to appear in Proceedings of OOPSLA’98 workshop on Reflective Programming in C++4 and Java

On-the-fly Specialization of Reflective Programs

Using Dynamic Code Generation Techniques®

SUGITA, Yuuya'
HARADA Ken’ichif

1 Introduction

In these days, many distributed application pro-
grams require dynamic adaptation to their exe-
cution environment as the environment dynami-
cally evolves, and the programs may be dynami-
cally transported over network. Reflection could
be beneficial to dynamic adaptation in its na-
ture. A running base-level program can adapt
to an environment by replacing its meta-program
with a new one which embodies an environment-
specific policy. For example, Amano and Watan-
abe proposed a reflective architecture suitable for
dynamic adaptation|[1].

Unfortunately, efficient implementation tech-
niques of reflective languages, such as the partial
evaluation[2, 9, 10] and the compile-time reflec-
tion[4, 7], do not suit dynamic adaptation be-
cause the programs should be fixed for compi-
lation. In other words, when a program is ‘mi-
grated’ to a different meta-program, a sluggish
compilation process must be performed dynami-
cally.

This paper proposes a novel way to implement
reflective languages using the dynamic code gen-
eration (DCG) techniques[3, 5, 8]. As far as the
authors know, this is the first study that uses

*This study was supported in part by the Japanese Min-
istry of Education Grand-in-Aid for Scientific Research on
Priority Area: “Construction Principles for Software with
Evolution Mechanisms.”

Y Dept. of Computer Science, KEIO Univ.
{yuuya,harada}@hara.cs.keio.ac.jp

{Dept. of Graphics and Computer Science, Graduate
School of Arts and Science, Univ. of Tokyo
masuhara@graco.c.u-tokyo.ac.jp

SDept. of Information Science, Univ. of Tokyo
yonezawa@is.s.u-tokyo.ac.jp

MASUHARA, Hidehiko?

YONEZAWA, Akinori®

DCG for dynamically specializing reflective pro-
grams. Advantages of DCG-based implementa-
tion are that: (1) the specialized process is faster
than the partial evaluation/compilation process
by orders of magnitude; and (2) the interpretation
overheads in the meta-interpreters in the special-
ized program, as well as the partial evaluation
based implementation.

However, for successful specialization, the DCG
techniques pose more restrictions on the target
programs. Especially, the structure of meta-
interpreters seems to cause performance problems
in DCG.

In order to clarify the problems, we first intro-
duce the basic mechanism of a DCG system (Sec.
2). We then define a Scheme-based simple reflec-
tive language (Sec. 3), and measure basic perfor-
mance of DCG specialized meta-interpreters (Sec.
4). As expected, they are not fast enough. We
thus examine the reasons of overheads and ideas
to reduce them (Sec. 5).

Although we use a simple reflective language,
we believe that the discussion in this paper would
also be applicable to practical reflective languages
such as C4++ and Java based ones.

2 Dynamic Code Generation

2.1 Specialization by Using Partial
Evaluators
Several studies have shown that reflective

programs can be compiled by using partial
evaluation[2, 9]. Assume that PF, int, and p
are a partial evaluator, a meta-interpreter, and
a base-level program, respectively. The compi-
lation process, also known as the first Futamura
projection[6] is:

PE(int,p) = int, (1)
where int, is a result of partial evaluation;i.e., a
specialized version of int with respect to p. Since
partial evaluators perform source-to-source trans-
lation, #nt, must be compiled into executable
code, intéw (we let superscript M denote exe-
cutable machine instructions), which would be as
efficient as the code a compiler for the language
defined by int, if exists, generated from p.
The problem of this scheme is that the system
should perform the process (1) and subsequent
compilation, whenever either p or int is modified.

2.2 Specialization by Using DCG

DCG is, similar to partial evaluation, a method-
ology for specializing programs. Unlike partial
evaluation, however, DCG performs specializa-
tion much faster. The DCG first generates com-
piled code fragments for dynamic part of ¢nt, and
a program for static part of int, which we call
code generator intgenM:

DCG(int) = intgen™ (2)
When the code generator is applied to a part of

mt’s input, say p, it generates a specialized ver-
sion of nt:

intgen™ (p) = intéw (3)
This process is very efficient because it merely
places the code fragments that are generated in
(2). From the viewpoint of adaptation, when p is
moved to a new interpreter int’, the system only
have to perform the process (3) with the code
generator intgen™ for int’, which is faster than
the process (1).

2.3 Overview of DCG
Let us see how DCG works, by using a simple
program as an example. A DCG takes a pro-
gram in which each expression is annotated with
its binding-time.
For example, a program that computes n’th
power of x is annotated as follows:
(define (pow x n)
(if (= @ n 0)
1
(* @x (pow @x (- @n 1)))))
The non-underlined expressions are static; they
will appear in code generators (e.g., intgen™).
The underlined expressions, on the other hand,

are dynamic; they will appear in the generated
code (e.g., intd’). An @ operator shows the
binding-time of a function application: @ means
that the application is performed at code gener-
ation time; @ means that the corresponding code
generator is invoked at code generation time; and
@ means that a code fragment for the application
is generated at compile time.

The templates and the code generator for this
program are shown in Fig.1'. A template is a se-
quence of machine instructions that corresponds
to the underlined expressions. A code generator
is a function that performs the non-underlined ex-
pressions, and loads templates into the memory.
When pow-gen is called with argument 3, it gen-
erates the instructions as shown in Fig.2, which
essentially has the same functionality as the func-
tion (lambda (x) (x x (* x (x x 1)))).

Unfortunately, DCG generated code is not as
efficient as the code generated from a statically
partially evaluated result. Generally, when a code
generator is called upon an @ operator, instruc-
tions that save/restore registers, pass arguments,
and adjust the frame pointer are generated. How-
ever, they may be unnecessary in the generated
code. In the example in Fig.1, the template tO
adjusts the frame pointer, and the templates t2
and t3, passes an argument through the stack.

push Y%ebp; movl Y%esp,%ebp; push -8(%ebp);
push Y%ebp; movl Y%esp,%ebp; push -8(%ebp);
push Y%ebp; movl %esp,%ebp; push -8(%ebp);
movl $1,%eax; leave;
addl $4,%esp; imull -8(%ebp),%eax; leave;
addl $4,%esp; imull -8(%ebp),%eax; leave;
addl $4,%esp; imull -8(%ebp),%eax; leave;

Figure 2: DCG generated instructions.

3 A Simple Reflective Language
3.1 Reflective Architecture

For simplicity, our reflective architecture has only
the base-level and the meta-level. Both levels are
functional subset of Scheme. At the meta-level,
the user can define customized meta-interpreters,
each of which is a function that takes an expres-
sion, an environment and a store, and returns a

In the figure, templates are written in i386’s
mnemonic. %eax is a general register and %esp is a stack
pointer. A function receives its arguments in the stack,
and returns a result in jeax.

Templates

t0 : push Y%ebp /* function preamble */
movl %esp, %ebp

t1 : movl $1, $eax /* return 1 */
leave /* function trailer */

t2 : push -8(%ebp) /* pass argument */

t3 : addl $4, Y%esp
imull -8(%ebp),%eax /* x*pow(x-1) */
leave /* function trailer */

Dynamic Code Generator
(define (pow-gen n)
(load-template t0)
(if (=n 0)
(load-template t1)
(begin (load-template t2)
(pow-gen (- n 1))
(load-template t3))))

Figure 1: Templates and code generator for pow.

value for the expression. They are treated as first-
class objects in base-level programs. The base-
level language has a reflective operation get-eval
to obtain a reference to a meta-interpreter. When
a form (eval-with e; e3) is evaluated at the
base-level, the expression e; and eg are first evalu-
ated under the current meta-interpreter, and then
the result of e1, which should be an S-expression,
is evaluated under the result of e, which should
be a reference to a meta-interpreter.

3.2 Implementation of eval-with

We use a DCG technique to implement the
eval-with form. At the compile time, the sys-
tem generates a code generator for each meta-
interpreter. In Fig.3, two generators int-a-gen
and int-b-gen are generated for the customized
meta-interpreters int-a and int-b, respectively.
When the form (eval-with ey eg) is evaluated,
e1 and eg are first evaluated to p and int-a, the
the run-time system looks up the specialized code
cache with a key (p,int-a). If the cached code is
found, the system merely executes it. Otherwise,
it applies int-a-gen to p, yielding the specialized
code int-a™. The system puts the generated code

P
in the cache with a key (p,int-a), and executes it.

4 Preliminary Performance

Evaluation

In order to evaluate the basic performance of our
specialization framework, we have constructed a
DCG system for Scheme subset, which is power-
ful enough to manipulate function closures, struc-
tured data, etc., and in fact it successfully special-
ize a Scheme interpreter in Scheme.

Tab.1 shows the execution times of benchmark
programs that are interpreted by a default meta-
interpreter, and are compiled by four specializa-

Table 1: Execution times [sec].

matrix | deriv
no specialization 2.25 | 4.03
dynamic specialization 0.481 | 0.770
static specialization 0.400 | 0.602
ideal 0.023 | 0.051

tion techniques; all use DEC Scheme-to-C com-
piler for generating native instructions. The pro-
grams are executed on a Pentium box running at
150MHz with 48MB memory.

The matrix benchmark performs 100 multipli-
cations of 5x5 matrices. The deriv benchmark
symbolically computes differentiations of func-
tions for 500 times. The DCG specialized pro-
grams, whose execution times are displayed in the
dynamic specialization row in Tab.1, improve
the performance over the interpreter-based pro-
grams, displayed in the no specialization row,
by more than the factor of 4. Tab.2 shows the
times spend in specializing the benchmark pro-
grams by using DCG and the partial evaluator.
The DCG improves the specialization times by
three orders of magnitude. We thus conclude
that our framework can be used as performance
improvement from the interpreter-based imple-
mentations for most cases. The DCG specialized
programs are 20-30 percent slower than the pro-
grams statically partially evaluated by Similix, a
Scheme partial evaluator, whose execution times
are displayed in the static specialization row.
The causes and planned remedies of this overhead
are discussed in the next section. However, as
the specialization times of those techniques show,
this overhead could be covered for dynamically
adapted programs with the faster adaptation pro-
cess. Qur current meta-interpreters are not suf-
ficiently specialized in both dynamic and static

Compile Time

int-a int-a-gen
= @ DCGG (int-a)
—_— ~

Meta-interpreter A

int-b int-b-gen
j—— DCGG (int-b)
—

Meta-interpreter B

Dynamic Code Generator
for Meta-interpreter A

Dynamic Code Generator
for Meta-interpreter B

Adaptation Time

. M
int-ap,

int-a-gen (p‘)“‘V
.

.
e
o

b Specialized version of int-a
with respect to p

Base-level Programs

. M
. int-by
.'.'

.

‘N
int-b-gen (p)"'A

Specialized version of int-b
with respect to p

(b)

Figure 3: Outline of implementation.

Table 2: Specialization times[sec].

matrix | deriv

dynamic specialization 0.005 | 0.006
static specialization 10.5 14.7

techniques. The ideal? row displays the execu-
tion times of the benchmarks that are directly
compiled without having the meta-interpreter.
Those programs are more than 11-fold faster over
the specialized programs, which are specialized ei-
ther statically or dynamically. We conjecture that
the current convention for base-level parameter
passing causes ineflicient variable references in the
specialized programs, and that the representation
of base-level closures interferes the Scheme com-
piler’s optimization techniques. Some of those
overheads could be eliminated by cleverly de-
signed meta-interpreters. We discuss these issues
in the next section.

5 Planned Techniques to Im-

prove Efficiency

As mentioned above, the DCG specialized pro-
grams still have a considerable amount of over-
heads. Below, we discuss the reasons of those
overheads, and the techniques that are planned

2We call this the ideal case since an ideal specializer
would return the original base-program for a default meta-
interpreter.

to reduce them.

5.1 Inlining to Remove Unnecessary
Register Saving Operations

As we have seen in Sec.2.3, when an input pro-
gram has @ operators, the specialization result
of DCG could contain unnecessary instructions
such as the ones for saving registers, which de-
grades performance of generated code. A meta-
interpreter may suffer this performance degra-
dation due to its peculiar programming style.
It recursively defines the semantics of the base-
language for each programming constructs. This
means that even for a light expression, such as
a variable reference and a constant, its ‘com-
piled’ code fragment include the unnecessary in-
structions. For example, when the code genera-
tor for eval in Fig.4 is applied to the expression
(eq? 1 x), unnecessary instructions will be gen-
erated around 1 and x because the definition for
eq? has two @ applications.

To eliminate those unnecessary instructions, we
plan to perform preprocessing that inlines recur-
sive calls of eval before the compilation, so as to
decrease the number of @ applications. For the
time being, we are examining appropriate ways
to do so, but of course, inlining techniques could
easily result in code explosion. We are there-
fore investigating techniques to inline programs
for specific base-expression patterns.

(define (eval exp env store)
(cond ...
((and (pair? exp) (eq? (car exp) ’eq?))
(eq? @ (eval @ (cadr exp) env store)
(eval @ (caddr exp) env store)))

o))
Figure 4: The definition of eq? form.

5.2 Stack Manipulation Primitives for

Efficient Parameter Passing
The parameter passing for base-level functions in
our meta-interpreter uses list structure to cope
with an arbitrary number of arguments. Since a
specialized program basically inherits data struc-
ture from its original program, the specialized
programs also have to perform inefficient list ma-
nipulations for function calls. The arity rais-
ing[11], which is known to be useful to this prob-
lem, is inappropriate for dynamic adaptation be-
cause it relies on a global analysis of a specialized
program.

Our plan is to provide primitives that push/pop
arguments for base-level functions, and to define
meta-interpreters so that they use those primi-
tives for base-level function calls. At compilation-
time, by translating those primitives into the in-
structions that manipulates the stack, registers,
or register window, the parameter passing in the
specialized programs would be performed in more
efficient manner.

6 Conclusion

In this paper, we have proposed an on-the-fly spe-
cialization framework of reflective programs. At
compile-time, the system generates a dedicated
code generator for each meta-interpreter by us-
ing a DCG system, and, at the run-time, the code
generator yields a specialized executable program
for given base-level programs. Our prototype sys-
tem showed improvement of execution times of
benchmark programs by more than 5-fold over
interpreter-based execution, and improvement of
specialization times by orders of magnitude over
the specializations using partial evaluators.

The benchmarks also showed that our meta-
interpreters are not yet sufficiently specialized.
We examined some causes of the problems and
proposed techniques to remedy the overhead,
namely an inlining technique for enlarging tem-

plate granularity, and eflicient parameter passing
primitives for base-level functions. Those will be
further investigated.

Acknowledgments

The authors would like to thank Satoshi Mat-
suoka, Ken’ichi Asai, and Kenjiro Taura for their
valuable advises and discussions.

References

[1] N. Amano and T. Watanabe. A procedual model
of dynamic adaptability and its description lan-
guage. In International Workshop on Principles
of Software Evolution, pp. 103-107, April 1998.

[2] K. Asai, S. Matsuoka and A. Yonezawa. Duplica-
tion and Partial Evaluation —For a Better Under-
standing of Reflective Languages—, In Lisp and
Symbolic Computation, Vol. 9, pp.203-241, 1996.

[3] C. Consel and F. Noél. A general approach for
run-time code generation and its application to C.
In PoPL’96, pp. 145-156, January 1996.

[4] S. Chiba. A metaobject protocol for C4++. In
OOPSLA’95, pp. 285-299, 1995.

[5] D. R. Engler. VCODE: a retargetable, extensi-
ble, very fast dynamic code generation system. In
PLDI’96, pp. 160-170, May 1996.

[6] Y. Futamura. Partial evaluation of computation
process — an approach to a compiler-compiler. Sys-
tems, Computers, Controls, Vol. 2, No. 5, pp. 45—
50, 1971.

[7] Y. Ishikawa, et al. Design and implementation
of metalevel architecture in C4++: MPCH++ ap-
proach. In Reflection 96, April 1996.

[8] P. Lee and M. Leone. Optimizing ML with run-
time code generation. In PLDI’96, pp. 137-148,
May 1996.

[9] H. Masuhara, S. Matsuoka, K. Asai, and
A. Yonezawa. Compiling away the meta-level in
object-oriented concurrent reflective languages us-
ing partial evaluation. In OOPSLA’95, pp. 300-
315, 1995.

[10] H. Masuhara and A. Yonezawa. Design and Par-
tial Evaluation of Meta-objects for a Concurrent
Reflective Language. In EFCOOP’98, pp. 418-439,
1998.

[11] S. Romanenko. Arity Raiser and its Use in Pro-
gram Specialization. In ESOP’90, pp. 341-360,
May 1990.

[12] U. Holzle and D. Ungar A Third-Generation
SELF Implementation: Reconciling Responsive-
ness with Performance In OOPSLA’94, pp. 229-
243, 1994.

