
Two-level Just-in-Time Compilation with One
Interpreter and One Engine

Yusuke Izawa

izawa@prg.is.titech.ac.jp
Tokyo Institute of Technology

Tokyo, Japan

Hidehiko Masuhara

masuhara@acm.org
Tokyo Institute of Technology

Tokyo, Japan

Carl Friedrich Bolz-Tereick

cfbolz@gmx.de
Heinrich-Heine-Universität

Düsseldorf

North Rhine-Westphalia, Germany

Abstract
Modern, powerful virtual machines such as those running

Java or JavaScript support multi-tier JIT compilation and

optimization features to achieve their high performance.

However, implementing and maintaining several compil-

ers/optimizers that interact with each other requires hard-

working of VM developers. In this paper, we propose a tech-

nique to realize two-level JIT compilation in RPython with-

out implementing several interpreters or compilers from

scratch. As a preliminary realization, we created adaptive

RPythonwhich performs both baseline JIT compilation based

on threaded code and tracing JIT compilation. We also imple-

mented a small programming language with it. Furthermore,

we preliminarily evaluated the performance of that small lan-

guage, and our baseline JIT compilation achieved ran 1.77x

faster than the interpreter-only execution. Furthermore, we

observed that when we apply an optimal JIT compilation for

different target methods, the performance was mostly the

same as the one optimizing JIT compilation strategy, saving

about 40 % of the compilation code size.

CCS Concepts: • Software and its engineering→ Just-
in-time compilers.

Keywords: JIT compiler, threaded code, RPython, language

implementation framework

1 Introduction
Language implementation frameworks, e.g., RPython [6]

and Truffle/Graal [24], are tools to build a virtual machine

(VM) with a highly efficient just-in-time (JIT) compiler by

merely providing an interpreter of the language. For example,

PyPy [5], which is a fully compatible Python implementation,

achieved 4.5x speedup from the original CPython 3.7 inter-

preter [23]. The other successful examples include Topaz [9],

Hippy VM [8], TruffleRuby [20], and GraalPython [21].

One of the limitations of RPython and Truffle/Graal is that

they don’t support a multi-tier JIT compilation strategy in

contrast to existing language-specific VMs such as Java or

JavaScript. One naïve approach for multi-tier compilation is

to create compilers for each optimization level. However, this

PEPM ’22, January 17–18, 2022, Philadelphia, Pennsylvania, United States
2022.

approachmakes existing implementationsmore complex and

requires more developing efforts to implement and maintain

– we need at least to consider how to share components,

and how to exchange profiling information and compiled

code between each compiler. To avoid such a situation, we

have to find another efficient and reasonable way to support

multi-tier JIT compilation in a framework. Several works in

RPython [2, 4, 14] found that specifying special annotations

in an interpreter definition can influence how RPython’s

meta-tracing JIT compiler works. In other words, we can

view the interpreter definition as a specification of a compiler.

We believe those approaches can be extended to achieve an

adaptive optimization system in meta-level.

As a proof-of-concept of language-agnostic multi-tier

JIT compilation, we propose adaptive RPython. Adaptive
RPython can generate a VM with two-level JIT compila-

tion. We do not create two separated compilers in adaptive

RPython but generate two different interpreters – the one

is for the first level of compilation and the other is for the

second level. As first-level compilation, we support threaded

code [3, 13] in ameta-tracing compiler (we call this technique

threaded code generation [15]). The second one is RPython’s

original tracing JIT compilation. We can switch optimization

levels by moving between the two interpreters. In addition,

adaptive RPython generates two interpreters from one defi-

nition. It will reduce implementation costs that the user of

adaptive RPython does not need to pay. In the future, we plan

to extend such a system to realize a nonstop optimization-

level changing mechanism in a language implementation

framework – we can use an appropriate and efficient opti-

mization level or a compilation strategy depending on the

executed program.

The contributions of this paper can be summarized as

follows:

• An approach to generate multiple interpreter imple-

mentations from one common interpreter definition to

obtain JIT compilers with different optimization levels.

• The technical details of enabling threaded code gen-

eration as a first-level JIT compilation by driving an

existing meta-tracing JIT compiler engine.

• The preliminary evaluation of our two-level JIT com-

pilation on a simple programming language.

PEPM ’22, January 17–18, 2022, Philadelphia, Pennsylvania, United States Izawa, Masuhara, and Bolz-Tereick.

Generic Interpreter

Adaptive RPython

base-

program

baseline JIT

interp.

tracing JIT

interp.

native native

tracing-JIT-suitable

hot spot found

method-

based

VM generation time

run-time

data flow

exec. flow

Figure 1. An overview of adaptive RPython: two different

interpreters are generated from a single generic interpreter

by adaptive RPython at VM generation time. At run-time,

the two interpreters, baseline JIT and tracing JIT interpreters,

behave level 1 and level 2, respectively.

The rest of this paper is organized as follows. Section 2

proposes an idea and technique to support two-level JIT com-

pilation with one interpreter in RPython without crafting

a compiler from scratch. We evaluate our preliminary im-

plementation in Section 3. Section 4 discusses related work,

and we conclude the paper and denote the future work in

Section 5.

2 Two-level Just-in-Time Compilation with
RPython

In this section, we propose a multi-tier meta-tracing JIT com-

piler framework called adaptive RPython, and its technique to
support two different compilation levels with one interpreter

and one engine. We firstly introduce adaptive RPython in

Section 2.1. Then, in Section 2.2 and 2.3 we explain the tech-

nical details to realize two-level JIT compilation in RPython.

Sections 2.2 and 2.3 correspond to “one interpreter” and “one

engine”, respectively.

2.1 Adaptive RPython
Adaptive RPython steers the existing meta-tracing engine to

behave in two ways, as both a baseline JIT compiler and a

tracing JIT compiler. To realize this behavior, the most obvi-

ous approach would be to implement two different compilers

or interpreters. However, this approach increases the amount

of implementation necessary. Thus, we do not craft compil-

ers from scratch but steer an existing compilation engine by

providing a specializing interpreter called the generic inter-
preter. Figure 1 shows an overview of how adaptive RPython

and the generic interpreter work. At VM generation time

(the upper half of Figure 1), the developer writes the generic

1 jittierdriver = JitTierDriver(pc='pc')
2

3 class Frame:
4 def interp(self);
5 pc = 0
6 bytecode = self.bytecode
7 jitdriver.jit_merge_point(pc=pc,
8 bytecode=bytecode,self=self)
9 opcode = ord(bytecode[pc])
10 pc += 1
11 if opcode == JUMP_IF:
12 target = bytecode[pc]
13 jittierdriver.can_enter_tier1_branch(

14 true_path=target,false_path=pc+1,

15 cond=self.is_true)

16 if we_are_in_tier2(kind='branch'):
17 # do stuff
18

19 elif opcode == JUMP:
20 target = bytecode[pc]
21 jittierdriver.can_enter_tier1_jump(target=target)

22 if we_are_in_tier2(kind='jump'):
23 # do stuff
24

25 elif opcode == RET:
26 w_x = self.pop()
27 jittierdriver.can_enter_tier1_jump(ret_value=w_x)

28 if we_are_in_tier2(kind='ret'):
29 # do stuff

Listing 1. A skeleton of the generic interpreter definition.

interpreter. Adaptive RPython generates two different in-

terpreters that support different JIT compilation level, e.g.,

baseline JIT and tracing JIT interpreters work as level-1 and

level-2, respectively. At run-time (the bottom half of Fig-

ure 1), a generated baseline JIT interpreter firstly accepts

and runs a base-program. While running the program, the

execution switches to a generated tracing JIT interpreter

if the hot spot is turned out to be suitable for tracing JIT

compilation.

2.2 Generic Interpreter
Adaptive RPython takes the generic interpreter as input.

The generic interpreter is converted into an interpreter that

includes two definitions that are individually for baseline JIT

and tracing JIT compilations. Listing 1 illustrates a skeleton

of the generic interpreter definition. To remove the task

of manually writing redundant definitions in the method-

traversal interpreter [15], we internally generate both the

method-traversal interpreter (for baseline JIT compilation)

and a normal interpreter (for tracing JIT compilation) from

the generic interpreter definition.

To convert the generic interpreter into several interpreters

with two different definitions, we need to tell adaptive

RPython some necessary information. For that reason, we

implement several hint functions for the generic interpreter

alongwith RPython’s original hints. The skeleton is shown in

Listing 1.When developers write the generic interpreter, they

firstly declare an instance of JitTierDriver class that has a
field pc. It tells adaptive RPython fundamental information

such as the variable name of the program counter. Further-

more, transforming hints should be defined in a specific han-

dler. can_enter_tier1_branch, can_enter_tier1_jump
and can_enter_tier1_ret tell the adaptive RPython’s

Two-level Just-in-Time Compilation with One Interpreter and One Engine PEPM ’22, January 17–18, 2022, Philadelphia, Pennsylvania, United States

transformer the necessary information to generate the

method-traversal interpreter. The method-traversal inter-

preter requires a particular kind of code in JUMP_IF, JUMP,
and RET bytecode handlers, so that hints are called in those

handlers. The requisite information in each handler and hint

is the following:

can_enter_tier1_branch. The method-traversal inter-

preter needs to drive the engine to trace both sides of a

branch instruction. Thus, we have to pass the following vari-

ables/expressions to the transformer:

• the true and false paths of program counters: to man-

age them in the traverse stack

• the conditional expression: to generate if expression.

In the handler of JUMP_IF in Listing 1, we pass the follow-

ing statements/expressions: target as true_path, pc+1 as
a false_path and self.is_true as cond. We also remem-

ber and mark the cond to utilize at trace-stitching inside of

adaptive RPython (details are explained in Section 2.3.1).

can_enter_tier1_jump. A jump instruction possibly

placed at the end of a function/method. In such a case, the en-

gine does not follow the destination but takes out a program

counter from top of traverse_stack. Otherwise, the jump

instruction performs as defined in the original interpreter .

Thus, the method-traversal interpreter requires the program

counter of a jump target tomanage it in the traverse_stack.
As shown in the handler of JUMP in Listing 1, we pass target
to the transform_jump function.

can_enter_tier1_ret. A return instruction is invoked at

the end of a function/method. The method-traversal inter-

preter requires a return value, so we have to pass w_x via

transform_ret as illustrated in the handler of RET in List-

ing 1.

we_are_in_tier2. This is a hint function to tell the area

where a definition for tracing JIT compilation is written to

the transformer. One thing we need to do is to specify the

type of handler function that is defined immediately above.

For example, we add the keyword argument kind='branch'
in the handler of JUMP_IF in Listing 1.

2.3 Just-in-Time Trace Stitching
The just-in-time trace stitching technique builds back up the

original control of a trace yielded from the method-traversal

interpreter to emit an executable JITted code. This is the

essential component in baseline JIT compilation of adaptive

RPython.

To reconstruct the original control flow, we need to con-

nect a correct guard operation and bridging trace. There-

fore, we should specially treat the destination of a “false”

branch while doing trace-stitching. In tracing JIT compilers,

A

start

B

C

E

emit_X

F

emit_Y

D

end

pc (B→ D)

traverse stack

p
u
s
h

pc (C→ F)

pc (B→ D)

push

pc (C→ F)

pc (B→ D)

pop

pc (B→ D)

p
o
p

A

B

C

E

F

D

resulting trace

Figure 2. An overview of method-traversing in a program

with nested branches. The left-hand side shows howwe drive

the meta-tracing engine by using traverse stack. The snake

line represents the trail of tracing. The right-hand side is a

resulting trace.

at branching instructions guards are inserted.
1
After a guard

operation fails many times, a tracing JIT compiler will trace

the destination path starting from the failing guard, i.e., trace

the other branch. The resulting trace from a guard failure

is called a bridge, which will be connected to the loop body.

On the other hand, in trace-stitching, we perform such a

sequence of generating and connecting a bridge in one go.

For the sake of ease and reducing code size, we generate a

trace essentially consisting of call operations by threaded

code generation.
2

The left-hand side of Figure 2 illustrates the process

of traversing an example target method that has nested

branches. In tracing a branch instruction, we record the other

destination, e.g., a program counter from B to D in node B,

in the traverse stack. For example, when tracing B and C, we

push each program counter from B to D and from C to F to

traverse stack. Then, we pop a program counter from the

traversal stack and set it to E and F. After traversing all paths,

we obtain a single trace that does not keep the structure of

the target as shown in the right-hand side of Figure 2.

2.3.1 Resolving Guard Failures and Bridges. Intend-
ing to resolve the relations between guards and bridges, we

utilize the nature of the method-traversal interpreter: it man-

ages base-program’s branches as a stack data structure, so

the connections are first-in-last-out. Thus, we implement

guard failure stack to manage each guard’s failure. The guard

failure stack saves guard failures in each guard operation

1
Technically speaking, type-checking guards are inserted to optimize the

obtained trace based on the observed run-time type information. However,

we currently handle branching guards only and leave type optimization to

the last JIT tier.

2
Note that threaded code generation yields essentially call and guard oper-

ations. In contrast to normal tracing JIT compilation, it can reduce the code

size and compilation time by 80 % and 60 % [15].

PEPM ’22, January 17–18, 2022, Philadelphia, Pennsylvania, United States Izawa, Masuhara, and Bolz-Tereick.

A start

B guard 1

C guard 2

E emit_X

F emit_Y

D end

guard failure (g1)

guard failure stack

guard failure (g2)

guard failure (g1)

push

p
u
s
h

guard failure (g2)

guard failure (g1)

pop

guard failure (g1)

pop

loop body

bridge

Figure 3. An overview of just-in-time trace-stitching. This

shows how we resolve the relations between guard failures

and bridges as taking Figure 2 for example.

and pops them at the start of a bridge, that is, right after

emit_jump or emit_ret operations that tell a cut-here line.
Before explaining the details of the algorithm, we give

a high level overview of how we resolve the connections

between guard failures and bridges by using Figure 3 as an

example. First of all, the necessary information is that which

guard failure goes to which bridges. We resolve it by sequen-

tially reading and utilizing the guard failure stack. When we

start to stitch the trace shown in Figure 3, we sequentially

read the operations from the trace. In node B, when it turned

out that the guard operation is already marked as cond in the
generic interpreter, we take its guard failure (g1) and

push it to the guard failure stack. In node C, we do the same

thing in the case of node B. Next, in node E, we finish the

tracing an operation and cut the current trace. In addition,

we pop a guard failure and connect it to the bridge that we

are going to retrieve, since the bridges are lined up below

with a depth-first approach. In node F, we do the same thing

in the case of node F. In node D, finally, we finish reading

and produce one trace and two bridges. The connections are

illustrated as red arrows in Figure 3.

2.3.2 TheMechanism of Just-in-Time Trace-Stitching.
How JIT trace-stitching works is explained through Algo-

rithm 1. First of all, the trace-stitcher DoTraceStitching

prepares an associative array called token_map, and the

(key, value) pair is (program counter, target_token).3

Next, it declares guard_failure_stack, trace and result.
guard_failure_stack is a key data structure to resolve

the relation between guard failures and bridges. trace tem-

porarily stores a handled operation, and result memorizes

3target_token is an identifier for a trace/bridge. When we encounter

emit_jump or emit_ret operations, we get the program counter (key)

passed as an argument to emit_jump or emit_ret operations, and create a

new target_token (value).

a pair of a trace and its corresponding guard_falure. After
that, it manipulates each operation in the given ops. We spe-

cially handle the following operations: (1) a guard operation

marked by the generic interpreter, (2) pseudo call opera-

tions CallOp(emit_ret) and CallOp(emit_jump), and (3)

RPython’s return and jump operations. Note that almost all

operations except guards are represented as a call operation

since the resulting trace is produced from our threaded code

generator.

Marked guard operation. To resolve the guard-bridge

relation, we firstly collect the guard operations that we

have marked in the generic interpreter. The reason we

mark some guards is to distinguish between branching

guards and others. When we encounter such a guard op-

eration, we take its guard_failure and append it to the

guard_failure_stack. Its algorithm is shown in the first

branching block of Algorithm 1.

Pseudo call operations. Pseudo functions emit_jump
and emit_ret are used as a sign of cutting the trace at this

position and to start recording a bridge. They are represented

as Call(emit_jump) and Call(emit_ret) in a trace.

In the case of CallOp(emit_jump):

1. look up a target_token from the token_map using

the target program counter as a key

2. try to retrieve a guard_failure from the

guard_failure_stack. If it the stack is empty,

we do nothing since the current recording trace is a

body (not a bridge). Otherwise, pop a guard failure

from the guard_failure_stack.
3. create a jump operation with the inputargs and

target_token and append to the trace.
4. append the pair of the trace and guard_failure to

the result.

In the case of CallOp(emit_ret):

1. take a return value (retval) from the operation.

2. take a guard_failure if it is not first time.

3. create a return operation with the retval and append
to the trace.

4. append the pair of the trace and guard_failure.

RPython’s Jump and Return. These operations are

placed at the end of a trace. When we read them, we ap-

pend the pair of the operation and retrieve the guard failure

to the result, and finish reading.

3 Preliminary Evaluation
In this section, we evaluate our implementations of JIT trace-

stitching and baseline JIT compilation. Since our work is not

finished, these can only be preliminary.

Two-level Just-in-Time Compilation with One Interpreter and One Engine PEPM ’22, January 17–18, 2022, Philadelphia, Pennsylvania, United States

3.1 Implementation
We wrote a small interpreter called tla in adaptive RPython

and executed several micro benchmark programs on it. In

the tla language, we have both primitive and object types,

and they are dynamically typed.

Simulating Multi-tier Compilation. To conduct this

preliminary evaluation, we partially implemented two-level

JIT compilation by separately defining interpreters for each

execution level – baseline JIT compilation (level 1), and trac-

ing JIT compilation (level 2). In other words, to support

multi-tier JIT compilation, we prepared two interpreters that

have different jitdrivers in tla; the one is for baseline JIT

compilation and the other is for tracing JIT compilation. For

example, during executing a base-program, we call separate

interpreters for different JIT compilation levels which are

manually specified in a base-program.

Accessibility. The implementations of proof-of-concept

adaptive RPython and tla interpreter is hosted on Hepta-

pod.
4
Moreover, the generic interpreter implementations are

hosted on our GitHub organization.
5

3.2 Targets
To verify that our JIT trace-stitching mechanism works on

a program with some complex structure, we wrote a single

loop program loop and nested loop program loopabit in
tla for the experiments.

Furthermore, to confirm the effectiveness of shifting dif-

ferent JIT compilation levels, we wrote callabit that has
two different methods and each method has a single loop.

According to the specified JIT compilation strategy, callabit

has the following variants:

(a) callabit_baseline_interp: the main method is com-

piled by baseline JIT compilation, but the other is in-

terpreted.

(b) callabit_baseline_only: the two methods are com-

piled by baseline JIT compilation.

(c) callabit_baseline_tracing: the main method is com-

piled by baseline JIT compilation, and the other is by

tracing JIT compilation.

(d) callabit_tracing_baseline: the main method is com-

piled by tracing JIT compilation, and the other is by

baseline JIT compilation.

(e) callabit_tracing_only: all methods are compiled by

tracing JIT compilation.

All bytecode programs used for this evaluation are shown

in Appendix C.2.

4https://foss.heptapod.net/pypy/pypy/-/tree/branch/threaded-code-
generation/rpython/jit/tl/threadedcode
5https://github.com/prg-titech/mti_transformer

3.3 Methodology
We took two kinds of data: the times of stable and startup

speeds. When we measured stable speed, we discarded the

first iteration and accumulated the elapsed time of each 100

iterations. In contrast, we measured the startup speed; we

iterated 100 times the spawning of an execution process. In

addition, we took how many operations they emit and how

much time they consumed in tracing and compiling in the

case of callabit programs. Note that in every benchmark, we

did not change the default threshold of the original RPython

to enter JIT compilation.

We conducted the preliminary evaluation in the follow-

ing environment: CPU: Ryzen 9 5950X, Mem: 32 GB DDR4-

3200MHz, OS: Ubuntu 20.04.3 LTS with a 64-bit Linux kernel

5.11.0-34-generic.

3.4 Result
Compiling Single and Nested Loops. Figure 4 visual-

izes the resulting traces from loopabit.tla by baseline JIT

compilation. We can initially confirm that our baseline JIT

compilation works correctly when we look at this figure. Fig-

ure 5a and 5b show the result of stable and startup times in

loop and loopabit programs, respectively. In stable speed, on

average, baseline JIT and tracing JIT are 1.7x and 3.25x faster

than the interpreter-only execution. Or more specifically,

baseline JIT compilation is about 2x slower than tracing JIT

compilation. In startup time (Figure 5b), baseline JIT compila-

tion is about 1.9x faster and tracing JIT compilation is about

5x faster. The loop and loopabit programs are much suitable

for tracing JIT compilation, so we consider that tracing JIT

compilation should be dominant in executing such programs.

Furthermore, at applying baseline JIT compilation for such

a program, we should reduce the value of threshold to enter

JIT compilation. Tuning the value is left for our future work.

SimulatingMulti-tier JITCompilation. Figure 6 shows
how the simulated multi-tier JIT compilation works on a

program with two different methods. The callabit has main
method that repeatedly calls sub_loop that reduces the given
number one by one. The call method is not implemented by

using jump but invoking an interpreter, so the effectiveness

of inlining by tracing JIT compilation is limited in this case.

In other words, main is relatively suitable for baseline JIT

compilation and sub_loop is for tracing JIT compilation.

In the stable and startup speeds (Figure 6a and 6b),

callabit_baseline_interp is about 3 % slower than the

interpreter-only execution. This means that repeating

back and forth between native code and an interpreter

execution leads to run-time overhead. Meanwhile, the

combination of baseline JIT and tracing JIT compila-

tions (callabit_baseline_tracing) is as fast as tracing JIT

compilation-only strategy (callabit_tracing_only). Addition-

ally, when seeing the Figure 7, the baseline-tracing JIT strat-

egy’s trace size is about 40 % smaller than the only tracing

https://foss.heptapod.net/pypy/pypy/-/tree/branch/threaded-code-generation/rpython/jit/tl/threadedcode
https://foss.heptapod.net/pypy/pypy/-/tree/branch/threaded-code-generation/rpython/jit/tl/threadedcode
https://github.com/prg-titech/mti_transformer

PEPM ’22, January 17–18, 2022, Philadelphia, Pennsylvania, United States Izawa, Masuhara, and Bolz-Tereick.

JIT strategy. In contrast, the trace sizes are the same between

baseline-tracing JIT and tracing-baseline JIT strategies, but

the tracing-baseline JIT strategy is about 45 % slower than

baseline-tracing JIT strategy, and the baseline-only strategy

is about 5 % faster than tracing-baseline JIT strategy. From

those results, we can deduce that there is a ceiling to using

only a single JIT strategy. Furthermore, to leverage different

levels of JIT compilations, we have to apply an appropriate

compilation according to the structure or nature of the target

program.

In summary, our baseline JIT compilation is about 1.77x

faster than the interpreter-only execution in both stable and

startup speeds.
6
Moreover, our baseline JIT compilation is

only about 43 % slower than the tracing JIT compilation,

even though it has very few optimizations such as inlining

and type specialization. This means that our approach to

enabling baseline JIT compilation alongside with tracing

JIT compilation has enough potential to work as startup

compilation if we carefully adjust the threshold to enter a

baseline JIT compilation. This is left as one of the essential

future work.

4 Related Work
Both well-developed VMs, such as Java VM or JavaScript VM,

and research-oriented VMs with a certain size support multi-

tier JIT compilation to balance among the startup speed,

compilation time, and memory footprint. As far as the au-

thors know, such VMs build at least two different compilers

to realize multi-tier optimization. In contrast, our approach

realizes it in one engine with a language implementation

framework.

The Java HotSpot
™
VM has the two different compilers,

that are C1 [16] and C2 [22], and four optimization levels.

The typical path is moving through the level 0, 3 to 4. Level

0 means interpreting. On level 3, the C1 compiler compiles a

target with profiling information gathered by the interpreter.

If the C2’s compilation queue is not full and the target turns

out hot, the C2 starts to optimize the method aggressively

(level 4). Level 1 and 2 are used when the C2’s compilation

queue is full, or level 3 optimization cannot work.

The Firefox JavaScript VM called SpiderMonkey [17] has

several interpreters and compilers to enable multi-tier opti-

mization. For interpreters, it has normal and baseline in-

terpreters [18]. The baseline interpreter supports inline

caches [7, 12] to improve its performance. The baseline JIT

compiler uses the same inline caching mechanism, but it

translates the entire bytecode into machine code. In addition,

a full-fledged compiler WarpMonkey [19] compiles a hot

spot into fast machine code. Besides such a JavaScript en-

gine, the SpiderMonkey VM has an interpreter and compiler

called WASM-Baseline and WASM-Ion.

6
We calculated the geometric mean of loop, loopabit, and

callabit_baseline_only in both stable and startup speeds.

Google’s JavaScript engine V8 that is included in the

Chrome browser also supports amulti-tier compilationmech-

anism [10]. V8 sees it as a problem that the JIT-compiled

code can consume much memory, but it runs only once. The

baseline interpreter/compiler is called Ignition, and it is so

highly optimized to collaborate with V8’s JIT compiler en-

gine Turbofan. It can reduce the code size up to 50 % by

preserving the original Google said Ignition reduced the

memory footprint of each Chrome tab by around 5 %.

Google’s V8 has another optimizing compiler called

Liftoff [11]. The Liftoff compiler is designed for a startup

compiler of WebAssembly and works alongside Turbofan.

Turbofan is based on its intermediate representation (ir), so it

needs to translateWebAssembly code into the ir, leading to a

reduction in the startup performance of the Chrome browser.

However, Liftoff instead directly compiles WebAssembly

code into machine code. The liftoff compiler is tuned to

quickly generate memory-efficient code to reduce the mem-

ory footprint at startup time.

The Jikes Java Research VM (originally called Jalapeño) [1]

that was developed by IBM Research, is a research-oriented

VM that is written in Java. It has baseline and an optimizing

JIT compilers and supports an optimization strategy in three-

level.

5 Conclusion and Future Work
In this paper, we proposed the concept and initial stage im-

plementation of adaptive RPython, which can generate a

VM that supports two-level compilation. In realizing adap-

tive RPython, we did not implement another compiler from

scratch but drove the existing meta-tracing JIT compilation

engine by a specially instrumented interpreter called the

generic interpreter. The generic interpreter supports a fluent

api that can be easily integrated with RPython’s original

hint function. The adaptive RPython compiler generates dif-

ferent interpreters that support a different compilation level.

The JIT trace-stitching reconstructs the initial control flow

of a generated trace from a baseline JIT interpreter to emit

the executable native code. In our preliminary evaluation,

when we manually apply a suitable compilation depending

on the control flow of a target method, we confirmed that the

baseline-tracing JIT compilation runs as fast as tracing JIT-

only compilation and reduces 50 % of the trace size. From this

result, selecting an appropriate compilation strategy accord-

ing to a target program’s control flow or nature is essential

in the multi-tier compilation.

To implement an internal graph-to-graph conversion of

the generic interpreter in RPython is something we plan to

work on next. We currently implement the generic inter-

preter transformer as source-to-source since it is a proof-of-

concept. For a smoother integration with RPython, we need

to switch implementation strategies in the future.

Two-level Just-in-Time Compilation with One Interpreter and One Engine PEPM ’22, January 17–18, 2022, Philadelphia, Pennsylvania, United States

To realize the technique to automatically shift JIT compila-

tion levels in adaptive RPython also needs to be implemented,

including the investigation of suitable heuristics of when to

go from one tier to the next.

Finally, we would implement our adaptive RPython tech-

niques in the PyPy programming language since it brings us

many benefits. For example, we can obtain a lot of data by

running our adaptive RPython on existing polished bench-

mark programs to determine a certain threshold to switch

a JIT compilation. Furthermore, we could potentially bring

our research results to many Python programmers.

Acknowledgments
Wewould like to thank the reviewers of the PEPM 2021 work-

shop for their valuable comments. This work was supported

by JSPS KAKENHI grant number 21J10682 and JST ACT-X

grant number JPMJAX2003.

References
[1] BowenAlpern, C. R. Attanasio, Anthony Cocchi, Derek Lieber, Stephen

Smith, Ton Ngo, John J. Barton, Susan Flynn Hummel, Janice C. Shep-

erd, and Mark Mergen. 1999. Implementing Jalapeño in Java. In Pro-
ceedings of the 14th ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (Denver, Colorado,
USA) (OOPSLA ’99). Association for Computing Machinery, New York,

NY, USA, 314–324. https://doi.org/10.1145/320384.320418
[2] Spenser Bauman, Carl Friedrich Bolz, Robert Hirschfeld, Vasily Kir-

ilichev, Tobias Pape, Jeremy G. Siek, and Sam Tobin-Hochstadt. 2015.

Pycket: A Tracing JIT for a Functional Language. In Proceedings of the
20th ACM SIGPLAN International Conference on Functional Program-
ming (Vancouver, BC, Canada) (ICFP 2015). ACM, New York, NY, USA,

22–34. https://doi.org/10.1145/2784731.2784740
[3] James R. Bell. 1973. Threaded Code. Commun. ACM 16, 6 (June 1973),

370–372. https://doi.org/10.1145/362248.362270
[4] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijałkowski, Michael

Leuschel, Samuele Pedroni, and Armin Rigo. 2011. Runtime Feedback

in a Meta-tracing JIT for Efficient Dynamic Languages. In Proceedings
of the 6th Workshop on Implementation, Compilation, Optimization of
Object-Oriented Languages, Programs and Systems (Lancaster, United
Kingdom) (ICOOOLPS ’11). ACM, NewYork, NY, USA, Article 9, 8 pages.

https://doi.org/10.1145/2069172.2069181
[5] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijałkowski, and Armin

Rigo. 2009. Tracing the Meta-level: PyPy’s Tracing JIT Compiler. In

Proceedings of the 4th Workshop on the Implementation, Compilation,
Optimization of Object-Oriented Languages and Programming Systems
(Genova, Italy). ACM, New York, NY, USA, 18–25. https://doi.org/10.
1145/1565824.1565827

[6] Carl Friedrich Bolz and Laurence Tratt. 2015. The Impact of Meta-

tracing on VM Design and Implementation. Science of Computer Pro-
gramming 98 (2015), 408 – 421. https://doi.org/10.1016/j.scico.2013.02.
001 Special Issue on Advances in Dynamic Languages.

[7] L. Peter Deutsch and Allan M. Schiffman. 1984. Efficient Implemen-

tation of the Smalltalk-80 System. In Proceedings of the 11th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(Salt Lake City, Utah, USA) (POPL ’84). Association for Computing

Machinery, New York, NY, USA, 297–302. https://doi.org/10.1145/
800017.800542

[8] Maciej Fijałkowski, Armin Rigo, Rafał Gałczyński, Ronan Lamy, Sebas-

tian Pawluś, Ashwini Oruganti, and Edd Barrett. 2014. HippyVM - an
implementation of the PHP language in RPython. Retrieved 2021-10-07

from http://hippyvm.baroquesoftware.com
[9] Alex Gaynor, Tim Felgentreff, Charles Nutter, Evan Phoenix, Brian

Ford, and PyPy development team. 2013. A high performance ruby,
written in RPython. Retrieved 2021-10-07 from http://docs.topazruby.
com/en/latest/

[10] Google. 2016. Firing up the Ignition interpreter. Retrieved 2021-10-07

from https://v8.dev/blog/ignition-interpreter
[11] Google. 2018. Liftoff: a new baseline compiler for WebAssembly in V8.

https://v8.dev/blog/liftoff
[12] Urs Hölzle, Craig Chambers, and David Ungar. 1991. Optimizing

dynamically-typed object-oriented languages with polymorphic in-

line caches. In ECOOP’91 European Conference on Object-Oriented Pro-
gramming, Pierre America (Ed.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 21–38.

[13] P. Joseph Hong. 1992. Threaded Code Designs for Forth Interpreters.

SIGFORTH Newsl. 4, 2 (Oct. 1992), 11–16. https://doi.org/10.1145/
146559.146561

[14] Ruochen Huang, Hidehiko Masuhara, and Tomoyuki Aotani. 2016.

Improving Sequential Performance of Erlang Based on a Meta-tracing

Just-In-Time Compiler. In International Symposium on Trends in Func-
tional Programming. Springer, 44–58.

[15] Yusuke Izawa, Hidehiko Masuhara, Carl Friedrich Bolz-Tereick, and

Youyou Cong. 2021. Threaded Code Generation with a Meta-tracing

JIT Compiler. (Sept. 2021). arXiv:2106.12496 submitted for publication.

[16] Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck,

Thomas Rodriguez, Kenneth Russell, and David Cox. 2008. De-

sign of the Java HotSpot
™
Client Compiler for Java 6. ACM Trans.

Archit. Code Optim. 5, 1, Article 7 (May 2008), 32 pages. https:
//doi.org/10.1145/1369396.1370017

[17] Mozilla. 2019. Spider Monkey: Mozilla’s JavaScript and WebAssembly
Engine. Retrieved 2021-10-07 from https://spidermonkey.dev

[18] Mozilla. 2019. SpiderMonkey’s JavaScript Interpreter and Compiler.
Retrieved 2021-09-27 from https://firefox-source-docs.mozilla.org/js

[19] Mozilla. 2020. Warp: Improved JS performance in Firefox 83. Retrieved

2021-10-07 from https://hacks.mozilla.org/2020/11/warp-improved-js-
performance-in-firefox-83/

[20] Oracle Lab. 2013. A high performance implementation of the Ruby
programming language. https://github.com/oracle/truffleruby

[21] Oracle Labs. 2018. Graal/Truffle-based implementation of Python. Re-

trieved 2021-10-07 from https://github.com/graalvm/graalpython
[22] Michael Paleczny, Christopher Vick, and Cliff Click. 2001. The Java

Hotspot
™
Server Compiler. In Proceedings of the 2001 Symposium on

JavaTM Virtual Machine Research and Technology Symposium - Volume
1 (Monterey, California) (JVM ’01). USENIX Association, USA, 1.

[23] PyPy development team. 2009. PyPy Speed Center. Retrieved 2021-09-

27 from https://speed.pypy.org
[24] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas

Wöß, Lukas Stadler, Chris Seaton, Gilles Duboscq, Doug Simon,

and Matthias Grimmer. 2017. Practical Partial Evaluation for High-

performance Dynamic Language Runtimes. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (Barcelona, Spain) (PLDI 2017). ACM, New York, NY, USA,

662–676. https://doi.org/10.1145/3062341.3062381

https://doi.org/10.1145/320384.320418
https://doi.org/10.1145/2784731.2784740
https://doi.org/10.1145/362248.362270
https://doi.org/10.1145/2069172.2069181
https://doi.org/10.1145/1565824.1565827
https://doi.org/10.1145/1565824.1565827
https://doi.org/10.1016/j.scico.2013.02.001
https://doi.org/10.1016/j.scico.2013.02.001
https://doi.org/10.1145/800017.800542
https://doi.org/10.1145/800017.800542
http://hippyvm.baroquesoftware.com
http://docs.topazruby.com/en/latest/
http://docs.topazruby.com/en/latest/
https://v8.dev/blog/ignition-interpreter
https://v8.dev/blog/liftoff
https://doi.org/10.1145/146559.146561
https://doi.org/10.1145/146559.146561
https://arxiv.org/abs/2106.12496
https://doi.org/10.1145/1369396.1370017
https://doi.org/10.1145/1369396.1370017
https://spidermonkey.dev
https://firefox-source-docs.mozilla.org/js
https://hacks.mozilla.org/2020/11/warp-improved-js-performance-in-firefox-83/
https://hacks.mozilla.org/2020/11/warp-improved-js-performance-in-firefox-83/
https://github.com/oracle/truffleruby
https://github.com/graalvm/graalpython
https://speed.pypy.org
https://doi.org/10.1145/3062341.3062381

PEPM ’22, January 17–18, 2022, Philadelphia, Pennsylvania, United States Izawa, Masuhara, and Bolz-Tereick.

A The Algorithm of Just-in-Time
Trace-Stitching

Algorithm 1: DoTraceStitching(inputargs, ops)
input : red variables 𝑖𝑛𝑝𝑢𝑡𝑎𝑟𝑔𝑠 of the given trace

input :a list of operations 𝑜𝑝𝑠 taken from the given trace

/* Note that token_map and guard_failure_stack are global

variables */
token_map← CreateTokenMap (ops);

guard_failure_stack, trace, result← [], [], [];

for op in ops do
if op is guard and marked then

guard_failure← GetGuardFailure (op);

append guard_failure to guard_failure_stack;

else if op is call then
if op is CallOp(emit_jump) then

trace, guard_failure← HandleEmitJump(𝑜𝑝, 𝑖𝑛𝑝𝑢𝑡𝑎𝑟𝑔𝑠) ;
append (trace, guard_failure) to result;
trace← [];

else if op is CallOp(emit_ret) then
trace, guard_failure← HandleEmitRet(𝑜𝑝) ;
append (trace, guard_failure) to result;
trace← [];

else
append 𝑜𝑝 to trace;

else if op is JumpOp then
append 𝑜𝑝 to trace;
guard_failure← PopGuardFailure ();

append (trace, guard_failure) to result;
break;

else if op is RetOp then
append 𝑜𝑝 to trace;
guard_failure← PopGuardFailure ();

append (trace, guard_failure) to result;
break;

else
append 𝑜𝑝 to trace;

return result;
Function PopGuardFailure():

if first pop? then
return None;

else
𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 ← pop the element from guard_failure_stack;
return 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 ;

Function HandleEmitJump(𝑜𝑝, 𝑖𝑛𝑝𝑢𝑡𝑎𝑟𝑔𝑠):
𝑡𝑎𝑟𝑔𝑒𝑡 ← GetProgramCounter (op);

𝑡𝑜𝑘𝑒𝑛← token_map [𝑡𝑎𝑟𝑔𝑒𝑡];

guard_failure← PopGuardFailure ();

append 𝐽 𝑢𝑚𝑝𝑂𝑝 (𝑎𝑟𝑔𝑠, 𝑡𝑜𝑘𝑒𝑛) to trace;
return trace, guard_failure;

Function HandleEmitRet(𝑜𝑝):
𝑟𝑒𝑡𝑣𝑎𝑙 ← GetRetVal(𝑜𝑝) ;
guard_failure← PopGuardFailure() ;
append 𝑅𝑒𝑡𝑂𝑝 (𝑟𝑒𝑡𝑣𝑎𝑙) to trace;
return trace, guard_failure;

Figure 4. The visualization of the resulting traces from

loopabit.tla compiled by baseline JIT compilation. Note that

each trace was joined at one compile time.

B Results of the Preliminary Evaluation

lo
op

lo
op

ab
it

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Th
e

sp
ee

d
up

 ra
tio

 n
or

m
al

ize
d

to
 th

e
in

te
rp

.-o
nl

y
ex

ec
.

Executing w/ baseline JIT

ge
o_

m
ea

n
(b

as
el

in
e)

lo
op

lo
op

ab
it

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Executing w/ tracing JIT

ge
o_

m
ea

n
(tr

ac
in

g)

TLA w/ Adaptive RPython (Stable speed)

(a) The result of the stable speeds of loop and loopabit.

lo
op

lo
op

ab
it

0

1

2

3

4

5

Th
e

sp
ee

d
up

 ra
tio

 n
or

m
al

ize
d

to
 th

e
in

te
rp

.-o
nl

y
ex

ec
.

Executing w/ baseline JIT

ge
o_

m
ea

n
(b

as
el

in
e)

lo
op

lo
op

ab
it

0

1

2

3

4

5

Executing w/ tracing JIT

ge
o_

m
ea

n
(tr

ac
in

g)

TLA w/ Adaptive RPython (Startup speed)

(b) The result of the startup speeds of loop and loopabit.

Figure 5. The results of loop and loopabit. Execution times

are normalized to the interpreter-only execution. Higher is

better

Two-level Just-in-Time Compilation with One Interpreter and One Engine PEPM ’22, January 17–18, 2022, Philadelphia, Pennsylvania, United States

ca
lla

bi
t_

ba
se

lin
e_

in
te

rp

ca
lla

bi
t_

ba
se

lin
e_

on
ly

ca
lla

bi
t_

ba
se

lin
e_

tra
cin

g

ca
lla

bi
t_

tra
cin

g_
ba

se
lin

e

ca
lla

bi
t_

tra
cin

g_
on

ly

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Th
e

sp
ee

d
up

 ra
tio

 n
or

m
al

ize
d

to
 th

e
in

te
rp

.-o
nl

y
ex

ec
.

TLA w/ Adaptive RPython (Stable speed)

(a) The result of the stable speeds of callabit programs.

ca
lla

bi
t_

ba
se

lin
e_

in
te

rp

ca
lla

bi
t_

ba
se

lin
e_

on
ly

ca
lla

bi
t_

ba
se

lin
e_

tra
cin

g

ca
lla

bi
t_

tra
cin

g_
ba

se
lin

e

ca
lla

bi
t_

tra
cin

g_
on

ly

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Th
e

sp
ee

d
up

 ra
tio

 n
or

m
al

ize
d

to
 th

e
in

te
rp

.-o
nl

y
ex

ec
.

TLA w/ Adaptive RPython (Startup speed)

(b) The result of the startup speeds of callabit programs.

Figure 6. The results of callabit programs with simulated

multi-tier JIT compilation. Every data is normalized to the

interpreter-only execution. Higher is better.

Traces
0

50

100

150

200

250

300

350

400

callabit_baseline_interp
callabit_baseline_only
callabit_baseline_tracing

callabit_tracing_baseline
callabit_tracing_only

Compilation time (ms)
0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
s

Figure 7. The trace sizes and compilation times in callabit

programs. The program is so small that the compilation time

is at most 3 % of the total.

C Programs
C.1 The Definition of Traverse Stack

1 class TraverseStack:
2 _immutable_fields_ = ['pc', 'next']
3

4 def __init__(self, pc, next):
5 self.pc = pc
6 self.next = next
7

8 def t_pop(self):
9 return self.pc, self.next
10

11 @elidable
12 def t_is_empty(self):
13 return self is _T_EMPTY
14

15 _T_EMPTY = None
16

17 @elidable
18 def t_empty():
19 return _T_EMPTY
20

21 memoization = {}
22

23 @elidable
24 def t_push(pc, next):
25 key = pc, next
26 if key in memoization:
27 return memoization[key]
28 result = TraverseStack(pc, next)
29 memoization[key] = result
30 return result

Listing 2. The definition of traverse_stack.

C.2 Bytecode Programs Used for Preliminary
Evaluation

PEPM ’22, January 17–18, 2022, Philadelphia, Pennsylvania, United States Izawa, Masuhara, and Bolz-Tereick.

1 # loop.tla
2 tla.DUP,
3 tla.CONST_INT, 1,
4 tla.LT,
5 tla.JUMP_IF, 11,
6 tla.CONST_INT, 1,
7 tla.SUB,
8 tla.JUMP, 0,
9 tla.CONST_INT, 10
10 tla.SUB,
11 tla.EXIT,

1 # loopabit.tla
2 tla.DUP,
3 tla.CONST_INT, 1,
4 tla.SUB,
5 tla.DUP,
6 tla.CONST_INT, 1,
7 tla.LT,
8 tla.JUMP_IF, 12,
9 tla.JUMP, 1,
10 tla.POP,
11 tla.CONST_INT, 1,
12 tla.SUB,
13 tla.DUP,
14 tla.DUP,
15 tla.CONST_INT, 1,
16 tla.LT,
17 tla.JUMP_IF, 25,
18 tla.JUMP, 1,
19 tla.EXIT

Listing 3. The definitions of loop, loopabit.

1 # callabit.tla
2 # - callabit_baseline_interp replaces XXX with tla.CALL_NORMAL, 16
3 # - callabit_baseline_tracing and callabit_traing_only replace XXX
4 # with tla.CALL_JIT, 16
5 # main(n)
6 tla.DUP,
7 tla.CALL, 16, # XXX
8 tla.POP,
9 tla.CONST_INT, 1,
10 tla.SUB,
11 tla.DUP,
12 tla.CONST_INT, 1,
13 tla.LT,
14 tla.JUMP_IF, 15,
15 tla.JUMP, 0,
16 tla.EXIT,
17 # sub_loop(n)
18 tla.CONST_INT, 1,
19 tla.SUB,
20 tla.DUP,
21 tla.CONST_INT, 1,
22 tla.LT,
23 tla.JUMP_IF, 27,
24 tla.JUMP, 16,
25 tla.RET, 1

Listing 4. The definition of callabit.

	Abstract
	1 Introduction
	2 Two-level Just-in-Time Compilation with RPython
	2.1 Adaptive RPython
	2.2 Generic Interpreter
	2.3 Just-in-Time Trace Stitching

	3 Preliminary Evaluation
	3.1 Implementation
	3.2 Targets
	3.3 Methodology
	3.4 Result

	4 Related Work
	5 Conclusion and Future Work
	Acknowledgments
	References
	A The Algorithm of Just-in-Time Trace-Stitching
	B Results of the Preliminary Evaluation
	C Programs
	C.1 The Definition of Traverse Stack
	C.2 Bytecode Programs Used for Preliminary Evaluation

