
Object-Oriented Concurrent Reective Languages can be

Implemented E�ciently

�

Hidehiko Masuhara Satoshi Matsuoka Takuo Watanabe

z

Akinori Yonezawa

Department of Information Science, The Universtiy of Tokyo

y

Keywords and Phrases:

Object-Based Concurrency, Object Groups, Reection,

Hybrid Group Architecture, Meta-level Compilation

Abstract

Computational reection is bene�cial in concurrent

computing in o�ering a linguisticmechanism for in-

corporating user-speci�c policies. New challenges

are (1) how to implement them, and (2) how to

do so e�ciently. We present e�cient implemen-

tation schemes for object-oriented concurrent re-

ective languages using our language ABCL/R2 as

an example. The schemes include: e�cient lazy

creation of metaobjects/meta-groups, partial com-

pilation of scripts (methods), dynamic progression,

self-rei�cation, and light-weight objects, all appro-

priately integrated so that the user-level semantics

remain consistent with the meta-circular de�nition

so that the full power of reection is retained, while

achieving practical e�ciency. ABCL/R2 exhibits

two orders of magnitude speed improvement over

its predecessor, ABCL/R, and in fact compares fa-

vorably to the ABCL/1 compiler and also C + Sun

LWP, neither supporting reection.

�

To be presented at ACM OOPSLA'92, Vancouver,

Canada, Oct. 1992

y

Physical mail address: 7-3-1 Hongo, Bunkyo-ku, Tokyo

113, Japan. Phone +81-3-3812-2111 ex. 4108. E-mail:

fmasuhara, matsu, yonezawag@is.s.u-tokyo.ac.jp

z

Currently with School of Information Science, Japan

Advanced Institute of Science and Technology, Hokuriku,

Japan. E-mail: takuo@jaist-east.ac.jp.

1 Introduction | Why Reec-

tion and How?

Reection is the process of reasoning about and

acting upon the system itself

1

[16, 10, 25]. Con-

trary to the misconception that `reection' is some

di�cult-to-understand/impractical concept, we be-

lieve it is a practical and general scheme in the

context of OO(Object-Oriented)-systems as a new

methodology in constructing malleable, large-scale

systems such as programming languages[9], operat-

ing systems[22, 21], and window systems[14]. Re-

ection is similar to inheritance in that it o�ers a

mechanism for incorporating user-level policies into

the system; that is, the user is o�ered with a clean

interface with which he can customize his system

according to his requirements. Furthermore, reec-

tion can augment inheritance in OO-languages for

coping with dynamic aspects of the system where

inheritance is less e�ective.

We claim that reection is especially bene�cial in

concurrent systems that require customization ac-

cording to the system organization or application

program characteristics for achieving e�ciency, ro-

1

To expose, or reify its internals, a reective system em-

bodies rei�able data that represents or implements the struc-

tural and computational aspects of itself within itself at the

meta-level. Such data must be dynamically self-accessible

and self-modi�able by the user program. Furthermore, mod-

i�cation by the user must be `reected' to the actual compu-

tational state of the user program | this property is termed

as causal-connection.

1

bustness, etc. In ordinary (non-reective) lan-

guages, those aspects are controlled only in excep-

tional and ad-hoc manners; examples are schedul-

ing, communication, and load-balancing, etc. By

contrast, reective languages expose `concurrent

computations' and allow the programmer to con-

trol the computations with the same uniform in-

terface as manipulating some data structure |

this has been demonstrated in our past work in

OOCR (Object-Oriented Concurrent Reective)

languages, such as ABCL/R and ACT/R[19, 20].

The major challenges of reective languages and

systems have been (1) how to implement it, and

(2) how to do so e�ciently. In order to maintain

the causal-connection, the semantic model of a re-

ective language is usually given with an in�nite

tower of metacircular interpreters. Since it is im-

possible to literally implement the `in�nite' tower,

most implementations `bottom out' at some level

with non-reective version of the language, but this

scheme is ine�cient when the higher levels are in-

terpreted. The novel idea in the initial work of

3-Lisp by Rivi�eres and Smith[7] was to employ a

single interpreter and `shift up' only when reec-

tive procedures are invoked, instead of always per-

forming metacircular interpretations. Since then,

there have been few e�orts on e�cient implemen-

tation, which have been (1) only in the context

of sequential languages, and/or (2) drastically lim-

ited the reective capabilities to simple ones that

could be e�ciently implemented, e.g., message dis-

patch, and/or (3) have only proposed the over-

all idea of how it might be possible, but without

concrete methodologies or actual implementations

[15, 4, 3, 6].

As far as we know, there have been no study

on e�cient implementation of concurrent reec-

tive languages; this is probably due to the dif-

�culty in obtaining the true CCSR of the cur-

rent state computation due to inter-level concur-

rency and the time delays incurred in inter-level

communication[17]. Thus, for example, Rivi�eres-

Smith approach is not entirely applicable, because

it does not account for concurrency, i.e., it assumes

that at any given time only one level is running.

Furthermore, because their scheme is still interpre-

tive, the resulting language will not be able to com-

pete with compiled non-reective languages when

running standard programs. Thus, an alternative

way of e�ciently breaking the meta-circularity in

OOCR languages without sacri�cing the lucidity of

the reection must be devised.

This paper presents an e�cient implementation

scheme of OOCR languages, with the language

ABCL/R2[11] as a target. ABCL/R2 features the

hybrid group architecture that consists of the in-

dividual tower and the group tower. Contrary

to its predecessor, ABCL/R[19], whose implemen-

tation was extremely slow due to interpretation

that bottomed out with ABCL/1[24], ABCL/R2

is compiler-based, is independent from ABCL/1,

and in fact competes with the ABCL/1 compiler

for speed. ABCL/R2 runs on top of a parallel

version of Common Lisp on Omron Luna-88k, a

shared-memory Mach machine. Benchmarks have

shown that the execution speed of ABCL programs

on ABCL/R2 (1) is nearly or over two-orders of

magnitude faster than that on ABCL/R, and (2)

closely compares with or even exceeds the speed on

the publically distributed version of our ABCL/1

compiler[24] and also C + Sun Light-Weight Pro-

cesses (LWP) library, neither of which support re-

ection.

The schemes we have developed for e�cient im-

plementation of OOCR languages are: (1) Ef-

�cient Lazy Creation of Metaobjects and Meta-

groups, (2) Partial Compilation of Scripts (Meth-

ods), (3) Dynamic Progression of Degree of Reec-

tivity, (4) Self-Rei�cation of Group Kernel Objects,

(5) Non-reifying Objects (User-level) and Light-

weight Objects

2

. We have also managed to in-

tegrate the optimized components of the system,

so that the system remains faithful to the meta-

circular de�nition of ABCL/R2[11]. For example,

compilation coexist with rei�cation, and objects of

various degrees of reectivity can send messages to

each other. The obvious test is whether the meta-

circular de�nition of ABCL/R2 in [11] runs on top

of our system, and in fact it does.

2

We make a brief note that, in this study, we limit the

scope of \e�cient implementation" to reection; traditional

compiler optimizing techniques were also incorporated but

are not presented here.

2

2 ABCL/R2 | A Hybrid

Group Architecture Language

ABCL/R2[11] is based on the Hybrid Group Ar-

chitecture (HGA), which combines the characteris-

tics ABCL/R[19], which is based on the individual-

based architecture, and ACT/R[20], which is based

on the group-wide architecture. Its key features are

(1) Heterogeneous object group and group shared

resources, (2) Meta-groups and individual/group

reective towers, and (3) Non-reifying objects (ob-

jects that lack individual-based reective capabili-

ties). ABCL/R2 aims to model meta-level encapsu-

lation of control of limited resources shared within

object groups, such as computational power, com-

munication, storage, etc. Such \limited resources"

have meta-level representation as objects, and are

shared among the base-level objects in a group. At

the same time, each object has its own reective

tower, allowing meta-operations to be customized

on a per-object basis. (See [11] for metacircular

de�nition of ABCL/R2.)

2.1 Object Groups and Reective Tow-

ers in ABCL/R2

An object in ABCL/R2 always belongs to some

group. Objects in a group share computational re-

sources which are represented as group kernel ob-

jects at the meta-level. Groups can be created dy-

namically, whose process is de�ned metacircularly

with ABCL/R2. As a result, we have both the

tower of metaobjects called the individual tower per

each object, and the tower of meta-groups called

the group tower per each group. The distinctions

between the two towers are as follows:

� The individual tower of metaobjects mainly

determines the structure of the object, includ-

ing its script (i.e., method). Thus, for exam-

ple, reective operations to alter the script is

in the domain of the individual tower.

� The group tower of meta-groups mainly deter-

mines the group behavior, including the com-

putation (evaluation) of the script of the group

members. Thus, group-wide operations that

share group resources, such as scheduling, are

in the domain of the group tower.

x

↑x

↑↑x

G: A Group

meta-
gen

GMgr Eval

⇑⇑G: Meta-Meta Group of G
(exists conceptually)

y

↑y

↑↑y

Gro
up Tow

er
of

G

⇑G: Meta-Group of G

Non-Reifying
Objects

EvalGMgrmeta-
gen

In
di

vi
du

a l
T

o w
e r

o f
x

Figure 1: Reective Architecture of ABCL/R2

Figure 1 illustrates the reective architecture of

ABCL/R2. The structure and the computational

behavior of a group are de�ned at the meta- and

higher levels of the group, by the group kernel

objects. In Figure 1, objects labeled \meta-gen"

(metaobject generator), \GMgr" (group manager),

and \Eval" (evaluator) are the standard group ker-

nel objects. Additional group kernel objects can

be de�ned by the user to represent other types of

shared resources. The characteristics of these ob-

jects are follows:

Group Manager: The group manager represents

and `manages' the group. The identity of a

group is that of the group manager object |

thus, any messages sent to the group is actu-

ally forwarded to the group manager. Newly

created objects become the member of the

same group as its creator; alternatively, a new

object can be created at a particular group by

explicit designation of the group identity in

the object creation form. For example, eval-

uation of the form below creates a new group

concurrency-controlled-group:

[group concurrency-controlled-group

(meta-gen meta-gen-with-priority)

(evaluator eval-with-priority)]

At the meta-level, a group manager is cre-

ated with two customized group kernel ob-

jects: meta-gen-with-priority (metaobject

3

generator), and eval-with-priority (evalu-

ator). The customizations cause all the ob-

jects that are members of

concurrency-controlled-group to be au-

tomatically subject to priority-queue based

scheduling, even though their base-level pro-

grams remain the same.

Metaobject generator: Upon object creation,

the metaobject generator creates a metaobject

at the meta-level. When a form [object

...] is evaluated by the evaluator, a mes-

sage [:new StateSpec LexEnv ScriptSet Eval-

uator GMgr] is sent to the metaobject gener-

ator (the arguments contain the necessary in-

formation for creation of the new object in the

group.). A metaobject created by the stan-

dard metaobject generator contains: a mes-

sage queue object, a set of scripts (methods), a

set of state variables (i.e., instance variables),

references to the evaluator and the group man-

ager, and the execution mode. The reception

of a message M by a base-level object corre-

sponds to its metaobject receiving a message

[:message M R S]. The metaobject then

places the message M into the message queue

object it has. The metaobject also searches for

a script that matches a message at the top of

the queue, and if it �nds one, sends a message

to the evaluator to execute the script.

Evaluator: The evaluator is the computational

resource shared by the (base-level) members

of a group. Its role is to evaluate the scripts

of member objects. It is no longer a stand-

alone, private object as is with ABCL/R, but

interacts with other group kernel objects and

metaobjects for group management, such as

scheduling. Its typical behavior is as follows:

it accepts a message for evaluation of an ex-

pression [:do Exp Env Id Gid Eval], with re-

ply destination designated to a continuation

object C. Upon receipt of the message, it eval-

uates the expression Exp under the environ-

ment Env, then sends the result to C. The

arguments Id and Gid are mapped to refer-

ences of the pseudo variables Me and Group;

the former denotes the object itself and the

latter the group of the object, respectively.

[object Evaluator

(script

(=> [:do Exp Env Id Gid Eval] @ C

(match Exp

(is [:variable Var] ;; Variables

(match Var

(is 'Me ![den Id]) ;; pseudo variables

(is 'Group !Gid)

(otherwise

[Env <= [:value-of Var] @ C])))

;; Past-Type Message Transmisson

(is [:send-past Target Message Reply]

[C <= nil] ;; the value of this expression

(if (not (null Target))

[[meta Target]

<= [:message Message Reply [den Id]]]))

;; Creation of a New Object

(is [:object-def Name Meta-gen GMgr

State Script]

(temporary [Env := initialize state variables])

;; delegate to the group manager

[GMgr <= [:new State Env Script]

@ [cont ...

:

Figure 2: Metacircular De�nition of the Evaluator

The argument Eval is for executing the sub-

expressions generated during the execution of

an expression. This allows the evaluator to

delegate the execution of the sub-expressions

to another evaluator in a multi-evaluator en-

vironment.

2.2 Non-reifying Objects

In ABCL/R2, users can create objects that run

more e�ciently compared to standard objects by

sacri�cing individual-based reective capabilities.

When the form below is evaluated, a non-reifying

object named x is created:

[object x

(meta-gen non-reifying-meta)

:

A non-reifying object has a special metaobject

that does not allow meta-level operations. Fur-

thermore, the metaobject is also de�ned to be a

non-reifying object. The resulting behavior of x

is almost same as the one for the standard ob-

ject (created without the designation `(meta-gen

non-reifying-meta)'), except for faster execution

speed and the non-availability of individual-based

reective operations (It is still OK, say, to send

messages directly to other meta-level objects, and

4

to be subject to group-wide meta-level control,

etc.).

2.3 ABCL/R2 Reective Programming

Reective programming in ABCL/R2 is performed

in two ways. In order to a�ect the behavior of an

individual object, one sends messages to and/or

customizes its metaobject in the same way as

ABCL/R, as described in[19]. In order to a�ect

the group-wide behavior such as resource sharing,

one sends messages to its group, [group-of x]

(which is delivered to its group manager object),

and/or customizes the group kernel objects. The

two schemes are not contradictory; in practice, a

combination of both schemes is e�ectively used.

3 Implementation Issues for

OOCR Languages

As introduced in Section 1, the two issues in ef-

�cient implementation of reective languages are:

how to break the meta-circularity safely, and how

to do so e�ciency. Since ABCL/R2 is based on

the hybrid group architecture, the implementation

must always guarantee the proper maintenance of

the following causal-connection properties:

� Reective operations on the individual tower,

i.e., message sends to a metaobject to in-

voke reective operations, and/or dynamic

customization of a metaobject (via the meta-

metaobject), must be reected properly and

solely to the object it represents (localization).

� Reective operations on the group tower, i.e.,

message sends to the group manager object

and/or dynamic customization of the group

kernel objects, must be reected properly to

all members of group (at the base-level) of the

group tower.

Moreover, the actual system must be �nitely

constructible and executable in real-life. Thus,

the problem is, how do we safely break the meta-

circularity of the two towers.

E�ciency issues are more problematic. In or-

der to achieve practical e�ciency, the implemen-

tation cannot remain solely interpretive. Instead,

it must include a compiler which emits code that

allows reection, thereby achieving practical e�-

ciency. Too much compilation, however, would not

allow for reection to occur. Interfacing of reec-

tive and non-reective portions in compiled code

is another problem; although mixture of interpre-

tive and compiled code has been done on a per-

function basis in Lisp compilers, our case is more

intricate due to the existence of both (1) reection

and (2) concurrency. Finally, the object-level prob-

lem is how to integrate the mixture of group ker-

nel objects and individual metaobjects and meta-

metaobjects: : : etc., that have been subject to var-

ious optimizations such as lazy creation of the in-

dividual tower, so that they are able to send mes-

sages to each other and remain consistent with the

metacircular de�nition of ABCL/R2.

4 Implementation Scheme of

ABCL/R2

4.1 Overview of our E�cient Implemen-

tation Scheme

Currently, a new version of ABCL/R2 is imple-

mented on top of the multi-threaded version of

Common Lisp, running on Omron Luna-88k, a

shared-memory computer. As mentioned earlier,

the execution speed of this version compares closely

with, and sometimes exceeds that of the original

ABCL/1 compiler, with appropriate user interven-

tion.

Our implementation scheme is structured as fol-

lows: First there is an underlying low-level ker-

nel that provides the basic primitives for (non-

reective) object execution. Speci�cally, it maps

the underlying Lisp threads to objects. Sec-

ondly, the compiler performs partial compilation

of scripts (i.e., methods). The compiled code is

such that it allows co-existence of reective and

non-reective code, so that execution e�ciency

is maintained while retaining reective capabili-

ties. Default system objects are further optimized

by providing a pair of non-reective and reec-

tive compiled codes for self-rei�cation. The com-

piled code is augmented with light-weight objects,

that serves as fast replacements for normal objects

in special roles such as continuation objects and

5

c t0

a t3

a t3t1

t2

t4
a t3

c t0

↑b

meta-
gen

GMgreval •••

scheduled,
running objects

idle objects

active object queue

idle thread pool

scheduled

object thread

message

become active

Figure 3: The Low-Level Kernel

light-weight metaobjects. The individual tower is

constructed lazily with dynamic progression tech-

niques, in which full-edged creation of metaob-

jects is avoided until its capabilities are absolutely

necessary. Interfacing of various objects with dif-

ferent degrees of reectivity (including non-reifying

objects, which are essentially fully compiled) be-

come possible with inter-level message forwarding,

which has the e�ect of avoiding unnecessary rei�-

cation. Finally, lazy creation of meta-groups along

the group tower is made possible with lazy creation

of group managers and self-rei�cation techniques.

4.2 The Low-Level Kernel

The low-level kernel has the task of providing the

basic primitives for (non-reective) object execu-

tion. Based on the underlying multi-threaded Lisp

environment, Lisp threads are mapped to objects

to provide primitive computational resources. It

can be regarded as a simpli�ed operating system

kernel in that it provides primitive message trans-

mission and scheduling capabilities. Figure 3 illus-

trates the structure of the low-level kernel.

For primitive message transmission, when

a message is sent to an object, a triplet

hmessage body; reply destination;message senderi,

is placed into the message queue of the receiver

object. Then, if the object has been `dormant', the

object is made `active' and placed into the active

object queue.

The kernel employs a standard technique of cre-

ating a pool of �xed number of Lisp threads, from

which a thread is acquired and assigned to objects

for execution. A thread dequeues an object from

the active object queue, then executes the com-

piled Lisp lambda-closure associated with the ob-

ject. The lambda-closure describes the basic be-

havior of the object | namely, remove one message

from its message queue, then execute the script

matching the message pattern. After the execu-

tion of the script terminates, the object returns

to the active object queue if it is still active (i.e.,

the message queue is non-empty), or becomes idle

when it becomes dormant (i.e., the message queue

is empty). The thread then starts the execution of

another active object in the active object queue.

4.3 Partial Compilation of Scripts

The primary focus of reection in ABCL/R2 is the

ability to perform coordinated resource manage-

ment, such as object scheduling and group consis-

tency maintenance. For this purpose, `what is to be

reected' concentrates on the concurrency aspect

of the object-oriented concurrent computation; in

other words, primitives in intra-object sequential

computations | say, primitive arithmetic expres-

sions | would serve little purpose if it could be

reected upon. (This is similar in spirit to CLOS

Metaobject Protocol[9], where only the features

added by CLOS, such as generic function dispatch,

could be reected upon, whereas Common Lisp fea-

tures are basically hard-wired).

From such a perspective, we categorize opera-

tions into reective operations and non-reective

operations. In ABCL/R2, the following operations

can be reected upon:

� Reference to the variables (including the refer-

ences to lexical variables, and pseudo variables

`Me' and `Group').

� Message sending (both `past type' (asyn-

chronous) and `now type' (RPC-style)).

� Object creation and group creation.

As indicated above, other primitive operations

such as arithmetic operations are not subject to

reection, and are thus compiled. Here, in order

6

for reective and non-reective operations to co-

exist, the following scheme is adopted:

� Consecutive expressions representing non-

reective operations are compiled into a simple

Lisp lambda-closure (which is, in turn, com-

piled into native code by the Lisp compiler).

� Other expressions are also similarly compiled

into a lambda-closure. The di�erence is that,

when reective operations appear within ex-

pressions that are non-reective, a code to

send a message to evaluator explicitly is em-

bedded into the lambda-closure. The evalua-

tor in turn receives the message and executes

the reective operations.

� Conversely, the evaluator can also receive a

compiled lambda-closure as a message for di-

rect execution. Thus, non-reective opera-

tions embedded within reective ones can be

initiated by sending a message to evaluator.

Abridged compilation rules are shown in Ap-

pendix A; here, as an example, let us consider

the compilation of an expression [x <= (* y 2)

@ z], meaning \send the value of (* y 2) to the

value of x where the reply destination is the value of

z." Due to the lack of side e�ects, we evaluate the

expression in the following order: (1) Reference the

values of x, y, and z. (2) Compute the value of (*

y 2). (3) Send the value of (* y 2) to the value

of x, with the value of z as the reply destination.

Since the variable references and the message send-

ing are reective, the complied code has expressions

explicitly requesting those operations to the evalu-

ator; more speci�cally, the resulting compiled code

is as follows: (1) send a message for variable refer-

ence to the evaluator, (2) receive the values of the

variables by a newly created continuation, (3) com-

pute the value of the sub-expression (* y 2), then

(4) send a message for message sending to the eval-

uator. Following is the Lisp code generated by the

ABCL/R2 compiler (For reader clarity, we write [x

<= y @ z] for the actual Lisp expression generated

(send-message x y z), meaning a message send

to x with y, with reply destination z.):

In the compiled code shown in Figure 4, argu-

ments C, Env, Id, Gid, and Eval denote the contin-

uation, the environment, the object ID, the group

#'(lambda (C Env Id Gid Eval)

[Eval

<= [:do-evlis

[[:variable 'x]

[:variable 'y] [:variable 'z]]

Env Id Gid Eval]

@ [cont [x-value y-value z-value]

[Eval

<= [:do [:send-past x-value

(* y-value 2) z-value]

Env Id Gid Eval]

@ C]]])

Figure 4: Compilation of [x <= (* y 2) @ z]

ID of the object, and the evaluator for the sub-

expressions, respectively. :Do-evlis, :variable,

and :send-past are message tags that request the

evaluator to evaluate a list of expressions, refer-

ence a variable, and perform the past-type mes-

sage transmission. The form [cont ...] creates

a continuation object (explained later), to which

the reply from the evaluator is sent.

4.4 Self-rei�cation of Default System

Objects

In addition to the partial compilation of normal ob-

jects, the default group kernel objects (the group

manager, the metaobject generator, and the eval-

uator) and metaobjects of regular objects each has

a pair of scripts that are pre-compiled; one is the

bottomed-out script and the other is the meta-

circularly de�ned script for self-rei�cation: Such

objects initially execute with their bottomed-out

(compiled) script (Figure 5(a)). Then, when their

metaobjects are accessed, to which some reective

operation is requested, the former script creates a

(default) metaobject that embodies the set of com-

piled scripts for that particular object.

When the metaobject created, it is initialized so

that the metaobject could continue execution from

the point where the reective operation was re-

quested in the bottomed-out script (this can only

be realized with explicit argument passing rather

than environment rei�cation because the latter is

not possible with bottomed-out, compiled script).

Then the execution is delegated to the newly cre-

ated metaobject, which starts the execution of the

requested reective operation (Figure 5(b)).

7

default
metaobject

forwarding
object

bottomed-out script
(compiled as non-

reifying object)

default system
object

(e.g. evaluator)

request for
reflective
operation

meta-circular script
(compiled as

reflective object)

script=
queue=..
state=..

(a)

(b)

Figure 5: Self-Rei�cation Mechanism

4.5 Light-weight Objects

Normal objects are heavyweight in the sense that it

must support every conceivable operations allowed

for an object. Here, the optimization strategy we

employ is to sacri�ce some of the capability of nor-

mal objects in trade for e�ciency, and use them

where appropriate. For this purpose, we intro-

duce light-weight objects. The light-weight object

does not have a message queue, but has a com-

piled script as a lambda-closure which is directly

executable. When an ordinary object sends a mes-

sage to a light-weight object, the sender executes

the script of the receiver by directly invoking the

lambda-closure of the object. It also does not have

state variables; thus, it cannot have its own internal

state. Execution overhead is reduced for two rea-

sons: (1) its script is executed without scheduling

overhead, and (2) its creation cost is smaller com-

pared to normal objects due to the lack of state

variables and the message queue.

Because of its limited functionality, objects

which could be light-weight must satisfy the fol-

lowing requirements:

stateless, because it does not have state vari-

ables,

receive a single message at a time, because

it does not have a message queue

only perform simple operations,

because complex operations would otherwise

lead to deadlocks.

Light-weight objects are used extensively in

ABCL/R2 to reduce the overhead of execution: one

major use common to all levels is the continuation

object; in the meta-level, it is also employed as the

light-weight metaobject. Here, we defer the descrip-

tion of the latter until Section 4.6, and concentrate

on its general use as a continuation object.

OOCP languages typically employ a program-

ming style whereby continuation objects are cre-

ated for delegating the result to, or synchroniz-

ing controls[1]. The meta-circular de�nition of

metaobjects is a typical example: when a meta-

object sends an expression to the evaluator for ex-

ecution, the metaobject creates a continuation ob-

ject, which receives a reply from the evaluator, and

in turn noti�es the end of evaluation by sending

a :end message to the metaobject. This allows

script execution and message reception to occur

simultaneously[19]. In this manner, e�cient im-

plementation of continuation objects is crucial in

achieving higher overall performance.

In ABCL/1, creation of continuation object was

actually a syntactic macro that created a normal

object. An expression:

[cont Pattern Expressions]

was equivalent to the following expression:

[object

(script (=> Pattern Expressions))]

In ABCL/R2, continuation objects are imple-

mented with light-weight objects, since the ways

in which continuation objects are employed sat-

isfy the abovementioned requirements: (1) state-

less (temporal), (2) receives one and only one mes-

sage, (3) its script is simple and terminates within

�nite steps, usually delegating the computed result

to the next continuation object with a past type

message send. The e�ectiveness of the light-weight

objects is shown in Section 5.

4.6 Creation of Individual Tower via

Dynamic Progression of Reectivity

To construct the individual tower without unnec-

essary rei�cation (i.e., creation of metaobjects), we

employ the dynamic progression technique, which

is an extension of lazy creation.

Figure 6 illustrates the implementational struc-

ture of an individual tower. To maintain the

causal-connection, at any given time an tower has

8

level 0
(base level)

level 1
(meta-level)

level n

level n+1

level m

M @ R from S

[:message M R S]

default
metaobject

forwarding
objects

forwarding
objects

conceptual
existence

M’ @ R’ from S’

[:message M’ R’ S’]

level m+1

Figure 6: Snapshot of an Individual Tower

one and only one active object, the default meta-

object, that could be directly executed by the low-

level kernel (the shaded object at level n). All

the other objects in the tower are either (1) for-

warding objects (the white objects with solid bor-

der), or (2) of `conceptual' existence i.e., does not

physically exist within the system (the white ob-

ject with hatched border). The level at which the

default metaobject resides indicates the level of re-

ective operations that has been requested: in the

�gure, the reective operation has been requested

at level (n�1) since the default metaobject resides

at level n. Metaobjects above level n up to level

m have been accessed in the past with the [meta

: : :] form. Objects above level m do not exist as

they have not been accessed yet.

When the evaluator evaluates a message sending

expression of a metaobject at level n, it attempts

to send the message to the metaobject of the desti-

nation object at the same level, n. When the level

of the metaobject of the receiver does not match

that of the sender, the message is forwarded either

up or down the tower to the default metaobject.

For example, when the base-level object receives

a message M, it forwards the message to its meta-

object by sending a message [:message M R S] (R

and S are the reply destination and the sender of M,

respectively). Conversely, when the forwarding ob-

ject at level (n+ 1) receives a message [:message

M' R' S'], it forwards the message by sending M'

to the object at level n.

Since forwarding is a simple form of delegation

within the tower, the forwarding metaobjects are

implemented using the light-weight objects. We

call such metaobjects the light-weight metaobjects.

By employing the light-weight objects, forwarding

along the tower need not be true message passing,

which would incur great overhead; rather, the mes-

sage is correctly delivered to the default metaobject

by successive invocations of the lambda-closures of

the light-weight metaobjects.

Here, the reader may become concerned with

the fact that multiple messages could arrive at the

object simultaneously, which could be a problem

because light-weight objects do not have message

queues. Fortunately, it is not a problem since for-

warding is programmed to be pure functional, and

multiple incoming messages are eventually bu�ered

by the message queue of the default metaobject.

Forwarding augmented with light-weight objects

is much more e�cient compared to naive imple-

mentation of lazy creation of metaobjects. Let us

contrast the two approaches and see why: in the

latter approach, a metaobject "x is created when

the access to "x occurs, that is, when the evaluator

�rst evaluates an expression [meta x][19]. Here,

suppose that object S is sending a message M to

object T , where S already has a metaobject while

T does not. (Figure 7(a).)

Since the execution of S is already governed by

its metaobject " S, " S tries to send a message

[:message M R S] (R is a reply destination of

the message) to the metaobject of T . Here, the

access to the metaobject of T by "S causes the

lazy creation of " T ; T then becomes an object

that is indirectly executed by " T (Figure 7(b)).

As a consequence, execution of T becomes com-

paratively slower. In our current approach, mes-

sages are directly forwarded to T for faster execu-

tion (Figure 7(c)).

We refer to the following notion as the dynamic

progression of degree of reectivity[12] | the facil-

ity to realize the reective functionality is progres-

sively made more elaborate as more powerful ones

are requested. This is a generalization of the lazy

9

T S

↑TL

[:message M R S]

↑S

M @ R

(c) ABCL/R2

↑T

T

↑S

S

[:message M R S]

(b) ABCL/R prototype

↑T

T

↑S

S [T <= M]

[[meta T]
 <= [:message M R S]]

base level

metalevel

(a)

Figure 7: Comparison of the Naive Approach and

the Forwarding Approach

creation mechanism, in a sense that not only un-

necessary rei�cation is avoided, but also reective

features are restricted, allowing for e�cient execu-

tion until full-edged reective operations become

necessary. Such progression is performed automat-

ically by the system in the following way:

� Initially, an executable object does not have

its metaobject. (i.e., its metaobject(s) exist

only conceptually.)

� When an expression [meta x] is evaluated,

where x does not have its metaobject, a light-

weight metaobject "x

L

is created as the meta-

object of x. X remains directly executable as

mentioned above (Figure 7(c)).

� When a message requesting some reective op-

erations (a message that does not match to the

pattern [:message M R S]) arrives at "x

L

,

x is automatically rei�ed, and "x

L

becomes the

default metaobject "x. Hereon, the reective

operation is executed by "x.

� The access to the metaobject of "x

L

(i.e., the

meta-metaobject of x) merely creates a light-

weight metaobject ""x

L

. X still remains to be

directly executable by the forwarding mecha-

nism.

The alternative strategy would have been to per-

form the appropriate rei�cation/reection of the

message at the sender's end (actually, the evalua-

tor), and let it decide the proper level of the re-

ceiver to which the message should be sent. This

is not desirable, however, for several reasons: (1) it

would break the object encapsulation (in the cur-

rent scheme, the sender does not need to know the

status of the individual tower of the receiver), (2)

if such rei�cation/reection was manifest in the

evaluator code, it would be complicated, (3) the

code for dynamic progression, which requires con-

currency control due to simultaneous message ar-

rival, would be ine�cient because the sender must

explicitly `lock' the receiver object, and (4) in a

distributed implementation, it would incur several

round-trip message sends to check the status of the

receiver, and then sending the message, whereas

our current scheme only requires a single message

transmission.

4.7 Compilation of Non-Reifying Ob-

jects

Since non-reifying objects sacri�ce reective ca-

pabilities for faster execution, the script of non-

reifying objects can be almost entirely be compiled

into a lambda-closures of Lisp, and be executed

without interpretation. The compiled code accepts

messages of the form [:message M R S], and exe-

cutes the compiled script matchingM. Expressions

that are internal to the object and execute sequen-

tially are directly translated into Lisp expressions.

Expressions relevant to OOC-computing, such as

message sending or object creation, are converted

into function calls to the low-level kernel. For ex-

ample, the expression [x <= (+ 1 y) @ z] is con-

verted into a Lisp expression (send-message x (+

1 y) z) where send-message is a primitive for

message transmission provided by the low-level ker-

nel.

Even though the script of non-reifying object is

not subject to rei�cation, the problem is that some

messages may be sent to the (non-existing) meta-

object(s) of the non-reifying objects due to the

abovementioned encapsulation. For this purpose,

a message to a metaobject of a non-reifying object

automatically creates a light-weight metaobject in

the same manner as is with the implementation of

individual tower for normal objects. This solves the

problem of interfacing non-reifying objects with re-

10

ective parts of the system.

4.8 Lazy Creation of Meta-Groups

The construction of the group tower is achieved

in �nite steps via lazy creation of group managers.

In addition, the self-rei�cation code of group kernel

objects contains the necessary rei�cation code for

the group tower. Below is the overview of how the

group tower is constructed:

1. All objects except the group manager object is

created with a reference to the group manager

object of the group of which it is a member.

2. The group manager is initially created with-

out a reference to its group manager, i.e., the

group manager of the meta-group. The lat-

ter is created lazily by the system when it is

referenced.

3. Upon creation of the group manager, other

group kernel objects (evaluator, metaobject

generator, etc.) are not initially created.

Their creation occurs when they are referenced

via the group manager; at the same time, the

group manager G references its own group ID,

which results in the creation of *G via 2 (pro-

vided it is non-existent). The created group

kernel object becomes a member of *G by re-

ceiving the reference to *G from G.

4. Acquiring a reference to the group kernel ob-

jects is initially possible only via the group

manager (The reference can be freely passed

around once it is acquired). Thus, all objects

(including the members of user de�ned groups)

of all levels satisfy the condition 1 (except the

group manager).

Figure 8 illustrates the creation process of a

new group. When the object a creates a new

group B with the [group : : :] form, the evalua-

tion of this form is sent to the evaluator (the [:do

: : :] message). The evaluator, in turn, sends the

[:new-group : : :] message to the group manager,

which is forwarded to the group manager of the

meta-group, *G (the [:new : : :] message). Since

the group kernel objects of the new group B be-

come members of *G, the metaobject generator of

*G must be created, which successively results in

the creation of **G as explained in 3. (Note that

this object exists for consistency purpose only, and

does not execute any code unless higher-level reec-

tive operations are requested.) The newly created

metaobject generator meta-gen' in turn creates the

group kernel objects of group B.

5 Performance Measurements

We ran several benchmark programs for perfor-

mance evaluation of ABCL/R2. Speci�cally, we

tested performance of (1) non-reective features,

(2) the light-weight objects, and (3) the maximum

cost of reective computation.

For comparative purposes, we have performed

the same benchmark on our ABCL/1[24] compiler

(which does not support reective features), which

is currently being publically distributed. (For de-

tails, contact abcl@camille.is.s.u-tokyo.ac.jp.) We

have also programmed the same algorithm in

C with the Sun Light-Weight Processes (LWP)

library, assigning a thread per object. The

ABCL/R2 system we employ in this section is not

the version on Luna-88k, but instead the pseudo-

parallel version running on top of KCL (Kyoto

Common Lisp) on SparcStation1+ (except for the

lowest-level thread scheduler, the two implementa-

tions are identical.). The reason for this is that

the current ABCL/1 system only supports pseudo-

parallel execution on standard Common Lisp. (The

examples in the next section were executed on

Luna-88k).

Although the benchmarks were performed for

several programs, for brevity the one we present in

this paper is the computation of Fibonacci num-

bers. In the parallel version parallel-fib, for

each computation of fib(n), two sub-objects that

compute fib(n� 1) and fib(n� 2) are created. In

the recursive (sequential) version, for each compu-

tation of fib(n), the object recursive-fib cre-

ates two continuation objects to receive the values

fib(n� 1) and fib(n� 2).

Figure 10 shows the result of the measurement.

Some of the implications of these results are as fol-

lows:

� For the parallel version, the two corresponding

lines in the middle indicate that, ABCL/R2

11

meta-
gen

meta-
gen'

B

Group ⇑B

eval

G

a

↑a

Group G

Group ⇑G

executable object

message

object creation

forwarding object

[:do ...]

[:new ...]

[:new ...]

Group B

↑B

⇑G

Group ⇑⇑G

[:new-group ...] user defined
group
manager

⇑⇑G

Group ⇑⇑⇑G

Figure 8: Creation of a New Group

exhibits comparable performance to ABCL/1

for non-reifying objects.

� When light-weight objects are employed (as

continuation objects), execution in ABCL/R2

is consistently faster (by approximately 30%).

As we have noted earlier, this fact is important

because the light-weight objects are heavily

created and employed by the evaluator during

the execution of scripts, and are also employed

(transparently) in user programs.

� Normal objects still pay some cost of reec-

tive execution, but by a factor of less than

10. This is astonishingly smaller compared to

ABCL/R, by nearly or over two orders of mag-

nitude: the computation of parallel fib(12)

takes over 12 minutes on ABCL/R executing

on an identical software/hardware platform,

whereas it takes only 22 seconds for normal

objects and 4 seconds for non-reifying objects

on ABCL/R2.

� The C + Sun LWP version become drastically

slow when the number of object increases,

probably due to the overhead of stack alloca-

tion and context switching. (In fact, it was

not possible to compute beyond n = 16 due

to lack of memory. We also make a note that

the measurement does not include the paging

overhead.) Furthermore, non-reifying objects

of ABCL/R2 exhibit comparable performance

even when the number of objects is small.

Furthermore, by our programming experience

thus far, the execution speed of actual programs

on ABCL/R2 is often quite comparable to that

on ABCL/1, even if reective operations are em-

ployed. The reason for this is that, in practice,

the user would employ the mixture of non-reifying

objects and normal objects, and attempts to local-

ize the reective portion of his programs to nor-

mal (reective) objects. As a result, a large por-

tion of the user code runs with non-reifying objects

(and light-weight objects), and meta-level execu-

tion would be localized to where it is really needed.

Even if execution is with normal objects (which

have metaobjects), the meta-level execution over-

head is at a comparable level to ABCL/1 due to

our optimization schemes (unlike ABCL/R, which

is more than two orders of magnitude slower com-

pared to ABCL/1).

6 Examples of Reective Pro-

gramming in ABCL/R2

Our example is controlling of explosion of paral-

lelism. Programs in Actor-like languages are usu-

ally written in a style such that the maximum avail-

able parallelism in the algorithm is exploited. How-

ever, too much parallelism wastes system resources,

12

[object parallel-fib-gen ; the parallel version

(meta-gen non-reifying-meta)

(script

(=> :new ; `!' returns the evaluated

![object fib ; expression

(meta-gen non-reifying-meta) ; ABCL/R2 only

(state [reply := nil] [sub-value := nil])

(script

(=> [:ans x]

(if sub-value

[reply <= [:ans (+ sub-value x)]]

[sub-value := x]))

(=> 0 ![:ans 0])

(=> 1 ![:ans 1])

(=> n @ R

[reply := R]

[[parallel-fib-gen <== :new]

<= (- n 1) @ Me]

[[parallel-fib-gen <== :new]

<= (- n 2) @ Me]))]))]

[object recursive-fib

(meta-gen non-reifying-meta) ; ABCL/R2 only

(script

(=> 0 !0)

(=> 1 !1)

(=> n @ R

[recursive-fib <= (- n 1)

@ [cont fib-n-1

[recursive-fib <= (- n 2)

@ [cont fib-n-2

[R <= (+ fib-n-1 fib-n-2)]]]]]))]

Figure 9: Object De�nitions for Fibonacci Num-

bers

and as a result, has a negative e�ect on perfor-

mance. Of course, one could perform user-level

programming in order to control the number of ob-

jects created, etc.[1], but the resulting user code

would have the base-level algorithm and the con-

trol algorithm heavily intermixed without proper

encapsulation, and as a result, hampers program

development, portability, and re-use. Rather, if

such control could be encapsulated in the meta-

level, not only that the user code need not contain

provisions for control, but the same meta-level code

could be re-used for a variety of concurrent pro-

grams in a portable manner.

In order to control the parallelism, we limit the

number of objects created in the system. In par-

ticular, if the number of executable objects could

always be suppressed so that it is comparable to

or little higher than the total number of processing

resources in the system, we obtain an ideal balance.

The system is organized as in Figure 11. Each

application object embodies within itself a pa-

10-1

1

10

102

103

10 15 20 22

Parallel
(Reflective Object)

Parallel
(Non-Reifying Object) Parallel (C+LWP)

Parallel (ABCL/1) Recursive
(Light-Weight Object)Recursive (ABCL/1)

ex
ec

ut
io

n
tim

e
(s

ec
)

nth Fibonacci number

Out of memory beyond n = 16

Figure 10: Performance Measurements for Fi-

bonacci Numbers on ABCL/R2 and ABCL/1

↑z

z

Evaluator-M
En

E2

E1

•priority queue
client evaluators

Meta-Fib

Fib

↑x

x

Meta-Evaluator-M

• • •

[:do Exp Env Id Gid Eval]

expression with priority

[:do
Exp Env Id Gid Eval

Prior
ity]

•priority table
•state
•script

intermediate expressions

application objects

Figure 11: Controlling Explosion of Parallelism

rameter indicating the \degree of progress" in its

computation.

3

Such the object is created by the

following form:

[object object-name

(group pcontrol)

(priority p)

(state ...)

(script ...)]

When an evaluator accepts this form, it sends an

object creation message, which contains a \degree

3

For example, in quicksort it is the length of the list to

be sorted.

13

[object Meta-Evaluator-M

(meta-gen non-reifying-meta)

(state [pqueue := aPriorityQueue]

[state := newEnvironment]

[scriptSet := givenScriptSet]

[evaluator := anEvaluator]

[Group-manager := aGroupManager]

[mode := ':dormant])

(script

;; arrival of a message with priority

(=> [:message [Tag Exp Env Id Gid Eval Priority]

Reply Sender]

;; enqueues the message in the

[pqueue ;; prioritalized message queue

<= [:enq [Priority [[Tag Exp Env Id Gid Eval]

Reply Sender]]]]

(when (eq mode ':dormant)

[mode := ':active]

[Me <= :begin]))

;; start processing of a message

(=> :begin

;; a message with the highest priority is taken out

(match [pqueue <== :deq]

(is [_ [Message Reply Sender]]

(match (find-script Message Reply scriptSet)

:

Figure 12: De�nition of Meta-Evaluator-M

of progress" parameter p as a priority value in ad-

dition to the standard creation messages, to a cus-

tomized metaobject generator through the group

manager pcontrol. Then the metaobject genera-

tor creates a customized metaobject with that pri-

ority value. As indicated earlier, the computation

of an application object at the base-level is per-

formed by the evaluator at the meta-level, which is

triggered by a message from the metaobject. This

message contains the priority value. Hence, the

metaobjects created by the customized metaobject

generator send the priority value to the evaluator

in addition to the standard parameters. Here, in

order to exploit the meta-level programmability of

our system, we let the metaobject of the evaluator

(Meta-Evaluator-M) prioritize the message accord-

ing to this parameter. Figure 12 shows the outline

of the de�nition of Meta-Evaluator-M. By prioritiz-

ing (evaluation requests of) objects that are ex-

pected to terminate their computation faster, the

number of executable objects can be suppressed.

The evaluator (Evaluator-M) then distributes the

task to the client evaluators (E

1

: : :E

n

), which rep-

resent actual processors.

We applied the above of scheme of parallelism

scheduled with
priority

scheduled without
priority

objects

3
expressions x 10

0

10

20

30

40

50

60

70

80

90

100

110

0.00 100.00 200.00 300.00 400.00 500.00

Figure 13: Controlled and Uncontrolled Paral-

lelism for Quicksorting

control to two di�erent parallel programs: the par-

allel version of computation of Fibonacci numbers

in the previous section, and a parallel quicksort

algorithm. To adapt to di�erent algorithms, the

only customization is to declare what to employ as

the parameter. We created four client evaluators to

coincide with the number of processors that Luna-

88k has (which is 4). Figure 13 is the graph of the

executable object count for parallel quicksorting of

1,000 elements (the graph for Fibonacci is essen-

tially the same in shape). The solid line indicates

the object count when the parallelism is controlled,

and the dashed line indicates no control. The hori-

zontal axis indicates the number of expressions pro-

cessed by the evaluator. As we can see, parallelism

is appropriately controlled via suppression of exces-

sive object creation (which is a user policy) with

appropriate meta-level encapsulation (which is a

system mechanism). (We present a more elaborate

meta-level encapsulation of Time Warp Scheduling

in the Appendix.)

14

7 Conclusion

We have presented schemes for implementing

OOCR languages e�ciently using a target language

ABCL/R2. The extended lazy creation scheme of

meta-groups and metaobjects reduces the meta-

level interpretation overhead. E�cient script ex-

ecution is achieved by the partial compilation of

non-reective operations, and allowing for the mix-

ture of reective and non-reective operations. The

light-weight objects provide e�cient execution of

continuation objects and light-weight metaobjects.

The system reduces `unnecessary rei�cation' via

dynamic progression scheme using the light-weight

metaobjects and the forwarding mechanism. Self-

rei�cation of group kernel objects and compilation

scheme of non-reifying objects allow full compila-

tion of object scripts. The basic run-time per-

formance of ABCL/R2, as a result, compares fa-

vorably to or sometimes even exceeds that of the

ABCL/1 compiler and also conventional threads

programming using C + Sun LWP in non-reective

programming, and the overhead of reective com-

putation is reduced by orders of magnitude com-

pared to our previous OOCR language prototypes.

This allows us to achieve practical execution e�-

ciency for typical programs that are mixtures of

non-reective and reective code,

The implementation of ABCL/R2 described in

this paper is running on the TOP-1 Common

Lisp[18] on Omron Luna-88k, a shared-memory

computer with four 88000 CPUs running Mach. A

pseudo-parallel version that runs on Kyoto Com-

mon Lisp and CMU Common Lisp was also cre-

ated. The latter version is available via anonymous

ftp on the Internet from camille.is.s.u-tokyo.ac.jp

(133.11.12.1) so that researchers all over the world

can experience the joys and intricacies of OOCR

programming. We hope that it will also serve as

a platform for experiments in concurrent program-

ming, e.g., compare several concurrency control al-

gorithms, since such algorithms can usually be en-

capsulated easily in the meta-level and above as we

demonstrate in this paper.

Our next big challenge is to reduce the cost of re-

ective operations further by the use of more elab-

orate compilation schemes. Since we have achieved

comparable speed to non-reective version of the

language for non-reective operations, if we could

`collapse' and compile away much of the reective

code, we would be constantly able to achieve com-

parable (or greater) speed for reective programs.

In particular, the most di�cult problem would be

how to `reect' the dynamically user-customized

meta-level code into base-level compilation. For

this purpose, we need to concentrate on three re-

search areas:

1. The current version of ABCL/R2 allows too

much freedom in the reective programming of

both the individual tower and the group tower.

We should instead (1) divide the meta-level

into smaller sub-functional parts (e.g., divide

the evaluator into sub-evaluators) and (2) de-

vise appropriate Metaobject Protocols[9] that

allow only valid customization, thereby giving

the compiler more a-priori information.

2. Develop a practical partial evaluation scheme

so that the amount of compilable code could

be maximized. For example, one could col-

lapse some of the evaluator code into the meta-

object so that evaluation request to the eval-

uator could be eliminated. (The use of partial

evaluation in reection has been suggested in

[6, 20, 4], but to our knowledge, no actual re-

ective languages exist that have actually im-

plemented it.)

3. Integrate an on-line compiler into the system,

which is used for dynamic compilation of ob-

jects that had been dynamically modi�ed by

the user via reection. For this purpose, vari-

ous compiler technologies developed for SELF

(e.g., [5], among many others) could be appli-

cable, but many other technologies speci�c to

OOCR architectures would have to be devel-

oped.

We are also experimenting with ABCL/R2 in

programming of many other interesting examples,

such as the dynamic optimization, deadlock detec-

tion, and concurrent debugging. Such program-

ming experiences would guide us towards more ef-

�cient implementation schemes as well as more so-

phisticated OOCR architectures.

In conclusion, we stress that it is not the lan-

guage but the language architecture as a whole

(that manifests itself with reection) that provides

15

the mechanism for integrating various user policies

into the system for solving user-speci�c problems,

and, such malleable system architectures are espe-

cially valuable for parallel and distributed comput-

ing.

Acknowledgements

We would like to thank the members of IBM Tokyo

Research Laboratory (TRL) for providing us a par-

allel version of Common Lisp (TOP-1 Common

Lisp) which was ported from TOP-1 (a prototype

shared-memory architecture) to Luna-88K with

the helpful aid of Shigeru Uzuhara

4

of TRL.

References

[1] Gul Agha. Concurrent object-oriented program-

ming. Communications ACM, 33(9):125{141, 1990.

[2] Christopher Burdorf and Jed Marti. Non-

Preemptive Time Warp Scheduling Algorithm. Op-

erating Systems Review, 24(2):7{18, April 1990.

[3] Roger M. Burkhart. Reective functions for the

C language. In Proceedings of ECOOP/OOPSLA

'90 Workshop on Reective and Metalevel Archi-

tectures in Object-Oriented Programming, Ottawa,

Canada, October 1990.

[4] Craig Chambers. Towards E�cient Implementa-

tion of Computational Reection. In Proceedings

of the OOPSLA'91 Workshop on Reection and

Metalevel Architectures in Object-Oriented Pro-

gramming, October 1991.

[5] Craig Chambers and David Ungar. Making pure

object-oriented languages practical. In Conference

on Object-Oriented Programming Systems, Lan-

guages, and Applications (OOPSLA), pages 1{15,

Phoenix, Arizona, October 1991. Published as SIG-

PLAN Notices 25(11), November, 1991.

[6] Olivier Danvy. Across the bridge between reec-

tion and partial evaluation. In D. Bj�rner, A. P.

Ershov, and N. D. Jones, editors, Partial Evalua-

tion and Mixed Computation, pages 83{116. Else-

vier Science, North-Holland, 1988.

[7] Jim des Rivi�eres and Brian Cantwell Smith.

The implementation of procedurally reective lan-

guages. In Conference Record of the 1984 ACM

Symposium on Lisp and Functional Programming,

1984.

4

Currently with Keio University, Japan.

[8] David R. Je�erson. Virtual Time. ACM Trans-

actions on Programming Languages and Systems,

7(3):404{425, July 1985.

[9] Gregor Kiczales, Jim des Rivi�eres, and Daniel G.

Bobrow. The Art of the Metaobject Protocol. The

MIT Press, Cambridge, Massachusetts, 1991.

[10] Pattie Maes. Concepts and experiments in com-

putational reection. In Proceedings of OOP-

SLA'87, volume 22, pages 147{155. SIGPLAN No-

tices, ACM Press, October 1987.

[11] Satoshi Matsuoka, Takuo Watanabe, and Akinori

Yonezawa. Hybrid group reective architecture for

object-oriented concurrent reective programming.

In Proceedings of ECOOP'91, number 512 in Lec-

ture Notes in Computer Science, pages 231{250.

Springer-Verlag, 1991.

[12] Satoshi Matsuoka and Akinori Yonezawa. Meta-

level solution to inheritance anomaly in concurrent

object-oriented languages. In Proceedings of the

ECOOP/OOPSLA'90 Workshop on Reection and

Metalevel Architectures in Object-Oriented Pro-

gramming, October 1990.

[13] Jayadev Misra. Distributed discrete-event sim-

ulation. ACM Computing Surveys, 18(1):39{65,

March 1986.

[14] Ramana Rao. Implementational reection in Sil-

ica. In Proceedings of ECOOP'91, number 512 in

Lecture Notes in Computer Science, pages 251{267.

Springer-Verlag, July 1991.

[15] John R. Rose. A Minimal Metaobject Protocol for

Dynamic Dispatch. In Proceedings of the OOP-

SLA'91 Workshop on Reection and Metalevel Ar-

chitectures in Object-Oriented Programming, Octo-

ber 1991.

[16] Brian C. Smith. Reection and semantics in Lisp.

In Conference Record of the ACM Symposium on

Principles of Programming Languages, pages 23{

35. ACM Press, 1984.

[17] Brian C. Smith. What do you mean, meta? In Pro-

ceedings of the ECOOP/OOPSLA'90 Workshop on

Reection and Metalevel Architectures in Object-

Oriented Programming, October 1990.

[18] Tomoyuki Tanaka and Shigeru Uzuhara. Multipro-

cessor Common Lisp on TOP-1. In Proceedings of

the IEEE Symposium on Parallel and Distributed

Processing, 1990.

[19] Takuo Watanabe and Akinori Yonezawa. Reec-

tion in an object-oriented concurrent language. In

Proceedings of OOPSLA'88, volume 23, pages 306{

315. SIGPLAN Notices, ACM Press, September

1988. (Revised version in [24]).

16

[20] Takuo Watanabe and Akinori Yonezawa. An actor-

based metalevel architecture for group-wide reec-

tion. In Proceedings of the REX School/Workshop

on Foundations of Object-Oriented Languages

(REX/FOOL), Noordwijkerhout, the Netherlands,

May 1990. also number 489 in Lecture Notes in

Computer Science. Springer-Verlag, 1991.

[21] Yasuhiko Yokote. The muse reective operating

system: The concept and its implementation. In

Conference on Object-Oriented Programming Sys-

tems, Languages, and Applications (OOPSLA),

1992. To appear.

[22] Yasuhiko Yokote, Fumio Teraoka, and Mario

Tokoro. A reective architecture for an object-

oriented distributed operating system. In Stephen

Cook, editor, Proceedings of ECOOP'89, pages 89{

106. Cambridge University Press, 1989.

[23] A. Yonezawa, H. Matsuda, and E. Shibayama. Dis-

crete event simulation based on an object oriented

parallel computation model. Technical Report C-

64, Dept. of Information Science, Tokyo Institute

of Technology, 1984.

[24] Akinori Yonezawa, editor. ABCL: An Object-

Oriented Concurrent System. Computer Systems

Series. The MIT Press, 1990.

[25] Akinori Yonezawa and Takuo Watanabe. An intro-

duction to object-based reective concurrent com-

putations. In Proceedings of the 1988 ACM SIG-

PLAN Workshop on Object-Based Concurrent Pro-

gramming, volume 24, pages 50{54. SIGPLAN No-

tices, ACM Press, April 1989.

A Appendix | Speci�cation

of the ABCL/R2 Compiler

(Abridged)

Function C compiles an ABCL/R2 expression to a Lisp

form which is processed by the evaluator. The form

consists of a pair of tag and data. When the evaluator

receives a form [:compiled f], the evaluator calls f

with the following arguments: the continuation C, the

environment Env, the object id Id and the group id

Gid of the object being processed, and the Eval itself

(i.e., this is equivalent to (funcall f C Env Id Gid

Eval).)

The abridged description below does not describe var-

ious minor optimizations, such as constant folding. In

addition, the notations used in the RHS, [e

1

<= e

2

@ e

3

] and [e

1

e

2

: : : e

n

], are syntactic shorthands for

(send-message e

1

e

2

e

3

) and (list e

1

e

2

: : : e

n

), re-

spectively.

C[[id]] = [:variable id] (Variable lookup)

C[[(e

1

<= e

2

@ e

3

)]] (Message sending)

=[:compiled

#'(lambda (C Env Id Gid Eval)

[Eval <= [:do-evlis [C[[e

1

]] C[[e

2

]] C[[e

3

]]]

Env Id Gid Eval]

@ [cont [v

1

v

2

v

3

]

[Eval <= [:do [:send-past v

1

v

2

v

3

]

Env Id Gid Eval] @ C]]])]

C[[[id := e]]] (Assignment)

=[:compiled

#'(lambda (C Env Id Gid Eval)

[Eval <= [:do C[[e]] Env Id Gid Eval]

@ [cont v [Env <= [:set id v] @ C]]])]

C[[(op e

1

e

2

: : : e

n

)]] (Non-reective operator)

=[:compiled

#'(lambda (C Env Id Gid Eval)

[Eval <= [:do-evlis [C[[e

1

]] C[[e

2

]] : : : C[[e

n

]]]

Env Id Gid Eval]

@ [cont [v

1

v

2

: : : v

n

]

[C <= (op v

1

v

2

: : : v

n

)]]])]

B Appendix | Meta-level En-

capsulation of Time Warp

Scheduling

Our previous paper outlined how ABCL/R2 facilitates

the Time Warp algorithm

5

[8] (also known as the Vir-

tual Time scheme, employed in parallel discrete event

simulation) to be encapsulated in the meta-level of the

user program, and how its scheduling algorithm could

be encapsulated in the meta-level of the Time Warp al-

gorithm itself (Figure 14). Scheduling in Time Warp is

known to be important, because there could be substan-

tial change in the execution speed due to the di�erence

in number of rollbacks, etc[2].

More speci�cally, we de�ne a TimeWarp group,

5

Here is a quick overview of the Time Warp algorithm:

�rst, message sends/reception model the events in the sim-

ulation. The Time Warp algorithm then serves to main-

tain the temporal consistency among the events. Consis-

tency management is distributed and optimistic; each ob-

ject has its own Local Virtual Time (LVT) (i.e., there is

no global clock), and the messages are timestamped to be

compared with the LVT of the recipient. When a conict

is detected, the object performs automatic rollback by send-

ing anti-messages until it reaches the time just prior to the

conict occurrence.

17

A Simulation Object

Metaobject
Meta-Group

Provides Modular
Description of
TimeWarp
algorithm.

Only the
Simulation
Programming
is needed!

Meta-Meta Group
Prev. Approach using IBA
[Watanabe & Yonezawa 88]

Provides Scheduling Algorithm

Provides Abstraction for
Comp. Resource

Figure 14: Meta-level Encapsulation of the Time

Warp Algorithm

whose members are specialized with their individual

metaobjects so that they coordinate in running of the

Time Warp algorithm. By specialization of the meta-

object generator, the Time Warp algorithm itself is en-

capsulated in the meta-level, and group membership

automatically dictates Time Warp behavior. (The ac-

tual de�nitions of the Time Warp group are given in

[11].) Messages sent within the group or to destinations

within other Time Warp groups must be of the form:

[target <= message

@ reply-destination :vrt virtual-send-time]

For encapsulation of scheduling in the meta-meta-

level, we employ a similar scheme to the example given

in Section 6. We introduce the TimeWarp scheduler ob-

ject labeled Scheduler in Figure 15. It is responsible for

controlling the allocation of the computational resource

within a Time Warp group. For meta-meta-level encap-

sulation of scheduling, the scheduler does not directly

interact with the evaluator of the Time Warp group,

but rather, interacts with the metaobject of the evalu-

ator that is customized so that the evaluation request

message is �rst sent to the scheduler. The metaobject

then asks the scheduler for the next evaluation job as

determined by the algorithm of the scheduler. With

this scheme, the same Time Warp algorithm runs ir-

respective of the presence of/di�erence in the schedul-

ing algorithm at the meta-meta-level. Furthermore, it

would be easy to extend the Time Warp group to add

inter-scheduler communication, and/or to transparently

adapt to a distributed environment.

Figure 16 is the result of the car-wash simulation[13,

23] on ABCL/R2: cars in the incoming queue are

washed by multiple attendants with di�erent washing

speed. When (1) no scheduling was performed, and (2)

meta-meta-level scheduling was performed in FIFO or-

EvalGMgr

X

↑X

Y

↑Y

Scheduler

↑Eval

⇑G : Meta-Group of G

G : A Group of Simulation Objects
(e.g., Car Wash Problem)

Eval'

⇑⇑G : Meta-Meta-Group of G

Eval. Requests
with LVT Info.

Requests for Changing
Scheduling Policy.

(Lowest LVT Fist etc.)
[Burdorf & Marti 90]

MGen

Figure 15: Implementation of the Time Warp

Scheduling in the Meta-meta Level

Number of Cars
10020 40 60 80

0

10

20

40

30

Number of Rollbacks

Lowest LVT first

FIFO

No-scheduling

Figure 16: The Result of Meta-meta-level Schedul-

ing of the Time Warp Algorithm applied to the Car

Wash Problem

der, the number of rollbacks increased proportionally

to the number of cars. When the scheduling algorithm

was changed to (3) `lowest LVT �rst', the rollbacks were

eliminated

6

. Due to this, the execution speed of (3) was

consistently several % faster than (1), despite the over-

head of execution at the meta-meta-group level.

6

This seemingly `ideal' result is probably due to central-

ized scheduling; when ABCL/R2 is extended to a distributed

system, rollbacks should occur (albeit few in number).

18

https://www.researchgate.net/publication/2259252

