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Abstract

Meta-level programmability is bene�cial for par-

allel/distributed object-oriented computing to im-

prove performance, etc. The major problem, how-

ever, is interpretation overhead due to meta-circular

interpretation. To solve this problem, we propose a

compilation framework for object-oriented concur-

rent re
ective languages using partial evaluation.

Since traditional partial evaluators do not allow us

to directly deal with meta-circular interpreters writ-

ten with concurrent objects, we devised techniques

such as pre-/post-processing, a new proposed pre-

action extension to partial evaluation in order to

handle side-e�ects, etc. Benchmarks of a proto-

type compiler for our language ABCL/R3 indicate

that (1) the meta-level interpretation is essentially

`compiled away,' and (2) meta-level optimizations

in a parallel application, running on a Fujitsu MPP

AP1000, exhibits only 10{30% overhead compared

to the hand-crafted source-level optimization in a

non-re
ective language.

1 Introduction

In parallel/distributed object-oriented applications,

meta-level programming, such as load balancing,

�

JSPS Research Fellow.

To appear in OOPSLA'95.

Copyright
c

 1995 by the Association for Computing Machinery,

Inc. Permission to make digital or hard copies of part or all of this

work for personal or classroom use is granted without fee provided

that copies are not made or distributed for pro�t or commercial ad-

vantage and that new copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by

others than ACM must be honored.

data allocation, scheduling, etc., is greatly bene�-

cial. Language extensions that provide modular ab-

stractions for such meta-level programming are also

useful. Ability to provide meta-level programmabil-

ity and language extensibility is achieved via Open

Implementation languages, or more traditionally,

re
ective languages [5, 12, 14, 17]. Thanks to the

success of CLOS Metaobject Protocol (MOP)[12],

re
ective languages are now regarded as practical

tools rather than mere philosophical toys.

The two foremost requirements in re
ective lan-

guages are good programmability and e�ciency.

The former is obvious for a variety of reasons, rang-

ing from reducing the cost of meta-level program-

ming to increasing safety. The latter is also impor-

tant, since one of the primary purpose of meta-level

programming is performance improvement. Let

us analyze the two major approaches to language

design in this regard, meta-level (re
ective) inter-

preters and customizable compilers:

Meta-level (Re
ective) Interpreters: The

traditional approach in re
ective languages is to

construct a meta-level interpreter, and provide

rei�cation/re
ection interfaces. This approach

gives the programmer a clear and concise execu-

tion model of the language, helping him to ob-

tain the con�dence that his meta-level program-

ming `correctly' implements his intentions. Fur-

thermore, object-oriented factorization of inter-

preters into meta-objects to form a meta-level

class framework as pioneered in CLOS-MOP, al-
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low modular and incremental programming and

scope control. Almost all successful re
ective

languages to date have adopted this design.

Unfortunately, the major problem of this ap-

proach is e�ciency. The overhead of run-time

interpretation, if implemented naively, easily be-

comes a factor of 10 up to 1000 over opti-

mized, directly compiled execution. Such per-

formance penalty is unacceptable especially in

parallel/distributed applications. Past solutions

to the problem fall into three inter-related cate-

gories:

� Some parts of the meta-system are not sub-

ject to meta-level modi�cation via rei�ca-

tion. For example, in the re
ective language

Open C++[5], only message passing, object

creation, and instance variable accesses can

be rei�ed. This not only restricts user pro-

grammability, but also makes the language

model unclear, in that much of the meta-level

functionalities are hidden inside `black-boxes,'

and the programmer may not obtain a clear

view of how his meta-level programming and

the black boxes will interact.

� The system embodies a set of ad-hoc opti-

mizations transparent to the user. For exam-

ple, our previous work ABCL/R2[14] assumes

that most objects will not be customized, and

thus could be mostly compiled, and switched

to general interpreted execution upon user

customization. Its e�ectiveness is limited to,

however, cases when optimization is possible,

and interpretation overhead heavily impacts

the overall performance otherwise.

� Applications where algorithmic performance

improvement overcomes the cost of interpre-

tation are looked for, as was experimented

with AL-1/D[16]. Although a sound ap-

proach, this restricts the application of open

implementation technology, as it is unlikely

that such dramatic algorithmic improvements

are always possible. (For more detailed dis-

cussion, see Section 5.)

Although most re
ective languages integrate all

the above approaches, none runs e�ciently under

all circumstances.

Customizable (Open) Compilers: Opening-up

the internal structure of a compiler to user mod-

i�cations is another way to allow meta-level pro-

gramming and language customization. Because

customization is done at compile-time, there is

no run-time overhead of meta-level interpreta-

tion. Several researchers have observed that pro-

viding object-oriented interface to the compiler

(in the spirit of Metaobject Protocol) lessens the

customizations e�ort[13, 18].

Despite such e�orts, programmability of this ap-

proach cannot be regarded as good at present. It

is often not obvious to the programmer whether

his compiler customization correctly captures his

intended meta-level functionality. This is due to

several reasons, including (1) since the size of a

typical compiler is enormous, it is di�cult for

the user to grasp its structure even with object-

oriented techniques, (2) because of the way com-

pilation works, it is di�cult to localize or to

properly propagate the changes made, and (3)

the programmer has to constantly distinguish the

values handled in his customization as being ei-

ther compile-time or run-time values

1

.

We have developed a new compilation framework

where we can enjoy the fruit of both approaches

in object-oriented concurrent re
ective languages.

In our framework, the meta-level of the language

is exposed to the programmer as a pure meta-

circular interpreter organized in an object-oriented

way, as is with traditional approaches. Then,

the interpretation overhead is e�ectively eliminated

by the compiler, i.e., the meta-level interpreter is

`compiled away.' Our compilation framework is

based on partial evaluation[2], or more speci�cally,

is a non-trivial realization of the �rst Futamura

projection[7]. Of course, simple application of con-

ventional partial evaluation technology does not

work. The techniques we have developed are as fol-

lows:

1

This is similar in principle to Lisp macros, but much more

complicated to handle.
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� Pre-processing that converts object-oriented

meta-circular evaluator de�nitions into continu-

ation passing style (CPS) functions, so that they

become applicable to partial evaluation.

� An extension to partial evaluation called preac-

tions, which preserves the order and the number

of I/O side e�ects.

� Multiple compiled methods for dynamic modi�-

cation of the meta-level.

� Proper treatment of assignment side-e�ects.

� Post-processing that further optimizes the par-

tially evaluated programs before passing it on to

the back-end compiler.

We have developed a prototype compiler for

an object-oriented concurrent re
ective language

ABCL/R3 according to our compilation framework.

Preliminary benchmarks show that: (1) interpre-

tation overhead is e�ectively eliminated, i.e., the

programs compiled by our compiler exhibit almost

identical performance to the ones compiled by non-

re
ective compilers, and is more than 100 times

faster compared to interpreter execution; and (2)

parallel applications on a massively parallel proces-

sor Fujitsu AP1000 optimized via meta-level pro-

gramming adds only small overhead compared to

hand-crafted source-level optimizations, and runs

faster than non-optimized base-level programs com-

piled by a non-re
ective compiler. This facilitates

creation of a portable, meta-level class framework

for optimization and language extensions.

The rest of this paper is organized as follows. Sec-

tion 2 gives a simple example of an ABCL/R3 pro-

gram, and an overview of our compilation frame-

work. Section 3 describes the techniques of our

compilation framework in detail. Section 4 shows

results of our preliminary benchmarks. Section 5

discusses related work, and Section 6 concludes the

paper.

2 Compiling Away the Meta-

Level: an Overview

2.1 A Simple Compilation Example in

ABCL/R3

We give an overview of our compilation frame-

work with a simple meta-level programming exam-

ple shown in Figure 1. The base-level program

is a fragment of a client-server system where the

server assigns a worker object to a client object

according to the estimated cost of processing the

clients' request. The meta-level embodies a sim-

ple tracing system over some variable references. A

method request (the program 1
 in the �gure) of

the object server asks each worker object the esti-

mated cost and returns the best one to the object

client

2

. Here, we customize the meta-level inter-

preter of the base-level algorithm so that when vari-

ables worker2 and client are referenced, the ref-

erence events are reported to the object *console*

by messages notify.

In ABCL/R3, the default meta-circular inter-

preter is de�ned as methods of the primary eval-

uator object prim-eval (the program 2
 in the

�gure). The above customization is achieved by

de�ning a new evaluator object watch-eval to over-

ride the method eval-var that de�nes the behavior

of variable references (the program 3
 in the �g-

ure). The method sends a noti�cation to the object

*console* if the name of the referenced variable

matches worker2 or client. The execution of all

the other expressions are delegated to the object

prim-eval.

Since the customization changes the semantics

of the language from the original ABCL/R3, a

naive implementation has to execute the compiled

base-level program under the customized meta-

interpreter, instead of directly executing the base-

level program. This execution is more than 100-

times slower as we show in Section 4.1. However,

since the names of variables that are introspected

can be statically determined, it would be enough

2

The source program is written in ABCL/R3, based

on the parallel object-oriented language ABCL/f [23]. A

message send is written as a method invocation form:

(hmethodi htarget-objecti hargumentsi: : :).
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object
worker2

object
worker1

object
client object

server

(estimate worker2)

(defmethod server request
           (client worker1 worker2)
  (let ((e1 (estimate worker1))
        (e2 (estimate worker2)))
    (start-job client
     :with (if (> e1 e2)
             worker1 worker2))))

(defclass prim-eval ())
(defmethod prim-eval eval (exp env)
  (cond
    ((var-ref? exp) (eval-var exp env))
    ((const? exp) (eval-const exp env))
    ((if? exp) (eval-if ...))
    ...))
(defmethod prim-eval eval-var (var env)
  (lookup var env))
(defmethod prim-eval eval-const (const env)
  const)
(defmethod prim-eval eval-if
                      (pred then else env)
  ...)
                    :

(defclass watch-eval (default-eval))
(defmethod watch-eval eval-var (var env)
  ;; check name of the variable
  (if (member var ’(worker2 client))
    ;; notification, and then reference the variable
    (progn (notify *console* var)
           (lookup var env)))
    ;; reference of other variables
    (lookup var env)))))

object
*console*

metaobject
↑server

watch-
eval

prim-
eval

(eval-var ’worker2 env)

delegation

(notify *console*
        ’worker2)

meta-level

base-level

(eval 〈method〉 env)

1

2

3

Figure 1: A Meta-Level Programming Example in ABCL/R3

(defmethod server request

(client worker1 worker2)

(let ((t313 (estimate worker1)))

(notify *console* 'worker2) ;; noti�cation

(let ((t314 (estimate worker2)))

(notify *console* 'client) ;; noti�cation

(if (> t313 t314)

(start-job client :with worker1)

(progn ;; noti�cation

(notify *console* 'worker2)

(start-job client :with worker2))))))

Noti�cations of underlined variables are inlined into the

base-level program.

Figure 2: Code Generated by Our Compiler

to insert noti�cation code into speci�c variable ac-

cesses in the base-level program

3

. In fact, our com-

piler generates exactly such an e�cient program

(shown in Figure 2) by `compiling away' all the un-

necessary interpretation.

As mentioned earlier, our compiler is mainly

based on partial evaluation[10] to eliminate meta-

3

By all means, having the programmer do so manually

throughout the entire program would be quite cumbersome.

level interpretation. The readers should note that

traditional inlining optimization techniques such as

the ones in Self[4] would have replicated almost the

entire interpreter code, instead of the noti�cation

code. Thus, partial evaluation is a quite essential

part of the compilation process. However, simply

applying traditional partial evaluation techniques

is insu�cient. In the rest of this section, we present

the basic idea of compiling re
ective programs using

partial evaluation, and the problems when applied

to concurrent objects.

2.2 Compiling Re
ective Programs Us-

ing Partial Evaluation

A partial evaluator PE is a function that takes a

program P and speci�cation s (partial information

on P 's input), and returns a specialized program

P

s

(called the residual program). For brevity, we

assume that P takes two arguments, and the speci-

�cation is given as the �rst argument. For program

P and value x as its �rst argument, we denote a spe-

cialized version of P as P

x

= PE(P; x). The special-
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ized program satis�es the condition P (x; y) = P

x

(y)

whenever P (x; y) has an answer.

Now we model a re
ective system; let I be a de-

fault meta-level interpreter that takes a base-level

program B and run-time data D as arguments.

Since the system is re
ective, the user can execute

B not only under the original interpreter I , but also

under a modi�ed interpreter I

0

.

4

Under the interpreter I , B can be \directly exe-

cuted" by B(D), since I(B;D) = B(D). Once the

interpreter is modi�ed to be I

0

, however, previ-

ous re
ective systems execute B by \interpretation"

I

0

(B;D), which is signi�cantly slower. Now, given

a partial evaluator, we partially evaluate I

0

with re-

spect to B, yielding I

0

B

; i.e., I

0

B

= PE(I

0

; B). If

we can expect that the partial evaluator is powerful

enough to execute all `interpretations' in I

0

at par-

tial evaluation time, I

0

B

will be almost the same asB

except that the e�ect of modi�cations on I

0

are em-

bedded and other parts of the interpreter are `com-

piled away.' Consequently, the execution of I

0

B

(D)

will have the same result as that of I

0

(B;D), being

as fast as that of B(D), or even faster if modi�ca-

tion on I

0

was made to improve performance.

2.3 Problems in existing Partial Evalu-

ation Techniques when Applied to

Concurrent Objects

Unfortunately, the above scheme is an ideal case. In

practice, existing partial evaluation techniques do

not allow us to directly deal with the meta-circular

interpreters written in concurrent object-oriented

languages. Here we explain the underlying prob-

lems and our proposed solutions.

Concurrent meta-system.

As the previous studies show[14, 17, 24], it is

natural to design the meta-system of concur-

rent object-oriented languages with concurrent

objects. However, it is di�cult to eliminate the

meta-level interpretation by partially evaluating

4

Here, we assume that the de�nition of I

0

is statically

known. ABCL/R3 does allow dynamic modi�cation of the

meta-interpreters to some extent. It is not achieved by partial

evaluation, but by multiple compiled methods as explained

in Section 3.2.3.

the entire meta-system, because of the concur-

rency and indeterminacy of concurrent objects.

To the best of our knowledge, partial evaluation

studies that deal with meta-circular interpreters

assume functional languages.

Solution: The meta-system of ABCL/R3 is de-

signed with concurrent objects, and converted

into CPS (continuation passing style) functions

before partial evaluation. The partial evaluator

specializes the converted functions for each base-

level method; i.e., only the body of method ex-

ecution is the target of partial evaluation. This

means that we could lose the opportunity to spe-

cialize some interactions among objects, but al-

lows the application of most existing partial eval-

uation techniques.

Side-e�ect in programs. There are two types of

side-e�ects in concurrent object-oriented lan-

guages, (1) interaction among objects (e.g., mes-

sage passing and synchronization) and (2) assign-

ment to instance variables of an object. Simple

partial evaluators cannot correctly translate pro-

grams with such side-e�ects. Operations with

side-e�ects would be duplicated, disappear, or

may appear in di�erent order to the original pro-

gram.

Solution: For (1), we propose a partial evalu-

ation mechanism called preaction for preserving

the characteristics of object interactions. With

this mechanism, the number and the order of

operations in the interaction are preserved af-

ter partial evaluation. As for (2), we convert

the meta-interpreter into store passing style, so

that assignment can be represented without us-

ing side-e�ects at the meta-level. Store oper-

ations in the residual program are eventually

converted into variable update forms by post-

processing.

Dynamic modi�cation of the Meta-system.

Most re
ective systems allow dynamic alteration

of the meta-system. If the meta-interpreter def-

inition admits this 
exibility, the partial evalu-

ator can not eliminate the interpretation as we

expected in Section 2.2, because we cannot stat-

ically determine what program is actually being

5



executed at partial evaluation time.

Solution: Our approach is to employ code ver-

sioning; i.e., statically generate multiple compiled

methods for a single base-level method for all

possible meta-interpreter de�nitions used at run-

time. In ABCL/R3, we design the language so

that modi�cations made to the meta-interpreter

is achieved by introducing new evaluator objects;

as a result, the meta-interpreter de�nitions which

could be used at run-time are easily determined

at compile-time.

3 Our Compilation Scheme

We have developed a prototype compiler for the

ABCL/R3 system. To implement the above solu-

tions, we divide the compilation into four phases

(Figure 3) each of which performs the following: 1


pre-processing: the evaluator object de�nitions (in-

cluding user de�ned ones) are converted into a set

of CPS functions to be partially evaluated; 2
 par-

tial evaluation : the converted functions are special-

ized with respect to each base-level method, yield-

ing a set of residual programs; 3
 post-processing:

the residual programs are optimized into an e�-

cient ABCL/f program[23]; and 4
 back-end com-

pilation: the generated program is compiled into

an executable code by the ABCL/f compiler. The

following sections describe each step in detail.

3.1 Pre-Processing: Conversion from

Evaluator Objects into Composed

CPS Functions

In ABCL/R3, the evaluator objects which `inter-

pret' the base-level methods are de�ned in direct

style (i.e., directly returns the results of a method

call to the caller), and uses delegation for incremen-

tal customization. Due to certain technical reasons,

the partial evaluator expects programs to be in CPS

(i.e., passes on the result to the continuation)

5

.

In addition, dynamic delegation cannot be well-

handled by the partial evaluator, because of loss

5

There are more elaborate partial evaluation techniques

that allow direct-style interpreters, but we did not employ it

for simplicity.

(a) Evaluator methods before conversion

;;; A method of class verbose-eval

(defmethod verbose-eval eval (exp env)

(print exp)

(delegate)) ; delegation to the next evaluator

;;; A method of class prim-eval

(defmethod prim-eval eval (exp env)

... (eval ...) ...) ; call to the head of delegation

(b) Converted CPS functions

(defun verbose-eval-eval (exp env cont)

(print exp)

(prim-eval-eval exp env cont))

(defun prim-eval-eval (exp env cont)

... (verbose-eval-eval ...) ...)

Figure 4: Pre-process on Evaluator Methods

of static information. To solve such problems, the

object de�nitions are converted as follows in the

pre-processing phase:

1. When compiling a base-level method, a set of

evaluator objects that execute the method is

�rstly determined via static analysis.

2. Each evaluator method is converted into a func-

tion with a unique name.

3. Functions are converted into CPS.

4. Delegation forms are statically resolved and in-

lined; each delegation form is substituted with

calls to the delegatee's function.

Figure 4 shows an example of pre-processing of an

evaluator object verbose-eval, which prints each

expression given to it, and then delegates the ex-

pression to the primary evaluator prim-eval for

execution. The methods shown in Figure 4(a) are

converted into functions shown in Figure 4(b).

3.2 Partially Evaluating Meta-Level

Code

Next, the pre-processed meta-level program is spe-

cialized with respect to each base-level method us-

ing a partial evaluator. We have constructed an

online partial evaluator for ABCL/R3 by incorpo-

rating our proposed techniques below, in addition

to the existing ones[10, 20, 25] such as graph repre-

sentation of symbolic values and arity raising.
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post-process3

(defun prim-eval (exp env cont) ...))
(defun prim-eval-var (var env cont)
  (lookup var env cont))
(defun user-eval-var (var env cont) ...)
(defun prim-eval-const (const env cont)
  (funcall cont const))
                  :

converted evaluator functions

(defmethod server
             request (...)

  )

body of base-level method

(defmethod server
             request (...)

  )

ABCL/f program

(defclass prim-eval ())
(defmethod prim-eval eval (exp env) ...))
(defmethod prim-eval eval-var (var env)
  (lookup var env))
(defmethod prim-eval eval-const (const env)
  const)
                  :

default evaluator object

(defclass user-eval ...)
(defmethod user-eval eval-var (var env)
  ...)

pre-process1

(let ...
               ...
  )

residual program

executable code

backend compilation4

user programs

partial evaluation2

user defined evaluator object
(in meta-level class library)

Figure 3: Compilation Phases of ABCL/R3

3.2.1 Handling Side-E�ects (1): Object In-

teractions

Base-level concurrent object-oriented programs in-

volve I/O operations such as message passing, syn-

chronization among objects, etc., that are di�er-

ent from side-e�ects caused by assignments. (Here-

after, we will refer to these side-e�ects as the I/O

type side-e�ects, as opposed to the side-e�ects by

assignments.) It might seem that such operations

could be merely treated as function calls that are

executed at run-time (i.e., not subject to unfold-

ing during partial evaluation) by simply extending

a partial evaluator for functional languages

6

. How-

ever, such a partial evaluator maymove or duplicate

operations during its execution, and as a result, I/O

operations may be eliminated or duplicated, or may

appear in a di�erent order to the original one in the

residual program(Figure 5).

To solve this problem, we have devised a tech-

nique called preaction, which properly preserves the

6

Some partial evaluators for imperative languages are re-

ported to be capable of handling side-e�ects[1, 3, 15]. How-

ever, whether they will be e�ective for our purpose (i.e.,

whether meta-interpreters are eliminated) is unknown at this

time.

(1) Disappearance

(* 5 (progn (send a :foo) 2)) =)10

(2) Wrong Ordering

(let ((x (send a :first)))

(cons (send a :second) x))

=) (cons (send a :second) (send a :first))

(3) Duplication

(let ((x (send a :foo))) (cons x x))

=) (cons (send a :foo) (send a :foo))

Figure 5: Examples that I/O side-e�ects are not

properly preserved

number and the order of I/O operations in partial

evaluation[2]. A preaction of a symbolic value can

be regarded as a history of I/O operations that

should be performed before the use of the value.

For example, the value of a form:

(progn (send x :hello) 123)

is 123, but the action (send x :hello) should be

performed before the value is returned. In our par-

tial evaluator, such a value is represented as:

hh(send x :hello)ii

123

7



The partial evaluation rules for ABCL/R3 ex-

tended with preactions is shown in Figure 6.

Roughly speaking, the preactions in the arguments

of an operator are copied to the ones of their results.

Our partial evaluator uses a graph (DAG) struc-

ture to represent symbolic values, in order to pre-

serve the number of I/O operations[2]. When a

certain value is used by multiple expressions, it is

shared in the graph structure during partial evalua-

tion. At the �nal phase of the partial evaluation, the

shared nodes in the graph are converted to let-forms

so that the sharing could be expressed as references

to the let-bound variables in the let-body

7

.

An example partial evaluation with preactions

proceeds as follows:

PE [[(* 5 (progn (send a :foo) 2))]]�

= apply(�; PE [[5]]�;

PE [[(progn (send a :foo) 2)]]�)

= apply(�; 5;

hh(send a :foo)ii

2)

=

hh(send a :foo)ii

apply(�; 5; 2)

=

hh(send a :foo)ii

10

The �nal line represents an expression:

(progn (send a :foo) 10)

which properly preserves the I/O operations in the

original program.

3.2.2 Handling Side-E�ects (2): Instance

Variable Assignment

Because ABCL/R3 is an object-oriented language,

there are assignment operations to instance vari-

ables in base-level programs. In usual meta-circular

interpreters, an assignment operation in the base-

level program is represented as a destructive op-

eration (e.g., rplacd of Lisp), which is one of the

most di�cult issues in partial evaluation. Rather

than improving the partial evaluator to this prob-

lem, we avoid this di�culty by (1) designing the

meta-level to interpret base-level assignment opera-

tions without using side-e�ects, and (2) reconstruct-

ing assignments after the partial evaluation through

post-processing.

7

This conversion is similar to a technique called lambda-

lifting.

The meta-interpreter `shown' to the user for re-


ective programming is in direct style, in which the

environment is represented as an association list.

During pre-processing, the de�nition is converted

into store passing style in addition to CPS conver-

sion, so that an assignment operation at the base-

level is represented as copying of an environment

list at the meta-level. The resulting evaluator func-

tions processed by the partial evaluator takes three

arguments: an expression, an environment, and a

continuation, which is a function that takes two ar-

guments: a result and an updated environment.

The problem of store passing style is that an

assignment operation in the base-level program is

translated into a creation of a new variable in the

residual code of partial evaluation, and the origi-

nal variable is not updated at all. To resolve this,

we insert functions that explicitly update instance

variables at the end of method execution, and then

reconstruct the actual assignment (i.e., setf) forms

during post-processing. In the compiled program,

execution of assignment operations might be de-

layed until the end of a method, but this is not

a problem for ABCL/R3 since the order of assign-

ment operations within a method cannot be ob-

served from other objects. For example, suppose

a class account has a method withdraw de�ned as

follows:

;;; class de�nition

(defclass account () (current 0))

;;; method de�nition

(defmethod account withdraw (amount)

;; if the request is too much,

(if (< current amount)

0 ; do nothing.

(progn ; otherwise, update the account.

(setf current (- current amount))

amount)))

When the compiler partially evaluates the default

meta-interpreter eval with the method withdraw,

the expression show in Figure 7 is passed on to the

partial evaluator by the pre-processor.

Function eval interprets the assignment opera-

tion in the expression as copying of the environment

value. At the end of the method, the continuation,

which has a function call update-state, is invoked.

The call to the function update-state is a pseudo-

assignment form to the variable current, and will

8
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The expressions inside

hh ii

indicate the preaction of each expression.

Figure 6: Extended Partial Evaluation Rules of ABCL/R3 (abridged)

(eval '(if (< current amount) ; expression

0

(progn

(setf current (- current amount))

amount))

(list (cons 'current current) ; env.

(cons 'amount amount))

#'(lambda (result env) ; continuation

(update-state

'current (lookup 'current env))

result))

(Note that variables current and amount are regarded as

`unknown' by the partial evaluator.)

Figure 7: Expression to be Passed onto the Partial

Evaluator

be replaced with a setf form via post-processing.

The code yielded by the partial evaluator is shown

in Figure 8.

The residual code contains function calls to

update-state as well as obvious redundancies such

as unnecessary variable references. They are also

resolved via post-processing (see Section 3.3).

(if (< current amount)

(progn

(update-state 'current current)

0)

(progn

(update-state 'current (- current amount))

amount))

(Some redundancies, which will be removed in the post-

processing phase, are already removed here for the clarity.)

Figure 8: Residual code yielded by the partial eval-

uator

3.2.3 Dynamic Modi�cation of Meta-Level

Many re
ective systems can alter its meta-level at

run-time. This feature is useful to describe \dy-

namic" behavior of a system, by changing the in-

terpretation of a base-level program according to a

run-time condition. This 
exibility, however, pre-

vents the partial evaluator from eliminating inter-

pretation because static information of the target

program (i.e., the meta-interpreter) virtually dimin-

ishes.

Our solution is to apply partial evaluation as if

9



the meta-level were statically �xed, and support dy-

namic modi�cations to the meta-interpreter outside

of the partial evaluation framework. Firstly we have

restricted ABCL/R3 so that a base-level object is

allowed to choose its meta-interpreter only at its

creation-time

8

. Experience in re
ective program-

ming shows that this is only a slight restriction,

as almost all meta-level objects determine their

meta-level interpreters at its creation. For a sin-

gle method of a base-level object and de�nitions of

meta-interpreters (speci�ed by classes of evaluator

objects), multiple compiled methods are generated

for each interpreter. On creating an object, appro-

priate compiled method is selected according to the

speci�ed interpreter.

Let us describe this mechanism more formally.

For brevity, assume there is no delegation used

among evaluator objects; i.e., the de�nition of an

interpreter is virtually a single function. Let meta-

interpreter de�nitions be E

1

; : : : ; E

m

, and methods

of a base-level class be M

1

; : : : ;M

n

. The compiler

generates a list of method tables for the class. The

i'th element of the list is a method table that has

compiled methods based on E

i

; the j'th entry of the

table has the compiled code based on PE(E

i

;M

j

).

When an object is created with a speci�cation of

the k'th meta-interpreter, the k'th method table is

installed as its method table.

3.3 Post-processing

Residual programs from the partial evaluator, like

the one shown in Section 3.2.2, is not itself runnable.

Moreover, they may have redundancies that could

be harmful to the optimizations of the back-end

compiler. Residual programs are converted and

optimized into ABCL/f programs in the post-

processing phase, including:

Removing redundancies: Redundancies in the

residual code, such as unnecessary let-bindings,

unused variable references, nested progn forms,

etc., are removed.

Reconstructing assignments: A function call to

update-state (cf. Section 3.2.2) is converted to

8

Replacement of the meta-interpreter after object's cre-

ation could be possible with more elaborate run-time support.

a setf form, which is an assignment form in

ABCL/f .

Adding a method interface: The residual code

is converted into a method de�nition of ABCL/f

so that it has the same method interface as the

original one.

The residual code shown in Section 3.2.2 is con-

verted into the following ABCL/f method. We

can observe that all `interpretations' are e�ectively

compiled away, i.e., a program identical to the orig-

inal one is generated in this case.

(defmethod account withdraw (amount)

(if (< current amount)

0

(progn (setf current (- current amount))

amount)))

4 Performance Measurements

4.1 Basic Performance: Interpretation

Overhead

We have performed preliminary benchmarks using a

prototype ABCL/R3 compiler based on our frame-

work. The �rst benchmarks compare the sequen-

tial execution speed of the the interpreter and our

compiler to illustrate the e�ectiveness of `compiling

away' the unnecessary interpretation. Sequential

benchmark programs (Boyer and n-Queens prob-

lem) are written in ABCL/R3 without using par-

allel constructs, nor re
ective operations (although

side-e�ects are employed). The programs are exe-

cuted in three styles: (CL) compiled without the

meta-level and directly executed, (INT) executed

by a CPS interpreter for ABCL/R3, and (PE) the

meta-level is e�ectively `compiled away' using our

compiler. Programs are executed on a workstation

(SUN Sparcstation 10: SuperSparc 50MHz, 128MB

memory) with two Common Lisp compilers (Al-

legro CL 4.1 and CMU CL 17e) as the back-end

compiler

9

.

9

For this benchmark, we used Common Lisp compilers, in-

stead of the ABCL/f compiler as the back-end compiler for

the following reason. The current ABCL/f compiler does not

support function closures, which is necessary for execution of

the interpreter in (INT). In order to do a fair comparison, we

judged that we should employ the same back-end compiler.

10



CL PE INT PE INT

Boyer 2.06 2.02 2349 0.99 1143

1.62 1.71 269 1.058 166

8-Queens 0.043 0.050 390 1.16 9073

0.191 0.190 34.6 0.999 182

10-Queens 1.19 1.14 9363 0.965 7901

4.45 4.19 1011 0.940 227

Elapsed time(sec.) Relative speed

Top and bottom numbers in each row correspond to

the execution on Allegro CL and CMU CL, respectively.

Columns in relative speed show elapsed time relative to

the CL case.

Table 1: Performance Comparison between Com-

piled and Interpreted Executions

From Table 1, we can observe that (1) our com-

pilation scheme exhibits equivalent performance to

traditional (i.e., non-re
ective) compilers, and (2)

compared to naive interpretation, our compilation

scheme improves performance more than 100-fold

10

.

4.2 Overhead of Meta-Level Program-

ming in Parallel Applications

The next benchmark is to measure the overhead

caused by meta-level programming in parallel appli-

cations. We compare the executions in three ways.

(Original) The original program without meta-level

optimizations is directly compiled by the ABCL/f

compiler, and executed on Fujitsu AP1000, a mas-

sively parallel processors with 64 Sparc-based nodes

and very fast torus network interconnection[22].

(Hand-craft) The application is manually optimized

(see below) and compiled by the ABCL/f compiler.

Fortunately the sequential part of ABCL/R3 is almost iden-

tical to Common Lisp; thus, we can easily convert sequential

ABCL/R3 program into Common Lisp programs by replac-

ing message sends with function calls, for example. Note

that this was done for benchmark purposes only; since under

normal circumstances the partial evaluator unfolds possible

function applications, the residual code, compiled with the

ABCL/f compiler, does not contain function closures.

10

The interpreter used in this benchmark is not highly opti-

mized. However, it is worth pointing out that previous stud-

ies to optimize/minimize interpreters still result in a factor

of 10 times slower execution compared to the non-re
ective

compilers even with limited `openness'[6, 14].

(Meta) The same optimizations are extracted and

separately speci�ed as a meta-level class library,

and the original program at the base-level is not

modi�ed except for a few annotations; these pro-

grams are compiled together by our compiler, and

executed.

Target application programs are as follows:

Parallel Search: The �rst base-level application

is a simple parallel search program (n-Queens

problem). Each object is generated as a node in

the search tree. Optimizations in Hand-craft and

Meta are: (1) Locality control|child nodes (ob-

jects) at deep levels in the search tree are created

at the same processor as their parents' in order

to reduce remote communication overhead (the

default is to randomly choose a processor). (2)

Weighted termination detection[19]|`weight' is

propagated along the search tree in order to de-

tect the end of a search process. By default, the

detection is achieved by collecting acknowledg-

ments in the search tree; therefore, intermediate

search nodes cannot be released until all its de-

scendant nodes terminate. The meta-level pro-

gram and its compiled code in the Meta case are

given in Appendix A.

N-Body Simulation The second base-level appli-

cation is a parallel Barnes-Hut N-body simula-

tion algorithm. The optimization technique em-

ployed in a hand-tuned ABCL/f code is to cache

sub-space data, and exhibits comparable perfor-

mance to highly optimized algorithm presented

in [8]. In Hand-craft, method calls that access

subspaces in the base-level program are modi-

�ed to �rst look-up the cache. In ABCL/R3,

this optimization is separately described at the

meta-level; a customized meta-interpreter is de-

�ned that looks up the cache on speci�c method

calls.

The graph in Figure 9 shows the benchmark re-

sults of above two applications: 11-Queens problem,

and 2,000/10,000 particles N-body simulations. All

programs are executed on Fujitsu AP1000 (64 �

(25MHz Sparc processor + 16MB memory)). From

the graph, we can observe that the Meta execution

(1) signi�cantly improves the performance of the

11



Hand-Craft
Meta/PE
Original

9.74 10.38

262.54

64.7269.03

no
t a

va
ila

bl
e

11-Queens N-Body (2,000) N-Body (10,000)

1.0

2.0

27.0

re
la

tiv
e 

sp
ee

d 
(H

an
d-

C
ra

ft
=1

)

0.685
0.801

1.478

The height of each bar shows elapsed time relative to Hand-

craft. Figures on top of each bar are real elapsed time in

seconds. The Original execution of N-Body (10,000) failed
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Figure 9: Comparison of Overhead of Meta-Level

Programming

Original program, and (2) has only small overhead

compared to the Hand-craft one, while encapsulat-

ing the optimizations into the meta-level. (In the

n-Queens problem, the overhead was about 17%.

In the N-body simulation, the overhead in both

cases was approximately 7%.) Consequently, we

have achieved high e�ciency as well as good pro-

grammability and re-usability at the same time.

The source of the overhead is mainly that (1) the

partial evaluator converts a loop in the base-level

program into recursive functions, which is less e�-

cient in ABCL/f , (2) management of `weights' for

termination detection is implemented as separate

methods, while they are inlined into the search func-

tion in the Hand-craft case, (3) unnecessary assign-

ments of instance variables are performed because

of the technique described in Section 3.2.2. The

overhead could be reduced by doing further opti-

mizations such as eager inlining as in Self[4], and

static 
ow analysis.

To investigates the baseline e�ciency of above

programs, we also executed benchmark programs

written in C with a message-passing library, against

those written in ABCL/f and ABCL/R3 on the

AP1000. The left bars in Figure 10 indicate elapsed

times for the execution of 11-Queens problem (Orig-

1.0

0.5

1.5

el
ap

se
d 

tim
e 

(s
ec

.)

0

C
ABCL/f
ABCL/R3

Original Optimized

Figure 10: Elapsed time for 11-Queens problem in

C, ABCL/f , and ABCL/R3

inal) written in C and ABCL/f . The right bars

are optimized ones in C, ABCL/f , and ABCL/R3.

Only the locality control technique is employed here;

it is achieved by modifying the base-level applica-

tion (C and ABCL/f ), or customizing the meta-

level (ABCL/R3). We observe that (1) ABCL/f is

only 1.5{1.6 times slower than C, and (2) the op-

timization e�ectively improves performance about

by 3-fold both in ABCL/f and C.

5 Discussions and Related Work

Optimization techniques in ABCL/R2[14] assumes

that (1) a predetermined set of operations is inter-

preted and can be modi�ed by re
ective program-

ming, whereas other operations are non-re
ective

and thus cannot be modi�ed so as to preserve their

e�ciency, and (2) some system-de�ned objects are

subject to lazy rei�cation, so that they could be

executed directly until the system detects that in-

terpretation is required. Similar approaches are be-

lieved to be taken by CLOS-MOP and AL-1/D[17].

Although a dramatic improvement over pure inter-

pretation, our experience is that even a small num-

ber of interpreted operations drastically decrease

performance. Even in Open C++[5], which throws

away the ideal of presenting the entire meta-circular

interpreter, but rather only provides a restricted set

12



of customizable operations (namely method invoca-

tion, object creation, and instance variables access),

any customization incurs a form of interpretation

overhead.

Some researchers investigated the alternative of

subsuming the interpretation overhead with algo-

rithmic gains achieved by re
ective programming.

For example, Okamura, et al. illustrate the e�ec-

tiveness of meta-level optimization in a distributed

information retrieval system[16]. Their underlying

computing environment exhibits very low remote

message passing performance, and bene�t of reduc-

ing the number of remote messages overcomes the

overhead of re
ection. However, since such assump-

tions are not universal, one cannot always make

such a tradeo�; for example, with massively par-

allel machines, message passing latency is a factor

of 100{1000 times faster compared to workstation

TCP/IP communication over Ethernet, so gains in

communication would be overwhelmed by interpre-

tation overhead. Furthermore, forcing the users to

consider the tradeo� between interpretation vs. per-

formance improvement complicates the applicabil-

ity of open implementation technology. For exam-

ple, if a particular algorithm change at the meta-

level does not improve system performance, it will

be di�cult to judge whether the reason was the al-

gorithm itself, or the interpretation overhead.

Instead, in our approach, we can present the pro-

grammer with customizability of the entire meta-

interpreter described concisely in object-oriented

style. The compiler successfully eliminates much

of the unnecessary run-time interpretation over-

head. The programmer no longer needs to be con-

cerned with tradeo�s incurred with interpretation,

widening the applicability of open implementation

technology to areas including time-critical and per-

formance conscious ones. Although there was an

earlier static optimization attempt of meta-level

code in Open C++[6] with a similar objective, its

main optimization was in elimination of idempotent

reify/re
ect pairs, and did not have the full gener-

ality or e�ciency of our compiler.

One might also claim that meta-level optimiza-

tion and customization examples we have presented

might well have been done solely at the base-level.

However, for large-scale programming, meta-level

programming can describe such changes in a con-

cise, modular manner, and ubiquitously apply it

throughout the program (with of course, appropri-

ate scope control). For example, it would be un-

feasible to expect the programmer to chase through

a 100,000-line program to insert noti�cation code

every time there is a syntactic reference to a vari-

able client, and then change it back when noti�-

cation is no longer required. Being able to describe

the changes in a modular, object-oriented fashion is

the essential characteristics for creating customiz-

able meta-level class frameworks.

As we have stated earlier, `compiling away' meta-

level interpretation requires the full generality of

semantic-based optimization through partial eval-

uation, and cannot be achieved by standard op-

timization techniques such as inlining. This is

not to say that standard optimization techniques

are useless; rather, there are numerous possi-

ble local optimizations that the partial evalua-

tor does not support, only a few of which the

current compiler performs during post-processing.

More advanced optimization techniques developed

in high-performance object-oriented compilers such

as Self[4] and Concert[11] could be greatly bene�cial

in this regard. Moreover, partial evaluator enlarges

the opportunity for advanced optimizations because

the residual code is directly executable without any

indirections caused by interpretation.

Since the discovery of the Futamura projection[7],

there have been a number of studies that uses par-

tial evaluation to compile programs from interpreter

de�nitions[9, 21]. The use of partial evaluation in

our work follows the same path, albeit special tech-

niques employed so as to be applicable to concurrent

object-oriented programming. Partial evaluation is

not a panacea; however, we believe that other pro-

gram transformation techniques as well as run-time

techniques are also important in order to build re-

alistic re
ective systems.

6 Conclusion

In this paper, we proposed a compilation frame-

work for object-oriented concurrent re
ective lan-
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guages based on partial evaluation that almost com-

pletely `compiles away' the overhead of meta-level

interpretation. The techniques that make partial

evaluation possible include (1) pre-processing that

converts object-oriented evaluator de�nition to CPS

(and store-passing) functions, (2) a new partial eval-

uation technique called preaction that preserve I/O

type side-e�ects, (3) multiple compiled methods to

cope with dynamic modi�cation of the meta-level,

and (4) post-processing that resolves assignments

to instance variables and performs some other op-

timizations.

Preliminary benchmarks indicate that (1) the se-

quential re
ective programs in our framework ex-

hibit equivalent performance to the ones compiled

by non-re
ective compilers, (2) compiled programs

are faster than interpreted ones by orders of mag-

nitude, (3) optimizations that are separately de-

scribed by a meta-level class framework applied to

a parallel application poses only 10{30% overhead,

compared to a program that has been hand-tuned

by embedding optimizations, and compiled by a

non-re
ective compiler.
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A Example Compilation of Re-


ective Programs in

ABCL/R3

Here we give a meta-level programming example|

the n-Queens problem described in Section 4.2, and

the excerpt of the actual compiled result.

The Base-level Program The base-level pro-

gram is an n-Queens parallel search problem. A

search node in the search tree is represented by a

concurrent object.

(defclass queen ())

(defmethod queen do-search (size col places)

(if (= size col) ; do we have an answer?

;; yes, report the answer

(print-answer *printer* places)

(dotimes (i size)

;; no, check if we can place at i'th row of

;; the next column

(when (not (checked? col i places))

;; create a new object and

;; have it search in parallel

(past (do-search (new 'queen) size

(1+ col) (cons i places)))))))

The Evaluator for Locality Control The

meta-level programs are divided into two modules;

the locality control module and the weighted ter-

mination detection module. Firstly, locality control

is achieved by the evaluator object locality-eval,

which speci�es the processor numbers of newly cre-

ated objects. A meta-level argument depth is trans-

parently added to inter-object message passing.

;;; Class de�nition; inherits from class standard-eval

(defclass locality-eval (standard-eval))

;;; The method that gives the processor number for

;;; object creation is overridden.

(defmethod locality-eval

get-object-creation-node (class arg-vals env)

;; look up the meta-level variable depth

(let ((depth (lookup-meta-var 'depth env)))

;; compare with the threshold

(if (< *threshold* depth)

;; create on the local processor

(this-node-id)

;; create on a remote processor

(random-node-id))))

;;; A hidden parameter depth is passed to a newly

;;; created object. The following method returns an

;;; association list of parameter names and values.

(defmethod locality-eval

get-object-creation-meta-arg

(class arg-vals env)

;; look up the meta-level variable depth

(let ((depth (lookup-meta-var 'depth env)))

(cons ;; (current depth)+1

(cons :depth (1+ depth))

;; combine parameter list with delegatee's

(delegate))))

The Evaluator for Weighted Termination De-

tection The module for the weighted termination

detection modules manager objects, evaluator ob-

ject WTD-eval, and several meta-object methods.

Here, we only show the evaluator, which (1) calls

an initialization method at the beginning of the
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(defmethod queen do-search (size col places)

(meta-init-weight self) ; from WTD-eval

(if (= size col)

(progn (print-answer *printer* places)

(meta-return-weight self)) ; from WTD-eval

(if (< 0 size) ; **

(if (not (checked? col 0 places))

(if (< *threshold* depth) ; from locality-eval

(progn

(past (do-search

(new 'queen :depth (1+ depth)

:weight (meta-weight-for-child self)

:on (this-node-id)) ; local creation

size (1+ col) (cons 0 places)))

(eval-while818 depth col size 1 places)) ; next step of the loop

(progn

(past (do-search

(new 'queen :depth (1+ depth)

:weight (meta-weight-for-child self)

:on (random-node-id)) ; random creation

size (1+ col) (cons 0 places)))

(eval-while819 depth col size 1 places))) ; next step of the loop

(eval-while820 depth col size 1 places)) ; next step of the loop

(meta-return-weight self)))) ; from WTD-eval

;;; Methods eval-819, 820 have same de�nition.

(defmethod queen eval-while818 (depth col size row places)

;; The body is almost identical to the lines after `**' of the method

;; do-search except that the value 0 is replaced with the variable row.

)

Figure 11: Compiled Result of n-Queens Program

base-level method, (2) distributes weight to child

objects, and (3) calls a �nalization method (to re-

turn weight) at the termination of the base-level

method.

;;; Class de�nition.

(defclass WTD-eval (standard-eval))

;;; Invoke method init-weight at the beginning of a

;;; method.

(defmethod WTD-eval eval-entry-method (exp env)

;; variable ID refers the meta-object

(init-weight ID)

;; body of method execution (by delegation)

(delegate))

;;; Parameter weight is passed on to child objects.

(defmethod WTD-eval

get-object-creation-meta-arg

(class arg-vals env)

(cons (cons :weight

(get-weight-for-child ID))

(delegate)))

;;; Invoke the method to return weight at termination

;;; of a method.

(defmethod WTD-eval eval-exit-method

(return-value env)

(return-remaining-weight ID) ; return weight

(delegate))

Compiled Code We show the resulting compiled

code in Figure 11 before being passed into the back-

end compiler. Some arguments have been omitted,

and some variables have been renamed for read-

ability. Although program size has become slightly

larger, interpretation is `compiled away.' The rea-

sons for increase in program size are: (1) a loop in

the original program has been converted to recur-

sive functions, (2) code after a conditional expres-

sion has been duplicated, (3) the �rst iteration of

the loop has been unfolded, and (4) di�erent spe-

cialized function is constructed for each branch of

conditionals, although they have the same de�ni-

tions.
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