
Partial Evaluation of Call-by-value A-calculus with Side-effects

Kenichi Asai Hidehiko Masuhara” Akinori Yonezawa

Department of Information Science, Faculty of Science,

University of Tokyo

7-3-1 Hongo Bunkyo-ku 113 Japan

{asai, masuhara, yonezawa}@is .s .u-tokyo. ac. jp

Abstract

We presenta frameworkof an online partial evaluator for a call-
by-vahre A-calculus with destructiveupdatesof data structures. It
properly and correctly specializes expressions that contain side-
effects, while preserving pointer equality, which is an important
property for programs using updates. Our partial evaluator uses a
side-effect analysis to extract immutable data structures and then
performs an online specialization using preactions. Once mutable
and immutable data structures are separated, partial evaluation is
done in such a way that accesses to immutable ones are performed at
specialization time, while accesses to mutable ones are residualized.
For the correct residualization of side-effecting operations, preac -
tions are used to solve various issues, including code elimination,
code duplication, and execution order preservation. The preaction
mechanism also enables us to reduce expressions that were residual-
ized when the conventional let-expression approach of Similix was
used. The resulting partial evaluator is simple enough to prove its
correctness. Based on the framework, we have constructed a partial
evaluator for Scheme, which is powerful enough to specialize fairly
complicated programs with side-effects, such as an interpreter.

1 Introduction

Partialevahtation[13] is a programtransformationtechniquewhich,
given a program and parts of its arguments, produces a specialized
program with respect to those known arguments. Since computation
that depends only on the known arguments (and constants) is per-
formed at partial evaluation time, the resulting program usually runs
faster at runtime than the original one. Partial evaluation is widely
used not only as a general optimization tool[10] but also as various
generatorssuch as compiler generators and parser generators[22].

Although much work has been done on partial evaluation of
functional languages, partial evaluation of side-effecting constructs
remains difficult. [n conventional partial evaluators for functional
languages, only limited kinds of side-effects are allowed; other
types are either merely refused or incorrectly processed. For ex-
ample, Similix[5] handles only 1/0 operations and limited types
of variable assignments. POPE[19] accepts richer kinds of vari-
able assignments, but does not handle destructive updates of data

“Oepartmemof Graphicsmd CompurerScience,Collegeof Artsand Scmvxs.
Universityof Tokyo

Permission to make digital/hard copy of part or all this work for
personal or clasaroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and its date
appear, and notice is given that copying is by permission of ACM,

Inc. To copy otherwise, to republish, to post on aervera, or to
redistribute to lists. requires prior specific permission and/or a fee
PEPM ’97 Amsterdam, ND
@ 1997 ACM 0-89791 -917-319710006 . ..$3.50

structures correctly. This is a severe restriction since we otlen use
side-effeets even in mostly functional programs.

In this paper, we present an online partial evaluator for a call-
by-value J-calculus with destmctive updates of data structures. It
has the following novel characteristics:

● It correctly deals with full side-effects (including destructive
updates of data structures).

● Pointer equality (’eq-ness’) is preserved forafl data structures.

These features are realized by a side-effect analysis and a systematic
use of preactiorrs[l 4, 15]. The preaction mechanism also enables
us to reduce more expressions than the conventional let-expression
approach used in Similix. Based on this framework, we have created
a partial evaluator for Scheme[6], which accepts almost aIl features
of Scheme,

Why side-effects are difficult to handle? The difficulties for
partially evaluating programs with side-effects mainly come from
mutable data structures (and mutable variables). Because partial
evaluators perfortn non-standard eager evaluation, we need knowl-
edge on the nuttime value of data structures. In pure functional
languages, the propetty of referential transparency assures that any
data structure created at partial evaluation time has the same value
throughout the specialization (and at runtime). Wtth side-effects,
this assumption does not hold any more, because assignment oper-
ations in residual code might modify the value of data structures.

The most conservative approach to handle mutable data struc-
tures is to treat all data structures as mutable and residualize them.
This is unacceptable in practice, however, since the actually up-
dated parts are usually small and the results become too conserva-
tive. Another approach would be to find mutable data structures
during specialization. However, this does not work well either in
the presence of first-class pointers. For example, consider partial
evaluation of expressions that contain: (set-car! x y) where x
is unknown. Without knowing the possible values for x, we have
to treat all the data structuresas unknown after this assignment,
resultingin poor specialization.

Our approach is to identify mutable data structures (possible
values for x in the above example) using a side-effect analysis. It
extracts functional parts from programs with side-effects. Once
mutable and immutable data structures are separated, partial eval-
uation is done in such a way that accesses to immutable ones are
performed at specialization time, while accesses to mutable ones
are residualized.

The separation is effective in practice, because most functional
programs modify only restricted parts of data structures, and thus the
separated mutable parts are usually small. Most parts are classified

12

(larrrbda (x y z}
(letrec ((inc (lanrbda (node visit) ; returns visited nodes

(cond ((null? node) visit)
((memq node visit) visit) ; equality test
(else

(set-car! node (+ (car node) 1)) ; update
(inc (car (cdr node))

(inc (cdr (cdr node})
(cons node visit))))))))

(let* ((make-node (lambda (value left right)
(cons value (cons left right)~))

(nocfel (rnake-nodex ‘() ‘()))
(node2 (make-nodey nodel ‘()))
(node3 (make-nodez nodel node2))) ; nodel is shared ! ! !

(inc node3 ‘())
node3)))

Figure 1: An Example Program

as immutable and we can achieve sufficient specialization. For
example, consider an environmentof interpretersfor imperative
languages, which is realized by an association list and destructive
updates on it. The mutable parts are usually only the value slots of
the environment and all other parts (including the overall structure of
the environment) are immutable. When specializing this interpreter,
we can unfold all the environment accesses, removing interpretation
overhead completely.

Another difficulty for handling side-effects exists in residual-
ization. We cannot eliminate, duplicate, or reverse code, since it
might eliminate, duplicate, or reverseside-effects. These problems
are avoided by the use of preacdom[14, 15]. Without code elim-
ination and duplication, our partial evaluator naturally preserves
pointer equality of each value. This is an important property which
has been ignored in the conventional partial evaluators for pure
functional languages.

The preaction mechanism also enables us to treat data stmc-
tures as both dynamic and static, i.e., we can use the value of
data structures while residualizing them at the same time. This
is a crucial property in reducing data structures whose identity
has to be preserved. In conventional let-expression approach used
in Similix, such data structures were made dynamic and put into
let-expressions, However, this is an overly general approach for
languages with pointer equality (such as Scheme), since all data
structures have their identity and thus have to be residualized as dy-
namic expressions. The preaction mechanism enables us to residu-
alize them without making themdynamic.

Example To see how our partial evaluator handles side-effects,
consider a Scheme program’ shown in Figure 1. Given a DAG (di-
rectly acyclic graph) madebymake-node, itincrementsthe number
associated to each node by one using a destructive update operation
set -car !. To avoid multiple increment on shared nodes, visited
nodes are recorded in the argument visit, and checked via the
predicate eq?~. To partially evaluate this program, we first perform
the side-effect analysis. It will detect that the argument node of
inc can be bound to cons cells constructed at the underlined cons
statement in make-node. Because the cal- part of node is destruc-
tively updated in inc, the car parts of [he cells that are constructed

at this underlined cons statement are mutable. The partial evahra-
tor will residualize all accesses to these parts preserving the order
of execution, and process other parts of the program. Because our
partial evaluator reduces partially static data structures[l 7, 18], the
cdr partof node is still accessible. After unfolding the iterationin
inc (with a definition ofmenrq),tbe resultwill look like this:

(lambda (x y z)
(let* ((nodel (consx (cons ‘() ‘())))

(node2 (cons y (cons nodel ‘())))
(node3 (cons z (cons nodel node2))))

(set-car! node3 (+ (car node3) 1))
(set-car! node2 (+ (car node2) 1))
(set-car! nodel (+ (car nodel) 1))
node3))

All the references and updates to the mutable parts are residualized
in the correct order, and other parts are completely unfolded. The
names node 1, node2, and node3 are required to hold the identity
(for pointer equality) of the three mutable cells. Notice here that
even though these mutable cells declare their identity and are resid-
ualized in let-expressions, their static elements are reduced at spe-
cialization time. We can observe that inc is unfolded for the cdr part
ofnode3,although node3itselfis residualizedin a let-expression.
This distinguishes itself from the let-expression of Similix, where
once an expression is residualized in a let-expression, it becomes
completely dynamic. The use of preaction enables us to reduce
such dynamic data structure that has static elements in it.

Outline of the Paper Towardsa partialevaluatorfor Scheme, we
first define a simple core language (Section 2) to concentrate on the
treatment of side-effects. After presenting the side-effect analysis
in Section 3, the partial evaluator for the core language is presented
in Section 4, whose correctness is discussed in Section 5, We then
describe extensions of the core language to more realistic languages
in Section 6, Using thispartialevaluator,we havesucceeded to par-
tially evaluatean interpreterwrittenwith side-effects with respect
to a side-effecting program (Section 7). Section 8 discusses related
work and the paper concludes in Section 9,

‘In [hu paper, we himdle partial ewdua[ion ot closed terms only. When we want to
specmhze j{ r, y) with respect to x = a. we sptxmhze Ay j I a, y) instead

7Eq7 ISused in nernq, whose definiuon Mom!ned here

13

Abstract Environment The iixed-point iteration ot’ abstract m-2 The Core Language

The core language we use Ma call-by-value A-calculus with mutable
cons ceils. The syntax is given as follows:

An expression is either a variable, a }-expression, an application,
or one of six primitive expressions: Cons constructs a pair, whose
elements are accessed by car and cdr. Se[car and setcdr destruc-
tively update an element of a pair. Eq is used to test the ‘eq-ness’
of values. It first evaluates its first two arguments to see if they are
allocated in the same location. If they are, eq evaluates the third
argument, discarding the fourth. Otherwise, it evaluates the fourth,
discarding the third.

Each J-expression and cons expression is attached with a unique
label q and ~ called a closurepoint and a cons poin~[8], respectively.
These are used in the side-effect analysis in Section 3.

We assume that all bound variables are distinct. We write
rn when we explicitly show that the variable z is bound by a J-
expression labeled with q.

3 Side-effect Analysis

The goal of this section is to obtain two sets: mutablecar and
murable ~dr, which contain cons points for mutable cells. In the
partial evaluator presented in the next section, they are used to
residualize accesses to mutable cells. If a cons point c is in
rrrutablecar, it means that the car part of the cons cells constructed
by ~ : cons might be modilied by setcar. For the program in Fig-
ure 1, mu[ablecar contains a cons point for the underlined cons
expression and murablecdr is empty. Since it is difficult to obtain
the smallest mufable.ar and mUfableC&., we obtain their safe ap-
proximation using an abstract-interpretation based approach similar
to the Consel’s[8].

The analysis consists of two stages. At the first stage, we
collect all possible values (cons points and closure points) for each
subexpression of a given input program. This is the central part
of the analysis, which is achieved by the fixed-point iteration of
abstract interpretation. It is a higher-order, interprocedural, context-
insensitive, 0CFA[21] analysis.

Given the possible values for each subexpression, mutable car
and mutable cd, are obtained fairly easily at the second stage. For
each occurrence of setcarl.f N in the program, we add the possible
cons points for Af to nrurable,~~. Mulab/eCdr is obtained similarly.

3.1 Notation

Abstract Value To identify mutable cells in higher-order pro-
grams, we abstract a runtime value to a set of cons points and
closure points during abstract interpretation, ignoring other values,
such as numbers and symbols. An abstract value A,, has a form
(r, p), where r is a set of cons points and ~ is a set of closure
points. It represents the possible values for expressions, When an
expression Af has an abstract value ({c I, . . c,,), {VI, ~m}).

it means that Af’s value can be a cons cell constructed at one of c,’s
or a closure constructed at one of V, ‘s3.

Abstract values are ordered by component-wise set-inclusion:

(n. #1) ~ (rz.p~) * (n ~ T2) A (v1 < p,). The Ieast upper
bound of two abstract values is defined by component-wise set-
union: (Tl,pt)U(rj,pj) = (T1 Urz,pl UPI).

‘Or values ofher than cons cells or closures, which are not of our inttresl

te~retatlon proceeds by updating an csbstracl environment p, a
total function which maps \ariables to their abstract values. It
has a functionality: ~’ariobl~ — .-t, , where Variab/e includes all
variables appearing in the input program as well as three special
variables: car(c), cdr(c), and ran(j~). Car(c) and cdr(c) are
variables representing the car part and the cdr part of t, respec-
tively, while ran(q) represents the range of q. If p(car(c)) =
({fl....,c~}, {qi,..., n~}), it means that thecarpartof aeons
cell constructed at ~ can be a cons cell constructed at one of c,’s or a
closure constructed at one of rIJ‘s. Likewise, P(rarz(q)) represents
the possible return value when a closure constructed at q is applied.

Two abstract environments pi and p~ are ordered pi ~ P2,

if pI (u) z p2(v) for all variables u. The least upper bound is
similarly defined: PI u P2 = Ao.pi(v) u PZ(V). The initial (empty)
environment p+ is defined by Av. ({ }, {}).

3.2 The Abstract Interpretation

The rules for the abstract interpretation is shown in Figure 2. Given
an expression A4 and the current abstract environment p, the ab-
stract interpreter AT returns an abstract value for Al and a possibly
modified environment. For example, AZ[car Zjp+ represents pos-
sible values for car z, where the value of z is not yet known.
Thus, the result is (({}, {}), PO). [n the case of d~[car ZIP where
p(z) = ({c}, p) and p(car(c)) = (r’, p’), d~deducesthat carz
can have the value (T’, v’), giving tbe result ((r’, ~’), p).

The rules in Figure 2 are fairly straightforward. We briefly
sketch them here. The value of a variable is defined in p. The
value of A-expression is its attached closure point. Meanwhile, we
analyze the body of the A-expression under p to enlarge the environ-
ment and include the information on the range of the J-expression
(possible return values when the A-expression is applied)4. This in-
formation is used in the next rule for applications. The value of an
application is a union of its operators’ range. The operand informat-
ion is propagated to operators by adding it to the operators’ bound
variables. (This information is used in tbe next iteration when oper-
ators are analyzed.) Here, Zq’ is a parameter of the closure labeled
with q,, The role for cons returns a cons point, leaving the abstract
values of its car and cdr parts in the abstract environment. The rule
for car collects the car part of its argument. The rule for selcar
adds the possibility that the car part of its first argument may have
the value of its second argument. Finally, the value of eq is a union
of its then and else branches.

The analysis is interprocedural, because the values of operands
are propagated to the body of operators. It is context-insensitive,
because the possible value of a bound variable is collected in one ab-
stract value regardless of where it is originated from. It is OCFA[2 1],
because single closure point abstracts all the lambda closures cre-
ated at that closure point.

3.3 Collecting Mutable Cells

Given an input program P, we repeatedly calculate AZ[Pjp until
p does not change, beginning with p~. Because abstract environ-
ments have only finite number of variations and operations on them
are all monotonic, the environment will eventually reach a fixed-
point p~~, which can be shown to capture all the possible values
for variables. Using this, we obtain mufable,-~, and mutab[e,-d,.
as follows. Let ((T,, ~,), p ~.r) = .4ZuAf,]P~., for the i’th occur-
rence of .setcor.lf, N, in P. Since r, represents all the possible

4The returned environment here is p’ U P+[(T, +) / r-an(v)] rather than

P’[(T. P)/r,IMv)], because wc add (T, P) 10 0’(rtzrz(q)) rather than updatd N
to (T, F} Ignonng the former valueof p’(ran(q))

14

.—
——

——

——

——
——

——

E.rp — .-lksEnr — (.4,, x .-lb.s.EntI)
1hriablf — .4,

(P(~)P)
let ((~, F), p’) = AZ[M]p
in (({}, {q}). P’U pO[(r, p)/ran(q)])
let((~t, {rll,..., q~}), pl)=d~[~l~

((T*,p,). /3,) = .a[lv]pl
in (u, pz(ran(q,)), pz U (U, P4,[(Tz, pz)/z7’]))
let((~l,pl),pl) = AZ[M]p

((r,, ~,), p,) = AZ[N]p,
in(({f}, {}), P2 Up@[(rl, pi)/car(f)l uP4[(~2j w2)/c~~(~)l)
let (({~1, ,cn}, p), p’) = d~[kf]pin (U, p’(car(c,)), p’)
let(({cl,...,~n},pi),p])= d~[~f]p

((r2, P2), P2) = 4MPI

in ((T2, w2), P2 U (u, P4[(T2) 92)/car(e:)l))

let ((rl, vi), p]) = WWP
((r2, w2), P2) = AT[Jf’lPI

((T,, P,), p,) = dT~Njp,
((r,, p,), p,) = dZiIN’lP3

in ((T3 U T4, f+Y3U 94), f34)

Figure 2: Abstract Interpretation

cons Dointsfor M,. mutable~~~ is a union of these cons Doints:
muta~le~~r=u, r, ~‘MurableCd~”isobtained similarly. ‘

4 Partial Evaluation

We now present a partial evaluator for the core language. It is
online, andinterpretsinputprogramsrecursivelyas interpretersdo.
When it encounters a primitive application, it takes one of two
actions: reduce or residualize. If all the argumentsto the primitive
areknown values, it reducesthe application and returnsa result. If
some of the argumentsare unknown, it returnsan expression that
performs theprimitiveapplication at runtime.

In this paper, we do not address termination issues of partial
evaluation, because our main concern here is the treatment of side-
effects. Our partial evaluation mechanism can employ standard
termination mechanisms such as the one used in Fuse[20].

4.1 Symbolic Value and Preaction

To distinguish a value from code, online partial evaluators use sym-
bolic values (Sval). The symbolic values we use are shown in
Figure 3. There are nine Svals, each corresponding to the nine syn-
tactic category of the core language. At the code generation phase
(Section 4.4), they are translated into the corresponding piece of
code. Among them, Svals ~“orclosures and pairs are known Svals:
closures are unfolded when applied and pairs are referenced by cur
and cdr.

In the presence of side-effects, several issues that did not appear
in pure functional languages become important, such as code elim-
ination, code duplication, and the order of execution. To handle
these issues, we introduce PSval, a symbolic value with a sequence
of pr-eac[ions[14, 15]. Preactions hold all the operations that has to
occur when the symbolic value is created.

In the conventional online partial evaluators such as Fuse[20],
code duplication was avoided by using the graphstructureof sym-
bolic values, Although the graph structure is useful to separate
the specialization process from the code duplication problem, it is

Sual =

I

I
I

I
Preaction =

PSual =

var(Var)
closure(ClosurePoint, Param, Body,

Env, Name, PSval)
apply (Name, Name)
pair(ConsPoint, Name, Name)
car(Nrrrne)
cdr(Name)
setcar(Narne, Name)
setcdr(Name, Name)
eq(Name, Name, PSval, PSval)
Name : Sval
((~fWZCtZO!t”)) Name

Figure 3: Symbolic Value and Preaction

complicated to translate the graph structure into concrete code pre-
serving the sharing relationship between symbolic values. Rather
than using the graph structure, we introduce indirection and use
names to achieve the same effect. Readers can regard them as
‘locations’ of Svals. Then, a sequence of preactions acts like a
store during partial evaluation. Names not only simplify the code
generation phase, but also make the structure of the whole partial
evaluator much clearer, which enables us to prove its correctness.

4.2 Basic Strategies

Before presenting the partial evaluator, we demonstrate with exam-
ples how preactions are used to handle the above-mentioned issues,
as well as how they handle side-effects and preserve eq-ness of
values. It is instructive to know that a sequence of preactions will
be coded as a sequence of /eI expressions.

15

Code Elimination Consider a program’ cor{ consJf .}-), where
:1’ IS a side-effectful expression, Reducing this progra[m into ill is
incorrect because the side-effect that has to occur in .1- disappears.

Instead, we save It as a preaction using a Fresh name tas in ‘(’ N’)).lf,
which is coded into let t = ,V in ,Iffi,

Code Duplication Code duplication occurs when a bound vari-
able is used more than once. For example, assuming that N is
side-effectful, reducing (k. cons ~ ~)N into corwNN is incorrect
because the side-effect in A’ occurs twice. In such a case, we save
N as a preaction with a fresh name t and refer to it by its name:
({t ‘))pair(t, t), which is coded into let t = A’ zrr cons tt.

Order of Execution The order of side-effects has to be preserved.
Consider a program (Az.~y. cons g z)J4N, where both M and N
are side-effectful. Reducing the program into consN&f reverses
the order of M and N. Instead, we save M and N as preactions

in tbe order of their evaluation: {(C1‘“’t* ’N))pair(t2, t I), which is
coded into let tl = M in id tz = N in cons tz t]. Notice that a
sequence of preactions holds a kind of execution history.

Handling of Side-effects Side-effectful operations are handled
by residualizing all definitions, references, and updates of mutable
cells in the correct order. For example, consider a program:

let x = consMN
in let y = setcar x M’

in cons(cdrz)(carz).

Since we know from the analysis in Section 3 that the car part of z
is mutable, its definition (corasMN), reference (car z), and update
(setcar z M‘) are residualized as preactions. The partial evaluation
of the above program becomes:

which is coded into:

letti = M
in /et tj = .V

in let t3 = constl tz
in let ti = setcar t3 M’

in let ts = car t3
in constz tj.

Observe that cdr z is reduced even though the value of z (i.e.
pair(t 1, tl)) is put into preactions. Although pair(tl, t~) is given a
name f~ and residualized, it is not a dynamic value. This is in con-
trast to the conventional let-expression used in Similix, where once
an expression is residualized in a let-expression, it is completely
dynamic, and the information on its static parts are lost.

Preserving Eq-ness of Values In pure functional languages, it
was enough to test value equality. In impure languages, we also
have to handle pointer equality (eq-ness). It is intuitively understood
that eq-ness is preserved in theabsence of code eliminationand du-
plication. We can also see this by regarding a sequence of preactions
as a store. For example, consider a program (Ar, Af)(Coris;$: A’f),

which is Specidizecl into ((~Pairt IV-iv’‘)}Jf[t/.c], Here, the unique
name t serves as the location for cons NN’. To test the eq-ness of
cons cells, we can compare them by their names. The preservation

51n this subsection, we omit cons points for berter readabihty.
‘We denote Ief t = N inM m J syntactic sugar for [At .Jf IN

of eq-ness IS formally shown by prowng that the parmal evaluator
does not change the store semantics of input programs, which is
discussed In Section 5.

4.3 The Partial Evaluator

We now present the partial evaluator for the core language (Fig-
ure 4), Given an expression, an environment p, and a pe-skm-e T,
the partial evaluator P~ returns a PSval together with a (possibly)
modified pe-store. A pe-store maps names introduced so far to their
bound Svals.

Therules in Figure 4 are written insucha waythatall Svals
created are saved as preactionsto prevent code elimination. The
underlined names (such as~) denote fresh names. Side-effectson
mutable cells are treated by residualizing their definitions (in the
cons rule) andupdates (inthesetcarrule). As forreferences (in the
car rule), we lookup murablecar to see whether it is safe to access
the cell at specialization time.

Let us seethe rules in detail, Avariable istranslated into its
bound name. A A-expression is partially evaluated to a closure
Sval. A fresh name ~is given for the closure which is used to
test its eq-ness. When constructing a closure Sval, we eagerly
partially evaluatethe body of the A-expression. This is because
the closure might be left residual in the residual program, in which
case we want to create a specialized version of the closure. It
is possible to defer tbe partial evaluation of body expressions to
the code generation phase. (We do so in our implementation.)
However, this makes the correctness proof difficult, because we
cannot separate the specialization phase from the code generation
phase.

To partially evaluate an application MN, we first partially
evaluate M and N. If M evaluates to a known closure, it is

unfolded. Here, we write ‘(p))~t[.14jpy to mean (((p’p’))t, y’)

where (((p’)) t, y’) = P~[M]py. Observe that preactionsfromflf
and N arepropagated to the result witbout disturbing the order of
execution. If Mevahsatest ounknownc ode,ont heotberhand,the
application is residualized.

The partial evaluation of a cons expression proceeds similarly.
After pafiially evaluating its arguments, a pair Sval with afresh
name ~ is constructed. Since cons is non-strict on its arguments
during partial evaluation, we can always construct a pair. Although
tbe pair Sval is given a name ~ it does not mean that the pair becomes
an unknown value, Instead, it is residualized with the name ~ and
used at the same time in the subsequent partial evaluation’ (if it is
not mutable). Observe that the pair Sval constructed here is also
put into the pe-store for the later use8.

For a car expression, its argument is first partially evaluated to
see if it is a known pair. If it is nol, residual code to take its car
part is constructed. Otherwise, the car part is basically extracted
and returned. However, because the car part might be mutable and
prohibited from accessing, we lookup mutabler.r. If it turns out to
be mutable, we construct code rather than returning its car part.

The rule for setcczr is simple. It residualizes a piece of code
to perform sercar at runtime. Finally, partial evaluation of eq is
done by first partially evaluating its first two arguments. When they
are both known Svals, one of two branches is selected according
to whether their locations are the same. When one (or both) of the
arguments are unknown, both branches are specialized to construct
eq code.

‘That Is. It is .’botb reduced and left residual’’[?.t].
‘Although all cons cells are resldualized to declare them Ldenuty, they do not

necessarit y appear in tbe residual program Post-processing phase WIIIremove those
preacrions that will never be referenced during tbe runtime evaluzmon of the residuat
program

16

PL_ : E.rp - Env - PEStore --+ (PSval x PEStore)

pE Ent~ : Ianable + Name
-y E PEStore : Name - Sval

Pt[v : A.e.itf]py = let (((p))t”,7’)= p&lIWfWz17[var(L’) /fl
s = Closure(q, z, M, p,t’, ((p)) t“)

in (((Ls))j, 7[s/tJ)

Pt[fWN]py = let (((p’‘)tI, T,) = Pt[kf]py
(((w)t2, ~,)= PqN]P71

in case ~z(tl)of

:;;:osJf;:, M’, p’, -1.) : ((p’ ‘@))PqM’]p’[t,/z]y*
: let 9 = apply (tl, tz)

in (((pi, fi,~S})f, -f2[s/J)

Pf[carM]p~ = let (((p))t, y’) = Pt[ftf]py
in case -y’(t) of

pair(c, tJ, tz) : if E E mutablec~~
then let s = car(t)

in (((p,fiS))t/_, y’[s/t’J)
else (((p))t I, -/)

otherwise : lets = car(t)
in (((p,LS))tt_, 7’[s/t’J)

Pf[setcarMiV]py = let (((p’))t,, y,) = PC[M]py
(((p2))~2,~2) = P&[N]P?l

s = setcar(tl, tz)
in(((pl!pI!s))t_,72[$/4)

Pqq.vM’N N’]/ly = let, (((pi)) t,, -j,) = Pt[.lf]pq

(((p’))~?!Y2) = pqmm
in if ~l(tl)and 7j(tz) are known

then if tI = t? then ‘(p’‘R)}PS[lV]tJ7Z
else ‘(P[‘p~))PZ[Arqp-V

else let (‘(pJ))t3, 73) = Pt[AT]py2
(((wt,> -f,) = PL.-[N’]PY3

s = eq(ti, tz, ((p3))t3, {(P+4)
in (((PI!P?.I ‘))f, v4[s/tj)

Figure 4: Partial Evaluator

17

Figure 5: Code Generation

4.4 Code Generation

Since P& produces its output as a PSval, we have to convertit into
the core language to complete the partial evaluation. Thanks to
the use of names, the code generationis straightforwardas shown
in Figure 5. We only note that the name clash will never occur,
because all names are uniquely chosen at the specialization phase,

5 Correctness of the Partial Evaluator

[n this section, we will briefly see that the partial evaluator presented
in the previous section preserves the store semantics of the input
program. Although we have already completed the proof, we only
outline it here due to the lack of space. The details are presented in
the technical report version[2] of this paper.

Because our partial evahtator consists of two parts (special-
ization P& and code generation P’D), the correctness is also di-
vided into two parts: the correctness of PD and P&. As for
PD. we first define the semantics of PSval ~P~ in such a way
that the semantics of PSval is given by the semantics of its cod-
ified program. Then, we prove that PD actually preserves the

semantics: ~PS [((P))t]a = f[PZ@p)}t]]u, where C is a stan-
dard store semantics of the core language. The proof is straight-
forward and done by induction on the number of PD applica-

tions required to transform the PSval {(P))t into code. After that,
we prove the main theorem stating that PE preserves the seman-
tics: given the sound mu{ablec~, and malablecdr, if’{ respects a,
~P~ [’PE[Af]py]m = ~[.lf]pu. The proof is again by induction
on the number of P& applications required to partiall y evaluate M,

6 Extensions and Limitations

So far, we have considered the pattial evaluation of the core lan-
guage. in this section, we describe extensions to cope with more
realistic languages such as Scheme, as wel as limitations our partial
evaluator currently has. Given a mechanism for handling side-
effects correctly, it is not difficult to incorporate other features of
functional languages. The extensions presented below (other than
the last two) are actually implemented in our Scheme partial evalu-
ator. which can now deal with almost all features of Scheme.

Variable Assignments and I/O Assignments to variables can be
handled by translating them to updates on data structures. Instead
of storing a value u to a mutable variable 1, we store a cell contain-
ing the value II to z. References and updates to z are translated to
references and updates to the cell, respectively. Alternatively, as-
signments to variables can be handled by finding mutable variables

and residualizing their definitions, references, and updates. This
process parallels [o the treatment of mutable cells and M realized
almost the same as mutable cells. Since mutable variables can be
found by scanning the input program once, the analysis phase for
finding mutable variables becomes much simpler. In our cument
implementation, the latter approach is taken.

Input/output operations are handled by simply residualizing
them as preactions[15].

Recursion and Termination Detection Given that mutable cells
are completely separated by the side-effect analysis, the presence
of side-effects has no influence on the termination detection nor on
the folding mechanism. All the mutable parts are hidden from ac-
cesses and are correctly residualized by the preaction mechanism.
We can introduce recursion and any conventional termination detec-
tion algorithm for pure functional languages, treating side-effecting
operations as ordinary dynamic expressions. In our current im-
plementation, we employ user annotation (or@ers[7, 9]) to avoid
non-termination.

A-expressions with Variadic Parameters As was pointed out
by Thiemann[23], it is easy to handle variadic parameters when
pairs are treated as partially static data structures[l 8]. By explicitly
supplying cons points for the implicitly introduced cons cells for
variadic parameters, we can support variadic parameters including
destructive updates to those cons points. We can also support
a higher-order primitive apply through extending the side-effect
analysis to cope with function application caused by apply.

Constants and Other Primitives Constants and first-order prim-
itives are handled straightforwardly. Higher-order primitives other
than apply (e.g., map and assq) are provided as ordinary user-
defined functions. We have not yet considered partial evaluation of
calVcc.

Post-processing The post-processing phase removes those preac-
tions that will not referenced during the runtime evaluation of the
residual program. It also performs additional local transformation
for the better readability. It includes: folding a sequence of let
expressions into a let* expression, itrlining expressions that are
used exactly onceg, etc.

No Code Sharing We have not considered code sharing at all. The
result of partial evaluation sometimes becomes quite large because
of the repeated residualization of the same functions, In the presence
of side-effects, it is not obvious if a previously residualized function
can be re-used later, because some of the referred cells might be
modified, [n our case, however, references to mutable cells are never
performed and their values are not used during partial evaluation.
This means that residualized functions are independent of the values
of mutable cells. Thus, we expect that we can use the conventional
mechanism for code sharing for pure functional languages.

No External Cons and Closure Points Our partial evaluator as-
sumes that all the cons points and closure points are available at
partial evaluation time. If some of them are not present, it may
produce a wrong result. For example, to partially evaluate the

‘Cwe mus(be taken if it is harmless to reverse the order ot’execution. In partwular,
the order of references to mutable cells (e g . cwv.r) and updates on them (.vt’rc<IrxA1)
cannot k reversed

18

(letrec
((base-eval

(lambda (exp env)
(cond ((number? exp) exp)

((symbol’? exp) (eval-var exp env))
((eq? (car exp) ‘quote) (eval-quote exp env))
((eq? (car exp) ‘set!) (eval-set! exp env))
((eq? (car exp) ‘lambda) (eval-lambda exp env))

i~lse (eval-application exp env)))))
(eval-set!

(lambda (exp env)
(let ((var (car (cdrexp)))

(body (car (cdr (cdr exp)))))
(set-cdr! (assqvar env) (base-eval body env)))))

(eval-lambda
(lambda (exp env)

(let ((lambda-params (car (cdrexp)))
(lambda-body (cdr (cdr exp))))

(lambda args ; variadic parameter for lambda closures
(base-eval lambda-body (ext.endenv lambda-parame args))))))

(extend
(lambda (env params args)

(if (null? params)
env
(cons- (car params) (car args))

(extendenv (cdr params) (cdr args))))))
.)

~base-eval ‘(lambda (x) (+ x (begin (set! x 3) x)))
(list (cons ‘+ +) (cons ‘- 2 . ..)))—

Figure 6: The Core Part of the Scheme Interpreter

following program:

Jj. iet a = cons 12
inletb=fa

in cara,

the side-effect analysis will determine that a is immutable. Thus,
our specialize will reduce car a., producing the following result:

~f.let a = cons I 2
W{ktb=fa

inl.

However, the result is not correct if the program is applied to
Ar. setcar r 3. The problem can be avoided by treating unknown
parameters conservative y as “any value”, as done by Shivers[2 I].

7 Specializing an Interpreter

In this section, we show an example specialization of a larger pro-
gram: an interpreter for a subset of Scheme with a variable assign-
ment operation set !. The core part is shown in Figure 6. The
main function base-eval dispatches on the expression to be eval-
uated as usual. Among various special forms, we show evaluator
functions forset ! andlambda. Set! statements ininterpretedpro-
grams are interpreted as set-cdr ! operations to the environment,
which is implemented as a list of bindings (an association list).
This is the only place where side-effects are used in the program.
)-expressions are realized bv A-closures with a variadic parameter,

Assume that the initial environment is defined as:

; side-effects

; main program
environment

(list (cons ‘+ +) (cons ‘- -) . . .).

To partially evaluate this interpreter with respect to a program:

‘(lambda (x) (+ x (begin (set.! x 3) x)))

and the initial environment, the side-effect analysk will first find
that the cdr parts of the bindings in the environment (underlined
cons expressions in the figure) are mutable. Since these are the
only mutable parts, the shape of the environment is known and
the partial evaluator can unfold all the environment accesses, com-
pletely removing the interpretation process. The result of partially
evaluating the interpreter (after renaming) thus becomes:

(let ((pairl (cons ‘+ +)))
(lambda args

(let* ((pair2 (cons ‘x (car args)))
(operator-+ (cdr pairl))
(g-270 (cdrpair2)))

(set-cdr! pair2 3)
(operator-+ g-270 (cdrpair2)))))

We can observe that all the environment accesses are unfolded and
only the pairs for + (pairl) and x (pair2) residualize, The set !
statement in the original interpreted program is compiled into a
single set-cdr ! statement. We have succeeded in compiling side-
effecting programs using an interpreter written with side-effects.

The performance of the partial evaluator is reasonable. To
analyze and partially evaluate the above program (the version which
supports seven special forms including letrec and 27 primitives),

19

it takes less than one second on Chez Scheme on a SUN SS20
workstation (HiperSPARC 150MHz) wl[h 128 Mbyte of memory.

Currently, we are trying [0 use our partial e~aluator as a com-
piler for the reflective language Black[3]. Since updates on cons
cells are used in environment manipulation in Black, the ability to
handle updates as well as pointer equality is essential. The primary
experiment shows that it is powerful enough to collapse multi-level
meta-circular interpreters, which enables us to compile a program
under modified semantics.

8 Related Work

8.1 Side-effect Analysis

The side-effect analysis we have used is based on Consel’s binding
time analysis[8], which introduces the notion of cons points and
closure points. We have extended it to return possible values for
expressions rather than their binding times. The resulting analysis
becomes quite similar to other existing analyses such as a set-based
analysis[12], In fact, the same information can be obtained by
using the set-based analysis, which can deduce a set of possible
values for higher-order ,1-cafculus with updatable arrays. Using
a set-based-analysis, we expect to have complexity benefit over
abstract-interpretation based approach.

8.2 Partial Evaluation

There are several partial evaluators for Scheme. Among them,
Similix[5] is a publicly available oftline partial evaluator. Although
it can deal with I/O operations and limited types of variable as-
signments, it does not handle destructive updates of data structures.
Schism[9] is also an offline partial evaluator for Scheme, but does
not address the pattial evaluation of side-effects. POPE[19] is an
online partial evaluator for Scheme, which is aiso publicly avail-
able. It accepts richer kinds of variable assignments than Similix,
but does not handle destructive updates of data structures correctly.

Fuse[20] is an online partial evaluator, which our partial evahr-
ator was originally based on. It uses graph structure to avoid code
duplication. Using preactions, we extended it to handle side-effects,
which Fuse does not handle’”. We also use names to simplify the
code generation phase considerably.

Partial evaluation of side-effects has been considered in imper-
ative languages, such as Pascal[16], Fortran[4], and C[1]. Among
them, C-MIX is a powerful partial evaluator that can deal with
pointers. it incorporates various analyses (e.g., a pointer analysis
and a data-flow analysis) to obtain side-effect information. We
performed a similar analysis for higher-order languages where lo-
cal closures are allowed. Currently, we do not reduce assignments
because it does not improve the result very much in functional
languages. In imperative languages, most computation is done by
assignments to local variables, and thus reducing them is essen-
tial. In functional languages, because [his type of computation is
realized without using assignments, we can still obtain sufficient
specializations without reducing them.

Recently, Dussart and Thiernann[11] developed a partial eval-
uator for ML with a reference type that can statically reduce local
static side-effects. In this respect, their partial evaluator is more
powerful than ours. Because mutable data are syntactically clear
in ML programs, they do not need a side-effect analysis. However,
since their specialize is based on Similix’s let-expressions, it would
be difficult to reduce programs where the preservation of pointer

“’There seems to be a version of Fuse thm handles side-effects[25]. However. actual

treatment of side-effects M not clear

equallty is essential, such as Scheme programs. It is interesting to
see it’it ISpossible to incorporate their technique in our framework.

8.3 Preactions

Preactions used in this paper have close relationship to the CPS-
based let-expression technique used in Similix. When unknown
expressions are encountered in Similix, let-expressions are con-
structed to residualize them. Since names bound to them are used
in the subsequent partial evaluation, problems such as code elimina-
tion and code duplication are avoided in the same way as preactions
are used. The order of side-effects are preserved by incorporating
let-expressions to CPS-based specialization.

Added to these features realized by the CPS-based let-expression
technique, the preaction mechanism achieves the propagation of in-
formation on residualized expressions. This difference becomes
important whenresidualizedexpressionsareused in the subsequent
partial evaluation. When preactions are used, they are still acces-
sible, enabling further specialization. If let-expressions are used,
on the other hand, they become unknown and prohibited from ac-
cessing. Remember that A-expressions and cons expressions have
side-effects on the store (to declare their identity) and thus resid-
ualized as preactions. Treating them unknown results in a very
poor specialization. The preaction mechanism enables us to treat
expressions as both dynamic and static.

In our earlier work[l 5], preactions are used to residuafize l/O op-
erations. Here, we have extended it to cope with destructive assign-
ments of data structures, as well as partially static data structures. In
Mogensen’s original paper on partially static data structures[17], he
mentioned a use of$ield to avoid the code duplication problem. The
preaction mechanism can be regarded as its generalization where
residualized expressions are not necessarily dynamic ones.

9 Conclusion

We have presenteda frameworkof an online partialevaluatorfor
a call-by-value A-calculus that deals with destructiveupdates of
data structuresand preservespointer equality. The two key tech-
niques used here are the side-effect analysis and preactions. The
side-effect analysis is used to separate immutable cells from mu-
table ones. Since mutable parts are usually small in functional
languages, it enables us to reduce most accesses to structured data
at partial evaluation time. For the correct residualization of side-
effecting operations, preactions are used to solve various issues,
such as code elimination, code duplication, and the order of execu-
tion, Further-more, it enables us to treat expressions as both static
and dynamic. Partially static data structures are naturally realized
by residualizing them as preactions and using them at the same
time in the subsequent partial evaluation. This makes more expres-
sions to be reduced at specialization time that were residualized
and treated as dynamic when the conventional let-expression was
used. The correctness of the partial evaluator is proven. Based on
the framework, we have constructed a partial evaluator for Scheme,
which is powerful enough to specialize an interpreter written using
side-effects,

Acknowledgements

We received many helpful comments from Olivier Danvy, Peter
Thiemann, and Naoki Kobayashi for the earlier version of this
paper. Comments from anonymous referees improved this paper in
various ways,

20

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[II]

[12]

[13]

[14]

Anderson, L.O. Progru~tlAf~alysis a~~cl$l}ecic~li:a~/{J/?for/)~e
C Programming Lmguage, Ph.D. thesis, DIKLI, Unwersity of
Copenhagen (May 1994).

Asai, K., H, Masuhara. and A. Yonezawa “Partial Evalua-
tion of Call-by-value l-calculus with Side-effects,” Technical
report of Department oflnforma[ion Science, University of
Tokyo, 96-04 (November 1996).

Asai, K., S. Matsuoka, and A. Yonezawa’’Duplication and
Partial Evaluation — For a Better Understanding of Reflective
Languages —,” Lisp and Symbolic Compurarion, Vol. 9, Nos.
2/3, pp. 203–241, Kluwer Academic Publishers (May/June
1996).

Baier, R., R. Chick, and R. Zochling “Partial Evaluation of
Numerical Programs in Fortran,” ACM SIGP.L4N Workshop
on Partial Evaluatwn and Semantics-Based Program Manip-
ulation (PEPM ‘94), pp. 119-132 (June 1994).

Bondorf, A., and O. Danvy “Automatic autoprojection of
recursive equations with global variables and abstract data
types,” Science of Computer Programming, Vol. 16, pp. 151-
195, Elsevier (1991).

Clinger, W., and Rees, J. (editors) “Revisedi Report on the
Algorithmic Language Scheme”, LISP Poinfers, Vol. IV, No.
3, pp. 1-55 (July-September 1991).

Consel, C. “New Insights into Partial Evaluation: the SCHISM
Experiment,” ESOP ’88, 2nd European Symposium on Pro-
gramming {LNCS 300), pp. 236-246 (March 1988).

Consel, C. “Binding Time Analysis for Higher Order Untyped
Functional Languages,” Proceedings of the 1990 ACM Con-
ference on Lisp and Functional Programming, pp. 264-272
(June 1990).

Consel, C. “A Tour of Schism: A Partial Evaluation System
for Higher-Order Applicative Languages,” Proceedings of the
Symposium on Partial Evaluatwn and Semantics-Based Pro-
gram Manipulation (PEPM’93), pp. 145-154 (June 1993).

Dean, J., C. Chambers, and D. Grove “Identifying Prof-
itable Specialization in Object-Oriented Languages,” ACM
S/GPLAN Workshop on Partial Evaluation and Semantics-
Based Program $fanipufation (PEPM ‘94), pp. 85-96 (June
1994),

Dussart, D., and P. Thiemann “Partial Evaluation for Higher-
Order Languages with State,” Submitted for publication
(1996).

Heintze, N. “Set-Based Analysis of ML Programs,” Proceed-
ings of the 1994 ACM Conference on Lisp and Functional
Programming, pp. 306-317 (June 1994).

Jones, N. D,, C. K. Gomard, and P. Sestoft Partial Evaluation
andAutomatic Program Genetntion, New York: Prentice-Hall
(1993).

Masuhara, H. et al. “A simple mechanism to handle I/O-type
side-effects in on-line partial evaluators,” in preparation.

[15]

[16]

[17]

[18]

Masuhara, H,, S, Matsuoka, K. Asai. and A. Yonezawa’’Com-
pillng .Away the Mets-Level in Object-Oriented Concurrent
Reflective Languages Using Partial Evaluation,” TenthAn-
nua/ Conference of Object-Oriented Programming Systems,
Languages, and Applications (OOPSL4 ‘9.$), pp. 300-315,
(October 1995).

Meyer, U. “Techniques for partial evaluation of imperative
languages,” Proceedings of [he Synposiunl on Partia/ Eval-
uation and Senzantics-Based Program Manipulation (PEPM
‘91), pp. 94-105 (June 1991),

Mogensen, T. A3. “Partially Static Structures in a Self-
Applicable Partial Evaluator,” In D. Bj@mer, A. P. Ershov,
and N. D. Jones editors, Partia/ Evaluation and Mixed Com-
putation, Elsevier Science Publishers, pp. 325-347(1988).

Mogensen, T. A. “Separating Binding Times in Language
Specifications,”’ Proceedings of the Fourth International Con-
ference on Functional Pro~rammine Lanzuapes and Com-

[19]

[20]

[21]

[22]

[23]

[24]

[25]

puterArchitecture (FPCA ‘89), pp. 12-25 (September 1989).

Orbak, P. “POPE: An On-line Partial Evaluator,” available
from f tp: I/f tp. daimi. aau. dk/pub/ernpl/poe/pope. p
s. gz (June 1994).

Ruf, E. Topics in Online Partial Evaluation, Ph.D. thesis,
Stanford University (March 1993). Also published as Stanford
Computer Systems Laboratory technical report CSL-TR-93-
563.

Shivers,O. “Control Flow Analysis in Scheme,” Proceedings
of the ACM SIGPLAN ’88 Conference on Programming L.un-
guage Design and implementation (PLD1), pp. 164-174 (June
1988).

Sperber, M., and P. Thiemann “The Essence of LR Pars-
ing,” Proceedings of the Symposium on Partial Evaluation
and Semantics-Based Program Manipulation (PEPM’95), pp.
146-155 (June 1995).

Thiemann, P. “Towards Partial Evaluationof Full Scheme,”
Proceedings of Reflection ’96, pp. 105-115 (April 1996).

Weise, D,, R, Cony beare, E. Ruf, and S. Seligman “Automatic
Online Partial Evaluation,” In J. Hughes, editor, Functional
Programming Languages and Computer Architecture (LNCS
523), pp. 165-191 (August 199 1).

Weise, D., and S, Seligman “Accelerating Object-Oriented
Simulation via Automatic Program Specialization,” Technical
Report of Computer Systems Laboratory, Stanford University,
CSL-TR-92-519 (also FUSE Memo 92-10), (April 1992).

21

