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Abstract. This paper proposes a run-time bytecode specialization (BCS)
technique that analyzes programs and generates specialized programs
at run-time in an intermediate language. By using an intermediate lan-
guage for code generation, a back-end system can optimize the specialized
programs after specialization. As the intermediate language, the system
uses Java virtual machine language (JVML), which allows the system to
easily achieve practical portability and to use sophisticated just-in-time
compilers as its back-end. The binding-time analysis algorithm, which is
based on a type system, covers a non-object-oriented subset of JVML. A
specializer, which generates programs on a per-instruction basis, can per-
formmethod inlining at run-time. The performance measurement showed
that a non-trivial application program specialized at run-time by BCS
runs approximately 3–4 times faster than the unspecialized one. Despite
the large amount of overheads at JIT compilation of specialized code,
we observed that the overall performance of the application can be im-
proved.

1 Introduction

Given a generic program and the values of some parameters, partial evaluation
techniques generate a specialized program with respect to the values of those pa-
rameters[11, 17]. Most of those techniques have been studied as source-to-source
transformation systems; i.e., they analyze programs in a high-level language and
generate specialized programs in the same language. They have been successful
in the optimization of various programs, such as interpreters, scientific applica-
tion programs, and graphical application programs[4, 13, 20].
Run-time specialization (RTS) techniques[10, 12, 18, 22] efficiently perform

partial evaluation at run-time (1) by constructing a specializer (or a generating
extension) for each source program at compile-time and (2) by directly gener-
ating native machine code at run-time. The drastically improved specialization
? To appear in Proceedings of Second Symposium on Programs as Data Objects
(PADO-II), Aarhus, Denmark, May 2001.
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speed enables programs to be specialized by using values that are computed
at run-time, which means that RTS provides more specialization opportunities
than compile-time specialization. Several studies reported that RTS can improve
performance of programs for numerical computation[18, 22], an operating system
kernel[25], an interpreter of a simple language[18], etc.
One of the problems of RTS systems is a trade-off between efficiency of

specialization and efficiency of specialized code. For example, Tempo generates
specialized programs by merely copying pre-compiled native machine code. The
performance of the generated code is 20% slower than that is generated by
compile-time specialization on average[22]. Of course, we could optimize special-
ized programs at run-time by optimizing generated code after specialization. It
however makes amortization1 more difficult.
In this paper, we describe an alternative approach called run-time bytecode

specialization (BCS), which is an automatic bytecode-to-bytecode transformation
system. The characteristics of our approach are: (1) the system directly analyzes
program and constructs specializers in a bytecode language; and (2) the special-
izer generates programs in the bytecode language, which makes it possible to
apply optimizations after specialization by using just-in-time (JIT) compilation
techniques.
As the bytecode language, we choose the Java virtual machine language

(JVML)[19], which provides us practical portability. The system can use ex-
isting compilers as its front-end, and widely available Java virtual machines,
which may include sophisticated JIT compilers, as its back-end. The analysis of
JVML programs is based on a type system derived from the one for JVML[27].
A specializer can be basically constructed from the result of the analysis, and
can perform method inlining at run-time.
Thus far, we have developed our prototype system for a non-object-oriented

subset of JVML; the system support only primitive types, arrays, and static
methods. Although the system does not yet support important language features
in Java, such as objects and virtual methods, it has sufficient functionality to
demonstrate fundamental costs in our approach, such as efficiency of specialized
code and overheads of specialization and JIT compilation.
The rest of the paper is organized as follows. Section 2 overviews existing RTS

techniques and their problems. BCS is described in Section 3. Section 4 presents
the performance measurement of our current implementation. Section 5 discusses
related studies. Section 6 concludes the paper.

2 Run-Time Specialization

2.1 Program Specialization

An offline partial evaluator processes programs in two phases: binding-time anal-
ysis (BTA) and specialization. BTA takes a program and a list of the binding-
1 In RTS systems, a specialization process of a procedure is amortized if the amount
of reduced execution time of the procedure becomes larger than the time elapsed for
the specialization process.
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times of arguments of a method in the program and returns an annotated pro-
gram in which every sub-expression is associated with binding-time. The binding-
time of an expression is static if the value can be computed at specialization time
or dynamic if the value is to be computed at execution time. For example, when
BTA receives

class Power

{ static int power(int x, int n)

{ if (n==0) return 1;

else return x*power(x,n-1); } }

with list [dynamic, static] as the binding-times of x and n, it adds static anno-
tations to the if and return statements, to the expressions n==0 and n-1, and
to the call to power. The remaining expressions, namely the constant 1 in the
‘then’ branch, the variable x, and the multiplication, are annotated as dynamic.
In the specialization phase, the annotated program is executed with the val-

ues of the static parameters, and a specialized program is returned as a result.
The execution rules for static expressions are the same as the ordinary ones. The
rule for the dynamic expressions is to return the expression itself. For example,
execution of annotated power with argument 3 for static parameter n proceeds
as follows: it tests “n==0”, then selects the ‘else’ branch, computes n-1, and re-
cursively executes power with 2 (i.e., the current value of n-1) as an argument.
It eventually receives the result of the recursive call, which should be “x*x*1”,
and finally returns “x*x*x*1” by appending the received result to “x*”.

2.2 Overview

Run-time specialization techniques efficiently specialize programs by generating
specialized programs at machine code level[10, 12, 15, 18, 22, 29].
Given a source program and binding-time information, an RTS system effi-

ciently generates specialized programs at run-time in the following way. It first
performs BTA on the source program, similar to compile-time specialization
systems. It then compiles dynamic expressions into fragments of machine code,
called templates. It also constructs a specializer that has the static expressions
in the source program and operations for copying corresponding templates into
memory in place of the dynamic expressions. At run-time, when a specializer
is executed with a static input, it executes the static expressions, and directly
generates a specialized program at machine code level.

2.3 Problems

Efficiency. There is a trade-off between efficiency of specialization processes
and efficiency of specialized code in RTS systems.
A program that is specialized by an RTS system is usually slower than that

specialized by a compile-time specialization system. This is because RTS systems
rarely apply optimizations, such as instruction scheduling and register allocation,
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to the specialized code, for the sake of efficient specialization. Furthermore, pro-
grams that have a number of method invocations (or function calls) would be
much slower since method inlining is not performed in several RTS systems.
For example, Noël, et al. showed that the run-time specialized programs

have 20% overheads over the compile-time specialized ones on average, in their
study on Tempo[22]. As we will see in Section 4, the overheads in the run-time
specialized program can overwhelm the speedup obtained by specialization; i.e.,
the specialized program become slower than the original program.
If an RTS system performed optimizations at run-time, specialized programs

would become faster. In fact, there are several systems that optimizes special-
ized code at run-time[2, 18, 24]. However, the time spent for the optimization
processes makes amortization more difficult.
Consequently, an RTS system that can flexibly balance a degree of opti-

mization of specialized code and time for generating specialized code would be
beneficial.

Portability. In order to directly generate machine code, RTS systems often de-
pend on the target machine architecture. A typical RTS system includes its own
compiler from source code (usually in a high-level language) to native machine
code.
Several techniques have been proposed to overcome the problem. For exam-

ple, Tempo uses standard C compilers for creating templates[8, 22]. C̀, which
is a language with dynamic code generation mechanisms, generates specialized
code in retargetable virtual machine languages called vcode and icode[24].

3 Run-time Bytecode Specialization

3.1 Overview

Our proposed run-time bytecode specialization (BCS) technique uses a virtual
machine (bytecode) language as its source and target languages. It takes a byte-
code program as its input, and constructs a specializer in the same bytecode
language. At run-time, the specializer, which runs on a virtual machine, gener-
ates specialized programs in the same bytecode language. As a virtual machine
language, we choose the Java virtual machine language (JVML)[19].
We aim to solve the problems in the previous section in the following ways:

Efficiency. Instead of directly generating specialized code in a native machine
language, BCS generates it in an intermediate (bytecode) language. When
the system is running on a JVM with a JIT compiler, the specialized code
is optimized into a native machine language before execution. We also plan
to control the quality of specialized code and the speed of JIT compilation
processes by integrating our system with JVMs that have interfaces to its
JIT compilers, such as OpenJIT[23].
Another functionality of specializers in BCS is that they can perform method
inlining at run-time. Although the specialized code with method inlining has
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Fig. 1. Overview of BCS.

a certain amount of overheads for saving/restoring local variables at bytecode
level, a JIT compiler can remove most of them according to our experiments.

Portability. As is shown in a previous run-time code generation system[9, 24],
code generation at the virtual machine level can improve portability. Current
BCS system generates specialized code in the standard JVML; the gener-
ated code can be executed on JVMs that are a widely available to various
platforms.
The input to the BCS system is a JVML program. This means that the
system does not depend on the syntax of high-level languages. Instead, run-
time specialization can be applied to any language for which there exists a
compiler into JVML. In fact, there are several compilers from various high-
level languages to JVML[3, 6, etc.], which would be used as a front-end when
we extended our system to support the fullset of JVML.

As shown in Figure 1, a compiler first translates a source program written in
a high-level language (e.g., Java) into JVML bytecode. The compiled program
is annotated by using our BTA algorithm. From the annotated program, a spe-
cializer for generating the dynamic instructions is constructed. At run-time, the
specializer takes the values for the static parameters and generates a specialized
program in bytecode by writing the dynamic instructions in an array. Finally,
the JVM’s class loader and the JIT compiler translate the bytecode specialized
program into machine code, which can be executed as a method in the Java
language.
In the following subsections, we present the outline of each process in BCS

briefly. More detailed description can be found in the other literature[21].

3.2 Source and Target Language

As mentioned, our source and target language is JVML, which is a stack-machine
language with local variables and instructions for manipulating objects. Cur-
rently, a subset of the JVML instructions is supported. Restrictions are:

– Only primitive types and array types are supported. (i.e., objects are not
supported yet).
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Method int Power.power(int,int)

0 iload 1 // push n
1 ifne 4 // go to 4 if n 6= 0
2 iconst 1 // (case n = 0)push 1
3 ireturn // return 1
4 iload 0 // (case n 6= 0)push x
5 iload 0 // push x as arg. #0
6 iload 1 // push n
7 iconst 1 // push 1
8 isub // compute (n− 1) as arg. #1
9 invokestatic int Power.power(int,int) // call method
10 imul // compute x× (return value)
11 ireturn // return x× (return value)

Fig. 2. Method power in JVML.

– All methods must be class methods (i.e., methods are declared static).
– Subroutines (jsr and ret), exceptions, and multi-threading are not sup-
ported.

Figure 2 shows the result of compiling method power (Section 2.1) into
JVML. A method invocation creates a frame that holds an operand stack and lo-
cal variables. An instruction first pops zero or more values off the stack, performs
computation, and pushes zero or one value onto the stack.
The iconst n instruction pushes a constant n onto the stack. The isub (or

imul) instruction pops two values off the stack and pushes the difference (or
multiple) of them onto the stack. The iload x instruction pushes the current
value of local variable x onto the stack. The istore x instruction pops a value
off the stack and assigns it to local variable x. The ifne L instruction pops a
value off the stack and jumps to address L in the current method if the value
is not zero. The invokestatic t0 m(t1, . . . , tn) instruction invokes method m
with the first n values on the stack as arguments. The invokestatic instruction
(1) pops n values off the stack, (2) saves the current frame and program counter,
(3) assigns the popped values into variables 0, . . . , (n − 1) in a newly allocated
frame, and (4) jumps to the first address of method m. The ireturn instruction
(1) pops a value off the stack, (2) disposes of the current frame and restores the
saved one, (3) pushes the value on the restored stack, and (4) jumps to the next
address of the saved program counter. The caller uses the value at the top of the
stack as a returned value.

3.3 Binding-Time Analysis

Strategy Our BTA algorithm is a flow sensitive and monovariant (context
insensitive) analysis for the subset of JVML based on a type system. From the
viewpoint of BTA, the subset of JVML is mostly similar to high-level imperative
languages such as C. Therefore, the analysis should be careful about the following
respects, unlike the analyses for functional languages:
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– Since compilers may assign different variables to an operand-stack entry or a
local variable, the analysis should be flow sensitive[16]; i.e., it should allow
an operand-stack entry or a local variable to have a different binding-time
at each program point in a method.

– As JVML is an unstructured language (i.e., it has a ‘goto’ instruction), merge
points of a conditional jump and loops are implicit. The algorithm therefore
has to somehow infer this information.

The BTA algorithm is based on a type system, following the algorithms used
for functional languages[1, 14]. As the type system, we use a modified version
of a type system of JVML proposed by Stata and Abadi[27]2. The algorithm,
which is described in the other literature[21], consists of the following steps:

1. In a given program, for each address in each method, it first gives three
type variables to an operand-stack, to a frame of local variables, and to an
instruction at the address. By giving different type variables to local variables
at each address, the system achieves flow sensitivity, as well as the original
Stata and Abadi’s system.

2. It then applies typing rules to each instruction of a method, and generates
constraints among the type variables.

3. It also generates additional constraints that treat non-local side-effects under
dynamic control [17, chapter 11] by using the result of a flow analysis.

4. It finally computes a minimal set of assignments to type variables that sat-
isfies all the generated constraints.

Example Figure 3 shows an example BTA result of power when the binding-
times of x and n are dynamic and static, respectively3. The binding-time of
an instruction, which is displayed in the B column, is either S (static) or D
(dynamic). The binding-time of a stack, which is displayed in the T column, is
written as τ1 · τ2 · · · τn · ε (a stack with n values whose types are τ1, τ2, . . ., from
the top value). The binding-time of a frame of local variables, which is displayed
in the F column, is denoted as ∅ (an empty frame) or [ik 7→ τk] (a frame whose
local variable ik has type τk). Note that the domains of the frame types ‘shrink’
along the execution paths. This is because our BTA rules generate constraints
on only types of live local variables, and the types of unused ones do not appear
in the result.
The BTA result is effectively the same as that of the source-level BTA; i.e.,

instructions that correspond to a static or dynamic expression at source-level
have the static or dynamic types, respectively.

2 They design their type system for formalizing the JVM’s verification rules in terms
of subroutines (jsr and ret). Here, our current analysis merely uses the style of
their formalization, and omits complicated rules for subroutines.

3 The instruction sequence was slightly modified from Figure 2, so that any conditional
jump has merge points within the method. A preprocessor inserts a unique ireturn
instruction at the end of the method, and replace all ireturn instructions with goto
instructions to the inserted ireturn instruction.
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instruction B T F

iload 1 S ε [0 7→ D, 1 7→ S]
ifne L2 S S · ε [0 7→ D, 1 7→ S]

L1 : iconst 1 S ε ∅
goto L0 S D · ε ∅

L2 : iload 0 D ε [0 7→ D, 1 7→ S]
iload 0 D D · ε [0 7→ D, 1 7→ S]
iload 1 S D ·D · ε [1 7→ S]
iconst 1 S S ·D ·D · ε ∅
isub S S · S ·D ·D · ε ∅
invokestatic

int Power.power(int,int)

S S ·D ·D · ε ∅

imul D D ·D · ε ∅
goto L0 S D · ε ∅

L0 : ireturn S D · ε ∅

Fig. 3. BTA result of power.

3.4 Specializer Construction

From an original program and a result of BTA, a specializer is constructed in
“pure” JVML. It generates specialized code on a per-instruction basis at run-
time[18]. For each dynamic instruction in the original program, the specializer
has a sequence of instructions that writes the bytecode of the instruction into an
array. The specializer also performs method inlining by successively running spe-
cializers of a method caller and callee, and by inserting a sequence of instructions
that saves and restores local variables appropriately.
Here, we describe the construction of a specializer by using pseudo-instructions.

Note that those pseudo-instructions are used only for explanation, and they are
replaced with sequences of pure JVML instructions in the actual specializer. The
specializer is executable as a Java method.
The extended JVML for defining specializers contains the JVML instructions

and pseudo-instructions, namely, GEN instruction, LIFT, LABEL L, SAVE n [x0, . . .],
RESTORE, and INVOKEGEN m [x0, . . .], where instruction is a standard JVML in-
struction. Figure 4 shows an example definition of specializer power_gen with
pseudo-instructions, constructed from method power. A specializer is constructed
by translating each annotated instruction as follows.

– Static instruction i becomes instruction i of the specializer.
– Dynamic instruction i is translated into pseudo-instruction GEN i. When GEN
i is executed at specialization time, the binary representation of i is written
in the last position of an array where specialized code is stored.

– When an instruction has a different binding-time than that of the value
pushed or popped by the instruction, pseudo-instruction LIFT is inserted.
More precisely, (1) when a static instruction at pc pushes a value onto the
stack and T [pc + 1] = D · σ, where σ denotes an arbitrary stack type, LIFT
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Method Power.power_gen(int)

iload_1

ifne L2

L1:iconst_1

LIFT

goto L0

L2:GEN iload_0

GEN iload_0

iload_1

iconst_1

isub

INVOKEGEN Power.power_gen(int) []

GEN imul

goto L0

L0:return

Fig. 4. Specializer definition with pseudo-instructions.

is inserted after the instruction. The iconst_1 at L1 in Figure 3 is an ex-
ample. (2) When a dynamic instruction at pc pops a value off the stack and
T [pc] = S ·σ, LIFT is inserted before the instruction. The execution of a LIFT
instruction pops value n off the stack and generates instruction “iconst n”
as an instruction of the specialized program.

– Static invokestatic t0 m(t1, . . . , tn) is translated into pseudo-instruction
INVOKEGEN m_gen(tj1 , . . . , tjk) [x0, x1, . . .], where tj1 , . . . , tjk are the types
of static arguments, and x0, x1, . . . are the dynamic local variables at the
current address. When INVOKEGEN is executed, (1) instructions that save
local variables x0, x1, . . . to the stack and move values on top of the stack to
the local variables are generated, (2) a specializer m_gen is invoked, and (3)
instructions that restore saved local variables x0, x1, . . . are generated. The
number of values moved from the stack to the local variables in (1) is the
number of dynamic arguments of m.

– When conditional jump ifne L is dynamic, the specializer has an instruc-
tion that generates ifne, followed by the instructions for the ‘then’ and ‘else’
branches. In other words, it generates specialized instruction sequences of
both branches, one of which is selected by the dynamic condition4. First,
the jump instruction is translated into two pseudo-instructions: GEN ifne
L and SAVE n [x0, x1, . . .], where n and [x0, x1, . . .] are the number of static
values on the stack that will be popped during the execution of the ‘then’
branch and a list of static local variables that may be updated during ex-
ecution of the ‘then’ branch, respectively. In addition, pseudo-instruction
sequence LABEL L; RESTORE is inserted at label L. When SAVE is executed
at specialization time, the top n values on the current stack and the local
variables x0, x1, . . . are saved. The execution of RESTORE resets the saved
values on the stack and in the frame.

4 Since JVML is an unstructured language, construction of a generating extension
whose control flow visits all the nodes in both branches is not trivial. The algorithm
for constructing such a generating extension will be explained in the other literature.
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Method int power_2(int)

0 iload_0

1 iload_0

2 istore_0

3 iload_0

4 iload_0

5 istore_0

6 iconst_1

7 imul

8 imul

9 ireturn

Fig. 5. Specialized version of power with respect to 2.

3.5 Specializer Execution

The specializer definition is further translated into a Java method so that it
takes (1) several parameters needed for specialization including an array byte[]
code in which instructions of the specialized program are written and (2) the
static arguments of the original method.
When a program uses the specializer, the following operations are performed:

(CP creation) A ‘Constant Pool ’ (CP) object that records lifted values dur-
ing specialization is created. (specializer execution) The specializer method
is invoked with static arguments and the other necessary information for spe-
cialization. (class finalization) From the specialized instructions written in
a byte array and the CP object, a ClassFile image5 is created. (class loader
creation) A ClassLoader object is created6. (class loading) Using the
ClassLoader object, the ClassFile image is loaded into the JVM, which defines
a new class with the specialized method. (Instance creation) An instance of
the newly defined class is created. The program finally can call the specialized
method via a virtual method of the instance.
Figure 5 shows the instructions for specialized power with 2 as a static ar-

gument. Some instructions, such as those that load a value immediately after
storing the value, are unnecessary. Those instructions arise to save/restore local
variables around inlined methods.

4 Performance Measurement

4.1 An Application Program: Mandelbrot Sets Drawer

As a target of specialization, we took a non-trivial application program that
interactively displays the Mandelbrot sets. The user of the program can enter the
definition of a function, and the program displays the image of the Mandelbrot
set that is defined by using the function. Since the function is given interactively,

5 Despite its name, a ClassFile image in our system is created as a byte array. No files
are explicitly created for class loading.

6 Since some JVM implementations significantly slowed down when a ClassLoader
object loads a number of classes in our experiment, we create a class loader for each
specialized code. Section 4.3 shows that the time for creating of a ClassLoader object
is insignificant among the overall specialization overheads.

10



0

100

200

300

400

500

600

700

800

0 20000 40000 60000 80000 100000

# of iteration of the loop

tim
e

 (
m

se
c.

)

original, Classic original, HotSpot
RTS, Classic RTS, HotSpot
CTS, Classic CTS, HotSpot

Fig. 6. Execution times of loops of specialized and unspecialized eval.

the program defines an interpreter for evaluating mathematical expressions. In
order to draw an image of the set, the application have to evaluate the function
more than one million times. This means that run-time specialization of the
interpreter with respect to a given expression could improve the performance of
the drawing process.
In our performance measurements, the method eval and its auxiliary meth-

ods in the interpreter, which take an expression and a store, and returns the
value of the expression, are specialized with respect to an expression “z*z+c”.
Since current BCS implementation does not support objects, we modified the
method to use arrays for representing expressions and stores.
We measured execution times of the target methods on two JVMs with dif-

ferent JIT compilers, namely, Sun “Classic” VM for JDK 1.2.1 with sunwjit
compiler, and Sun “HotSpot” VM for JDK 1.2.2, in order to examine impacts
of a JIT strategy on the specialization performance. All programs are executed
on Sun Enterprise 4000 with 14 UltraSPARCs at 167MHz, 1.2GB memory, and
SunOS 5.6. Execution times are measured by inserting gethrvtime system calls,
which is called via a native method.

4.2 Performance of Specialized Method

We measured performance of three versions of the eval method on the above-
mentioned JVMs. The first one is the ‘original’ unspecialized method. The sec-
ond one is a run-time specialized (‘RTS’) method generated by the BCS system.
The third one is a compile-time specialized (‘CTS’) method, which is obtained
by applying Tempo[22] after translating the original method into a C function.
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Table 1. Execution times and relative speeds of eval method.

execution times (µsec.) relative speed
original RTS CTS

VM BO JO BR JR BC JC BO/BR BO/BC BR/BC

Classic 6.405 2,513 2.255 1,330 2.257 1,792 2.841 2.838 0.999
HotSpot 2.774 245,156 0.691 146,795 0.659 159,688 4.014 4.212 1.049

Table 2. Breakdown of specialization overheads.

VM Classic HotSpot
process time(µsec.) ( ratio ) time(µsec.) ( ratio )

CP creation 46.38 ( 1.7%) 95.91 ( 3.1%)
specializer execution 61.67 ( 2.3%) 194.81 ( 6.2%)
class finalization 55.77 ( 2.1%) 125.18 ( 4.0%)
class loader creation 16.68 ( 0.6%) 22.14 ( 0.7%)
class loading 1,907.33 ( 71.8%) 1,518.18 ( 48.5%)
instance creation 569.73 ( 21.4%) 1,172.96 ( 37.5%)

total (S) 2,657.57 (100.0%) 3,129.19 (100.0%)

Figure 6 shows the execution times of the method, which are measured by the
following way. A ClassLoader object in our benchmark program first loads a
new class that contains the (either specialized or unspecialized) eval method.
The program then measures execution time of a loop that repeatedly invokes
the eval method. Note that the measured time does not include specialization
process, but does include the time of JIT compilation processes because JVMs
perform JIT compilation during method invocations. As a result, the curves of
the graph are not linear for small iteration numbers.
We therefore estimated, for each curve, execution times of the JIT-compiled

body of the method (hereafter referred to as B) and JIT compilation process
(J), by using an linear approximation of the curve at large iteration numbers.
Table 1 shows the estimated execution times and relative speed of the body of

the method. As we see in the JO, JR and JC columns, JIT compilation processes
took from one millisecond to a few hundred milliseconds, depending on the JIT
compilers. As we see in the BO/BR and BR/BC columns, the run-time special-
ized code runs 3–4 times faster than the unspecialized one does, and achieves
almost the same speedup factors as the compile-time specialized code does.

4.3 Specialization Overheads and Break-even Points

Elapsed times for the specialization processes (S) are measured by averaging
10,000 runs. Table 2 shows the time for each sub-process, which is explained in
Section 3.5. As we see, 80–90% time of the specialization process is spent for the
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Table 3. Break-even points.

VM over JIT compiled code over newly loaded code

Classic 961 355
HotSpot 71,975 (less than zero)

ones inside the JVM, namely, class loading and instance creation. We presume
that some of overheads could be removed if we integrated our system with a
JIT compiler so that the specializer directly generates specialized code in an
intermediate representation in the JIT compiler.
A break-even point (BEP) is a number of runs of a specialized program needed

to amortize the specialization cost over the execution time of the unspecialized
program. In programming systems that perform dynamic optimizations, even
unspecialized programs have to pay overheads of the optimization, namely JIT
compilation time. We therefore calculated two BEPs. The first one assumes that
the unspecialized code is already JIT compiled. In this case, a BEP, which is
calculated by the formula (JR + S)/(BO − BR), is approximately 1,000–72,000
runs as shown in Table 3. The second one assumes that the unspecialized code
is newly loaded, and thus pays the cost of JIT compilation during its execution.
The BCS specialized code exhibits a small BEP in this case, which is computed
by the formula (JR+S−JO)/(BO−BR). Note that the benchmark application,
in order to draw an image of a given expression, executes the eval method for
much larger number of times than the BEPs. This means that BCS actually
improves the overall execution times of the application.

4.4 Comparison to a Native Code Run-time Specialization System

In order to compare the speedup factors and specialization overheads with a run-
time native-code specialization system, we also wrote the same interpreter in C,
and specialized by using Tempo 1.1947. We have tested two binding-time con-
figurations for specializing the interpreter. The one is to specialize the function
with respect to three out of five arguments (shown in the ‘3/5’ row in Table 4),
which is the same configuration to the experiment in BCS. The other is to spe-
cialize with respect to two out of five arguments (the ‘2/5’ row), in which an
array containing a return value index is set to be dynamic. The interpreter is
compiled by GCC 2.7.2 with -O2 option. All the other execution environments
are the same to the previous ones.
Table 4 shows the execution times and specialization times that are measured

by averaging ten million runs. We observe that the run-time specialized code is
slower than the compile-time specialized one in Tempo. Surprisingly, the run-
time specialized code that is specialized under the same configuration to the
7 We set both reentrant and post inlining options of Tempo to true, and the
compiler options for both templates and specializers to "-O2". We also implemented
an efficient memory allocator for residual code.
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Table 4. Execution and specialization times and break-even points of eval in Tempo.

execution times (µsec.) relative speed BEP
# of static none RTS CTS
args. BO BR S BC BO/BR BO/BC BR/BC
3/5 1.278 63.591 85.712 0.298 0.02 4.29 213.4 ∞
2/5 1.278 0.789 22.881 0.363 1.62 3.52 2.174 46.8

experiments in the previous subsections is even slower than the original code.
We presume that this anomaly is caused by a number of array accesses whose
indices are ‘lifted’ at specialization time. When we made the array to be dynamic
(the ‘2/5’ row), the run-time specialized function become faster than the original
one, and its break-even point is smaller than the ones in BCS.
Comparing between the execution time in BCS and the one in Tempo, we

notice that compile-time specialized codes in those two systems show the similar
speedup factors (BO/BC). On the other hand, the speedup factors of the run-
time specialized code (BO/BR) in Tempo are worse than the one in BCS. This
can be an evidence of our premise: performing optimizations after specialization
could be useful to improve performance of run-time specialized code.

5 Related Work

Tempo is a compile-time and run-time specialization system for C language[22].
Tempo achieves portability by using outputs of standard C compilers to con-
struct specializers. As the specializers simply copy templates to memory at run-
time, their BEP numbers are low (3 to 87 runs in their realistic examples).
On the other hand, the specializers perform no optimizations and no function
inlining at run-time specialization.
DyC is another RTS system for C language[12]. The analysis and specializers

can directly handle unstructured C programs. The system generates highly opti-
mized code, by developing its own optimizing compiler for Digital Alpha 21164.
It can perform optimizations at run-time specialization[2]. However, the opti-
mizations seem to make the BEP numbers larger (around 700 to 30,000), similar
to BCS.
Fabius is an RTS for pure-functional subset of ML, targeting MIPS R3000[18].

Because the source language is a pure functional language, the BTA and special-
izer construction in Fabius are simpler than those for imperative and unstruc-
tured languages. Similar to BCS, specializers in Fabius are on a per-instruction
basis and perform function inlining for tail recursive functions. It is also sug-
gested that the specializers would perform register allocation at run-time.
Fujinami proposes a run-time specialization system for C++, targeting MIPS

R4000 and Intel x86[10]. The system is designed to perform implicit optimiza-
tions; i.e., it specializes a given program with respect to its invariants, which are
determined by an automatic analysis. A specialized program runs runs twice as
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fast as the one compiled by a statically optimizing compiler. His system achieves
this speedup by embedding a number of optimization algorithms into a stati-
cally generated specializer. Our approach, on the other hand, is to optimize a
specialized code by using a JIT compiler, which is an independent module.

C̀ is a language with dynamic code generation mechanisms[24]. Unlike other
RTS systems, C̀ programmers have to explicitly specify binding-times of expres-
sions. Similar to BCS, the implementation of C̀ generates programs in virtual
machine languages called vcode and icode. The run-time system of icode per-
forms optimizations including register allocation for generated programs, similar
to JIT compilers for JVMs.

Bertelsen proposes, independently of BCS, an algorithm for binding-time
analysis of a JVML subset, which does not include method invocations nor ob-
jects[5]. A specialization process based on the analysis is informally discussed,
which is not yet implemented to the authors’ knowledge.

JSpec is an off-line, compile-time partial evaluator for Java[26]. The system
analyzes and specializes Java programs by applying Tempo, a partial evaluator
for C, after translating the Java programs into C. This approach can be compared
to ours that uses a compiler from a high-level language to a bytecode language as
a front-end. Unlike current BCS implementation, JSpec supports objects whose
specialization strategies are specified through specialization classes[28].

6 Conclusion

In this paper, we have proposed run-time bytecode specialization (BCS), which
specializes Java virtual machine language (JVML) programs at run-time. The
characteristics of this approach are summarized as follows: (1) the system directly
analyzes a program and creates a specializer in an intermediate language JVML;
and (2) the specializer generates programs in JVML, which makes it possible to
apply optimizations after specialization by using existing JVMs with just-in-time
(JIT) compilers.

The binding-time analysis algorithm is based on a type system, and also uses
results of flow analysis to correctly handle stacks, local variables, and side-effects.

Thus far, we have implemented a prototype BCS system for a JVML subset
and have shown that a non-trivial program specialized by our system runs ap-
proximately 3–4 times faster than the unspecialized program. The specialization
cost can be amortized by 1,000 to 72,000 runs, depending on the JVMs. Those
numbers are worse than the ones in the systems that are rather focusing on the
specialization speed[18, 22], though.

We are now extending our system to support the full JVML. Since current
implementation only supports primitive types and arrays, rules that properly
handle references to objects should be devised. To support objects and arrays,
the system needs information whether data is modified by other methods or other
threads. Such information could be obtained by either static analysis (e.g., the
one studied by Choi, et al.[7]) or through user declarations[28]. In practice, it
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is also important to support other features, such as multi-threading, and sub-
routines (i.e., jsr and ret instructions in JVML) and exceptions. Some may
consider that templates of bytecode would reduce specialization costs. As our
experiments in Section 4 showed, however, the major sources of specialization
overheads are class loading and JIT-compilation. Rather than improving the
performance of the bytecode generation process, our current plan is to generate
a specialized program directly in an intermediate language of a JIT compiler, by
using JVMs with interfaces to JIT compilers[23].
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