programming, Lan-
guages and Applications: Software for Humanity (2015-10-25), Jonathan
Aldrich (Ed.). ACM, ACM, 11–12.

Fabian Jakobs. 2018. Ace - The High Performance Code Editor for the Web.
Retrieved April 23, 2018 from https://ace.c9.io

Saketh Kasibatla and Alessandro Warth. 2018. Seymour: Live Programming
for the Classroom. Retrieved June 17, 2018 from https://harc.github.io/
seymour-live2017/

Jun Kato, Sean McDirmid, and Xiang Cao. 2012. DejaVu: Integrated Support
for Developing Interactive Camera-based Programs. In Proceedings of the
25th annual ACM symposium on User Interface Software and Technology
(UIST’12). ACM, 189–196.

Khan Academy. 2018. Intro to JS: Drawing & Animation. https://www.
khanacademy.org/computing/computer-programming/programming.
Accessed February 2017.

Yi-Yi Lee, Chun-Cheng Lin, and Hsu-Chun Yen. 2006. Mental Map Preserv-
ing Graph Drawing Using Simulated Annealing. In Proceedings of the

2006 Asia-Pacific Symposium on Information Visualisation - Volume 60
(APVis ’06). Australian Computer Society, Inc., Darlinghurst, Australia,
Australia, 179–188. http://dl.acm.org/citation.cfm?id=1151903.1151930

Bil Lewis. 2003. Debugging Backwards in Time. In Proceedings of the
Fifth International Workshop on Automated Debugging (AADEBUG 2003).
arXiv:cs.SE/0310016 http://arxiv.org/abs/cs.SE/0310016

Henry Lieberman and Christopher Fry. 1995. Bridging the Gulf Between
Code and Behavior in Programming. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’95). ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 480–486.

SeanMcDirmid. 2007. Living it Up with a Live Programming Language. In In
Proceedings of Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software (Onward!). ACM, 623–638.

Sean McDirmid. 2013. Usable Live Programming. In Proceedings of the
2013 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software (Onward! 2013). ACM, New York,
NY, USA, 53–62.

Akio Oka, Hidehiko Masuhara, and Tomoyuki Aotani. 2017a. The Visualiza-
tion of Data Structures and Interactive Features for Live Programming.
In The 113th IPSJ Workshop on Programming.

Akio Oka, Hidehiko Masuhara, Tomoki Imai, and Tomoyuki Aotani. 2017b.
Kanon: Data Structure Programming using Live Programming Environ-
ment. In Proceedings of the 10th JSSST Workshop on Programming and
Programming Languages (PPL 2017).

Akio Oka, Hidehiko Masuhara, Tomoki Imai, and Tomoyuki Aotani. 2017c.
Live Data Structure Programming. In Companion to the First Interna-
tional Conference on the Art, Science and Engineering of Programming
(Programming ’17). ACM, New York, NY, USA, Article 26, 7 pages.

John Resig. 2012. Redefining the Introduction to Computer Science. http:
//ejohn.org/blog/introducing-khan-cs/. Accessed March 2018.

John T Stasko. 1989. TANGO: A Framework and System for Algorithm
Animation. Technical Report. Providence, RI, USA.

David Ungar and Randall B. Smith. 1987. Self: The Power of Simplicity.
In Proceedings of Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA’87) (ACM SIGPLAN Notices), Norman Meyrowitz
(Ed.), Vol. 22(12). ACM, ACM, Orlando, FL, 227–242.

Bret Victor. 2012. Inventing on Principle. Keynote Talk at the Canadian
University Software Engineering Conference (CUSEC).

Thomas Zimmermann and Andreas Zeller. 2002. Visualizing Memory
Graphs. In Software Visualization. Springer, 191–204.

87

http://visjs.org/
http://www.chris-granger.com/lighttable/
http://esprima.org
http://esprima.org
https://ace.c9.io
https://harc.github.io/seymour-live2017/
https://harc.github.io/seymour-live2017/
https://www.khanacademy.org/computing/computer-programming/programming
https://www.khanacademy.org/computing/computer-programming/programming
http://dl.acm.org/citation.cfm?id=1151903.1151930
http://arxiv.org/abs/cs.SE/0310016
http://arxiv.org/abs/cs.SE/0310016
http://ejohn.org/blog/introducing-khan-cs/
http://ejohn.org/blog/introducing-khan-cs/

	Abstract
	1 Introduction
	2 Background
	2.1 Data Structure Programming
	2.2 Live Programming Environments
	2.3 Algorithm Animation

	3 Kanon: A Live Data Structure Programming Environment
	3.1 Design Overview and Assumptions
	3.2 Visualization of Changes and Two View Modes
	3.3 Backward Connection to Code from Graphical View

	4 Implementation
	4.1 Overview
	4.2 Synchronizing Visualization Context with Cursor
	4.3 Mental Map Preservation
	4.4 Automatic Layout Engine
	4.5 Steadiness

	5 Initial Evaluation
	6 Related Work
	7 Conclusion
	A Initial Evaluation
	A.1 Design of the Experiment
	A.2 Experimental Procedure
	A.3 Results
	A.4 Opinions about Kanon's Features
	A.5 Overall Impression
	A.6 Discussion

	Acknowledgments
	References

