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Abstract
A type-preserving compiler converts a well-typed input pro-
gram into a well-typed output program. Previous studies
have developed type-preserving compilers for various source
languages, including the simply-typed lambda calculus and
calculi with control constructs. Our goal is to realize type-
preserving compilation of languages that have facilities for
manipulating first-class continuations. In this paper, we fo-
cus on algebraic effects and handlers, a generalization of
exceptions and their handlers with resumable continuations.
Specifically, we choose an effect handler calculus and a typed
stack-machine-based assembly language as the source and
the target languages, respectively, and formalize the target
language and a type preserving compiler.Themain challenge
posed by first-class continuation is how to ensure safety of
continuation capture and resumption, which involves con-
catenation of unknown stacks. We solve this challenge by
incorporating stack polymorphism, a technique that has been
used for compilation from a language without first-class con-
tinuations to a stack-based assembly language. To prove that
our compiler is type preserving, we implemented the com-
piler in Agda as a function between intrinsically typed ASTs.
We believe that our contributions could lead to correct and
efficient compilation of continuation-manipulating facilities
in general.

CCSConcepts: •Theory of computation→Control prim-
itives; Logic and verification; Type theory; • Software and
its engineering → Compilers.

Keywords: type-preserving compilers, algebraic effect han-
dlers, dependent types
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1 Introduction
Type-preserving compilers convert a well-typed source pro-
gram into well-typed target code. The type preservation
property is useful for ensuring correctness of the compiler,
in that any invariants encoded by source types cannot get
lost during compilation [3]. Type preservation is also impor-
tant for improving efficiency of generated code, because the
type information helps us find opportunities for optimiza-
tion [14].

Previous studies have developed type-preserving compil-
ers for various source languages, including the simply-typed
lambda calculus [6, 16], System F [8, 14], an imperative lan-
guage with conditionals and loops [19], and an exception
calculus [16]. One feature that is missing in these languages
is facilities for manipulating first-class continuations, which
have recently introduced into several practical languages
[10,22].

Our long-term goal is to realize type-preserving compila-
tion of continuation-manipulating facilities. As a first step
towards this goal, we consider type-preserving compilation
of algebraic effects and handlers [18]. Effect handlers are a
generalization of exception handlers that allow the program-
mer to express a wide range of computational effects using
continuations. In this paper, we formalize a typed target lan-
guage based on a stack machine, as well as a type-preserving
compiler from an effect handler calculus to the target lan-
guage.
The main challenge posed by first-class continuations is

how to ensure safety of continuation capture and resumption.
Specifically, in our target language, the type of a captured
continuation must refer to the type of the stack used for
resumption, which is unknown at capture time.
To solve the above problem, we use a technique called

stack polymorphism, proposed by Morrisett et al. [13]. The
technique was originally uesd for compiling recursive func-
tions into a stack-based typed assembly language. The idea
is to abstract over stack types to allow flexibility in the shape
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Value types �, � ::= Unit | � → �

Computation types �, � ::= �!�
Handler types � ::= � ⇒ �

Effect signatures ( ::= ; : � → �

Effects � ::= ∅ | {(} ] �

Values + ,, ::= unit | G | _G."
Computations ", # ::= + , | A4CDA= + |

3> ; + |
;4C G = " 8= # |
ℎ0=3;4 " F8Cℎ �

Handlers � ::= {A4CDA= G → "} |
{; ? : → "} ] �

Figure 1. Syntax of !(

of the stack at the point of continuation resumption. This
is the key novelty of our work: although stack polymor-
phism itself is not a new technique, it has never been used in
the context of compiling continuations. We believe that our
finding would lead to safer implementations of first-class
continuations.
To prove that our compiler preserves types, we follow

the approach of intrinsically typed compilers [6, 8, 16, 19].
Specifically, we formalize the source and target languages as
intrinsically typed ASTs in Agda [15], and then define the
compiler as a function between these ASTs. By implementing
the compiler in this way, we automatically obtain the type
preservation proof.

In this paper, we provide the following.
• A typed target language that is powerful enough to
express manipulation of first-class continuations.

• A proof of type preservation of the compiler in the
form of an Agda function between intrinsically typed
ASTs.

The rest of the paper is organized as follows. In Sections 2,
we define the intrinsically typed ASTs and semantics of the
source language. In Sections 3, we motivate the use of stack
polymorphism and define the target language. In Section 4,
we present a compiler from the source to the target. In Sec-
tion 5, we compare our work to existing work, and in Sec-
tion 6, we conclude with a discussion of future directions.

The source code of our formalization is available at: https:
//github.com/prg-titech/Effect-Handler-Compiler.

2 Source Language !(
We formalize the source language !( of our compiler. The
language is an extension of the lambda calculus with deep
effect handlers, modeled after the effect handler calculus
of Hillerström et al. [9]. The difference is that we do not
include polymorphic types, nor do we forward unhandled
operations (i.e., we require handlers to include one clause
for every operation). This helps us simplify the language

specification and highlight the challenges with first-class
continuations, which is the main focus of this paper. Below,
we first present the specification of !( using mathematical
notations, and then in Agda.

2.1 Mathematical Specification
Thesource language is a fine-grain call-by-value calculus [11],
where types and terms are classified into three categories:
values, computations, and handlers.

Syntax. We define the syntax of !( in Figure 1. At the
level of types, we have value types, computation types, and
handler types, which are mutually defined with effects. Value
types consist of the unit type (*=8C ) and function types (� →
�). Computation types �!� are pairs of a value type � and
an effect �, which respectively represent the result of the
computation and the effect that may be performed during
the computation. Effects are a set of effect signatures ( , and
signatures are operation types ; : � → �, where ; is a label,�
is input type, and � is an output type. A handler type� ⇒ �

represents handlers that handle a computation of type� and
return a computation of type � .
At the level of terms, we again have three categories.

Values consist of unit (unit), variables (G), and functions
(_G."). Computations are function applications (+ , ), re-
turn expressions (A4CDA= + ), operation calls (3> ; + ), let
bindings (;4C G = " 8= # ), and effect handling constructs
(ℎ0=3;4 " F8Cℎ � ). Handlers include a return clause and
zero or more operation clauses, specifying what to do when
the handled computation returns a value and performs an op-
eration. The two arguments ? and : represent the parameter
and continuation of the operation.

Typing Rules. We define the typing rules of !( in Fig-
ure 2. The typing judgments for values, computations, and
handlers take the form Γ ` + : �, Γ ` " : � , and Γ ` � : � ,
respectively. These judgments are understood in the stan-
dard way. For instance, Γ ` + : � means “value+ has type �
under context Γ.” Note that a typing context Γ is a sequence
of pairs of a variable and a value type.
To go through the rules for effect constructs, rule T-Do

introduces an effect ; : � → � in the conclusion. Rule T-
Handle turns the type � of the handled computation into a
different type � that comes from the handler clauses. Rule
T-Handler requires that the return and operation clauses
all have the same type.

Operational Semantics. We define a small-step opera-
tional semantics of !( in Figure 3. The reduction rules are all
standard. Rules E-APP and E-LET enforce the call-by-value
evaluation strategy. Rule E-HANDLE-RET processes the
value returned from a handled computation using the return
clause�A4C of the surrounding handler. Rule E-HANDLE-OP
processes the operation performed by a handled computa-
tion using the matching operation clause � ; . Handlers in !(
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Γ ` + : � Γ ` unit : Unit (T-Unit) G : � ∈ Γ

Γ ` G : �
(T-Var)

Γ, G : � ` " : �

Γ ` _G." : � → �
(T-Abs)

Γ ` " : �

Γ ` + : � → � Γ `, : �

Γ ` + , : �
(T-App)

(; : � → �) ∈ � Γ ` + : �

Γ ` 3> ; + : �!�
(T-Do)

Γ ` + : �

Γ ` A4CDA= + : �!�
(T-Return)

Γ ` " : �!� Γ, G : � ` # : �!�

Γ ` ;4C G = " 8= # : �!�
(T-Let)

Γ ` " : � Γ ` � : � ⇒ �

Γ ` ℎ0=3;4 " F8Cℎ � : �
(T-Handle)

Γ ` � : �
� = �!{ ; : �; → �; };∈� Γ, G : � ` " : � ∀; ∈ �. Γ, (? : �; ), (: : �; → �) ` #; : �

Γ ` {A4CDA= G → "} ] {; ? : → #; };∈� : � ⇒ �
(T-Handler)

Figure 2. Typing Rules of !(

E-APP (_G.")+ −→ " [+ /G]
E-LET ;4C G = A4CDA= + 8= # −→ # [+ /G]

E-HANDLE-RET ℎ0=3;4 (A4CDA= + ) F8Cℎ � −→ " [+ /G] where �A4C = {A4CDA= G → "}
E-HANDLE-OP ℎ0=3;4 � [3> ; + ] F8Cℎ � −→ " [+ /?, (_~.ℎ0=3;4 � [A4CDA= ~] F8Cℎ � )/:]

where � ; = {; ? : → "}
E-Lift � ["] −→ � [# ] 8 5 " −→ #

Evaluation Contexts � ::= [] | ;4C G = � 8= #

Figure 3. Operational Semantics of !(

data Sig where
op : VTy → VTy → Sig

Eff = List Sig

data VTy where
Unit : VTy
_⇒_ : VTy → CTy→

VTy

CTy = VTy × Eff

data HTy where
_=⇒_ : CTy → CTy →

HTy

Ctx = List VTy

variable
A B A’ B’ : VTy
E E’ E1 E2 : Eff
C D : CTy
H : HTy
Γ Γ’ Γ1 Γ2 : Ctx

Figure 4. Agda Definition of !( Types

are deep: captured continuations are automatically handled
by the same handler.

2.2 Agda Representation
We now present a formalization of !( as intrinsically typed
ASTs in Agda. The ASTs encode both the syntax and typing
rules from Section 2.1, meaning that they can only express
well-typed terms in !( .

First, we define data types representing types and effects
(Figure 4). We name the three kinds of types VTy, CTy, and
HTy, and define one constructor for each syntactic form
given in Figure 1. For computation types CTy, we use Agda’s
product type _×_, and for typing contexts, we use Agda’s
list type constructor List. To keep the formalization concise,
we declare variables of each data type using Agda’s variable
keyword.
Next, we define data types representing terms (Figure 5).

We name the three classes of terms Val, Cmp, and Hdl, and
define them as parameterized and indexed data types1. The
parameters and indices allow us to hard-code the typing
rules of the language into the definition of constructors.
For example, the signature of the App constructor encodes
the typing rule T-App in Figure 2. In particular, the two
arguments of the App constructor are indexed by types A
⇒ B and A, respectively, preventing us from constructing
an ill-typed application. Note that we use de Bruijn indices
to represent variables.

1In Agda, parameters of data types appear to the left of the colon, while
indices appear to the right of the colon. Their difference is that the former
must be the same for all constructors, while the latter may be different
across constructors.
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data Val (Γ : Ctx) : VTy → Set
data Cmp (Γ : Ctx) : CTy → Set
data Hdl (Γ : Ctx) : HTy → Set
OperationClauses : Ctx → Eff → CTy→ Set

data Val Γ where
Unit : Val Γ Unit
Var : A ∈ Γ→ Val Γ A
Lam : Cmp (A :: Γ) C→ Val Γ (A⇒ C)

data Cmp Γ where
Return : Val Γ A →Cmp Γ (A , E)
Do : (op A B) ∈ E→Val Γ A →Cmp Γ (B , E)
Handle_With_ : Cmp Γ C →Hdl Γ (C =⇒ D) →

Cmp Γ D
App : Val Γ (A ⇒ C) → Val Γ A → Cmp Γ C
Let_In_ : Cmp Γ (A , E) → (Cmp (A :: Γ) (B , E))

→ Cmp Γ (B , E)

data Hdl Γ where
_x_|_x,r_ :
Cmp (A :: Γ) C → -- return clause

OperationClauses Γ E C→ -- operation clauses

Hdl Γ ((A , E) =⇒ C)

OperationClauses Γ E1 D =
All (_ { (op A’ B’) → Cmp ((B’ ⇒ D) :: A’ :: Γ) D }) E1

Figure 5. Intrinsically Typed ASTs of !( Terms

As an auxiliary data type, we define OperationClauses,
which represent operation clauses of a handler. Here, the All
keyword is a type-level map function provided by Agda.

3 Target Language !)
We formalize the target language !) . The target language !)
is a stack-based abstract machine, built by combining and ex-
tending the target languages for existing intrinsically typed
compilers [2, 16]. In !) , any effect-related computation is
realized by manipulation of the stack and environment. Con-
cretely, installing a handler involves pushing a handler value
onto the stack, performing an operation involves storing the
parameter and continuation in the runtime environment, and
resuming a continuation involves concatenation of stacks.
Below, we first give an overview of the language and then
detail individual language components.

3.1 Overview
Execution of Effectful Programs. To help the reader un-
derstand the design of the target language, we demonstrate
how we execute effectful programs in the target language.
Consider the following source program, which performs

an operation >? within a handler whose operation clause
resumes the continuation : with D=8C .

handle ( let x = do op unit in return x )
with {
return x → return x;
op p k → k unit ;

}

The execution of the above program takes four steps. Each
step involves manipulation of the stack in the target lan-
guage, as shown in Figure 6.

1. The compiled handler and its meta-continuation<:

(which simply returns the given value) are pushed onto
the stack.

2. When the operation >? is performed, the operation
clause of the handler on the stack is executed. This
involves capturing the continuation of >? and binding
it to : .

3. The continuation : is resumed with a stack that is
extended with two things. One is the handler ℎ0=3
included in the continuation : . The other is the '�) in-
struction, which represents the end of operation clause
and executes the meta-continuation<: .

4. The return clause of the handler is executed with the
paraeter D=8C , which is on the top of the stack.

Next, we will informally introduce the components of
the target language that are necessary for realizing such
computation.

Components of Language. The main component of the
target language is instructions, which we represent as the
Code data type.

data Code (Γ : Ctx) : StackTy → StackTy → Set

An instruction of type Code Γ S S′ requires that it requires
a runtime environment whose shape is Γ and a stack whose
shape is S, and it produces a stack whose shape is S′.

The semantics of !) instructions is given as the exec func-
tion.

exec : Code Γ S S’ → Stack S→ RuntimeEnv Γ→ Stack S’

The function executes executes an instruction with a stack
and a runtime environment of the required shape, and pro-
duces a stack of the expected shape.
Executing an instruction involves storing values in the

runtime environment and stack.

RuntimeEnv Γ = All (_ A →EnvVal A) Γ

Stack S = All (_ T→ StackVal T) S

A runtime environment is a sequence of values to be substi-
tuted for source variables. A stack is a sequence of values to
be used later in the computation.

Lastly, the target language has a special data type
PureCodeCont for captured continuations.
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Source term

hand

s

s

s

s

k unit

let x = do op unit in return x1

handle (let x = do op unit in return x) 
with hand

let x = unit in return xresume 
continuation

2

3

4

where hand = { return x → return x; op p k → k unit }

mk

hand RET

capture 
continuation

mk

return unit

mk

smk

hand RETunit

smkRETunit

Target stack

Figure 6. Execution of an Effectful Program in the Source and Target Languages

PureCodeCont : Ctx → StackTy → CTy→ Set

A captured continuation of type PureCodeCont Γ S C is an
instruction whose input stack consists of an S-typed stack
and C-accepting handler. The typing of this handler is the
main challenge of this work, and it is detailed in Sections 3.4
and 3.6.
In what follows, we provide more details of each compo-

nent. For conciseness, we will only show the Agda represen-
tation of the definitions.

3.2 Instructions
We define instructions as the Code data type in Figure 7.
Among the three arguments of Code, the first one (of type
Ctx) represents the shape of a runtime environment, and the
other two (of type StackTy) represent the shapes of the stack
before and after the execution of an instruction.
The instructions all have a counterpart in the source lan-

guage. PUSH and ABS push a unit value and a lambda ab-
straction respectively. LOOKUP pushes a value referred to
by an !( variable. APP, CALLOP, and BIND correspond to
a function application, an operation call, and a let binding.
RET unifies the returning behavior after a function appli-
cation and effect handling.MARK installs a handler, while
UNMARK removes a handler upon execution of the return
clause. Lastly, INITHAND pushes a trivial handler for a top-
level computation that has no effects2. Note that some of

2We need the top-level handler because we require every compiled program
to have a handler on the stack. This eliminates the need for distinguishing
between computations that require a handler and those that do not.

them receive a code continuation as the last argument, rep-
resenting what to do after execution of an instruction3. The
type of code continuations is either Code or PureCodeCont;
we will explain their difference in Section 3.6.

3.3 Environments and Stacks
We define runtime environments in Figure 8. A runtime
environment has type of the form RuntimeEnv Γ, where Γ
contains the types of variables to be replaced by values.
Environment values represent the results of evaluating

an !( computation. Their type EnvVal A is indexed by a
value type A in !( . The four constructors of EnvVal build a
plain value (pval), a closure (clos), a first-class continuation
(fc-resump) respectively. A closure in !) , which we call code
closure, holds the code of the function body and the runtime
environment in which the body is executed. The function
body requires that the continuation of the caller is on the top
of the stack so that control can be returned after execution
of the body. A first-class continuation consists of the code of
the continuation body (of type PureCodeCont, to be defined
in Section 3.4), its runtime environment and handler, plus
the stack used by the continuation.

In Figure 9, we provide an example of a runtime environ-
ment. It has two elements: a plain value and a code closure.
Correspondingly, the type of the runtime environment has a
plain value type and a function type.

We next define stacks in Figure 10. A stack has type takes
the form Stack S, where S is a list of types (of type SValTy)

3The arguments in curly braces are implicit, meaning that they are meant
to be automatically inferred by Agda.
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data Code Γ where
PUSH : PVal A →Code Γ (ValTy A :: S) S’ →Code Γ S S’
ABS :
-- function body

(∀{S1 S2 S3 Γ1 Γ’1 A’} → Code (A :: Γ) (ContTy Γ1 (ValTy B :: S1) (A’ , E1) :: (S1 ++ HandTy Γ’1 S2 S3 (A’ , E1) :: S2)) S3) →
Code Γ (ValTy (A ⇒ (B , E1)) :: S) S’ → Code Γ S S’

LOOKUP : A ∈ Γ→Code Γ (ValTy A :: S) S’ →Code Γ S S’
APP : PureCodeCont Γ (ValTy B :: S1) (A’ , E) →

Code Γ (ValTy A :: ValTy (A ⇒ (B , E)) :: S1 ++ HandTy Γ1 S2 S3 (A’ , E) :: S2) S3
CALLOP : (op A B) ∈ E

→PureCodeCont Γ (ValTy B :: S1) (A’ , E)
→ Code Γ (ValTy A :: S1 ++ HandTy Γ1 S S’ (A’ , E) :: S) S’

BIND : Code (A :: Γ) (ContTy Γ (ValTy B :: S) C :: (S ++ HandTy Γ2 S2 S3 C :: S2)) S3 -- let body

→PureCodeCont Γ (ValTy B :: S) C→ Code Γ (ValTy A :: (S ++ HandTy Γ2 S2 S3 C :: S2)) S3
RET : Code Γ (ValTy A :: ContTy Γ1 (ValTy A :: S) C :: (S ++ HandTy Γ2 S2 S3 C :: S2)) S3
MARK :
HandlerCode Γ (A , E1) (B , E2) → -- handler

PureCodeCont Γ (ValTy B :: S1) (B’ , E2) → -- meta-continuation

-- handled computation

Code Γ (
HandTy Γ (ContTy Γ (ValTy B :: S1) (B’ , E2) :: S1 ++ HandTy Γ1 S2 S3 (B’ , E2) :: S2) S3 (A , E1) ::

ContTy Γ (ValTy B :: S1) (B’ , E2) :: S1 ++ HandTy Γ1 S2 S3 (B’ , E2) :: S2
) S3 →
Code Γ (S1 ++ HandTy Γ1 S2 S3 (B’ , E2) :: S2) S3

UNMARK : Code Γ (ValTy A :: HandTy Γ1 S S’ (A , E1) :: S) S’
INITHAND : Code Γ (HandTy Γ S (ValTy A :: S) (A , []) :: S) (ValTy A :: S) → Code Γ S (ValTy A :: S)

Figure 7. Intrinsically-Typed ASTs of Instructions

of stack values to be used later. A stack value (Figure 11)
is either the result of a computation (of type ValTy), a con-
tinuation (of type ContTy), a handler (of type HandTy), or
a top-level handler. These values are constructed using val,
cont, hand, init-hand of type SValTy. Continuations built
with cont are not first-class continuations captured during
execution; they are instructions to be executed after a RET
instruction. Handlers built with hand include its clauses and
environment. As expressed in its type, handler clauses re-
quire that the stack has the continuation of the handler (i.e.,
the meta-continuation) specifying what to do after effect
handling. The init-hand constructor takes no argument be-
cause the top-level handler has the fixed behavior: it returns
the result of the computation as is.

3.4 Pure Code Continuations
A pure code continuation is a continuation up to the nearest
handler. It differs from an ordinary code continuation in
that it assumes the presence of a handler on the stack. This
assumption is reflected in the type of pure continuations,
defined as PureCodeCont below.

PureCodeCont : Ctx → StackTy → CTy→ Set
PureCodeCont Γ S1 C =
∀{Γ1 S2 S3} → Code Γ (S1 ++ HandTy Γ1 S2 S3 C :: S2) S3

We see that the type is a Code type whose first stack index
contains a handler. What is important here is that the types
S2 and S3 , which represent the stacks before and after exe-
cuting the handler of the continuation itself, are universally
quantified.

3.5 Semantics
Having defined the syntax and typing of !) , we define the
semantics in the form of the exec function (Figure 12)4. As
the signature says, exec executes an instruction with a stack

4We use {-# TERMINATING #-} pragma for interpreter functions because
execution of instructions and handler bodies involves non-structural re-
cursion. We believe that these functions are in fact terminating, as our
source language does not have recursive functions or loops. To convince
Agda, however, we would need to add a termination measure, which would
complicate the overall development. We also plan to develop a version of
our compiler that does not use the pragma as future work.
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data EnvVal : VTy → Set
RuntimeEnv : Ctx → Set

data EnvVal where
pval : PVal A→ EnvVal A
clos : (∀{Γ1 Γ’1 S1 S2 S3 A’} → Code (A :: Γ) (ContTy Γ1 (ValTy B :: S1) (A’ , E) :: (S1 ++ HandTy Γ’1 S2 S3 (A’ , E) :: S2)) S3)

→ RuntimeEnv Γ →EnvVal (A ⇒ (B , E))
fc-resump :
PureCodeCont Γ (ValTy A :: S) (A’ , E) × Stack S × RuntimeEnv Γ → -- continuation body and its stores

HandlerCode Γ1 (A’ , E) (B , E’) × RuntimeEnv Γ1 → -- handler and its environment

EnvVal (A ⇒ (B , E’))

RuntimeEnv Γ = All (_ A →EnvVal A) Γ

HandlerCode Γ (A , E1) (B , E2) =
(∀{Γ1 Γ’1 S1 S2 S3 A’} →
-- return clause

Code (A :: Γ) (ContTy Γ’1 (ValTy B :: S1) (A’ , E2) :: (S1 ++ HandTy Γ1 S2 S3 (A’ , E2) :: S2)) S3 ×
-- operation clauses

OperationCodes B E1 E2 Γ (ContTy Γ’1 (ValTy B :: S1) (A’ , E2) :: (S1 ++ HandTy Γ1 S2 S3 (A’ , E2) :: S2)) S3
)

OperationCodes B E1 E2 Γ SS S3 = All (_ {(op A’ B’) → Code ((B’ ⇒ (B , E2)) :: A’ :: Γ) SS S3 }) E1

Figure 8. Definition of Runtime Environments

Figure 9. Example of Runtime Environment

and a runtime environment of the required shape, and pro-
duces a stack of the expected shape. This signature can be
read as the type soundness property of !) . By the Curry-
Howard isomorphism, the definition of exec serves as the
type soundness proof.
Let us begin with the cases for instructions that push

values. PUSH pushes a plain value onto the stack, whereas
ABS pushes a code closure. LOOKUP reads the value referred
to by the argument variable x and pushes it.
We next look at instructions for function applications,

operation calls, and let bindings. APP behaves differently de-
pending on whether the second element of the stack is a code
closure (constructed by clos) or a continuation (constructed
by fc-resump). In the former case, the instruction extends
the environment with the argument value v and executes
the code closure. In the latter case, the instruction adds v
to the environment, builds a new stack, and executes the
continuation body c′. The stack built here is basically a con-
catenation (denoted by _++s_) of the stack s′ of the captured

data SValTy : Set
StackTy : Set

data SValTy where
ValTy : VTy → SValTy
ContTy : Ctx → StackTy → CTy→ SValTy
HandTy : Ctx → StackTy → StackTy → CTy→

SValTy

StackTy = List SValTy

variable
T : SValTy
S S’ S1 S2 S3 : StackTy

data StackVal : SValTy → Set

Stack : StackTy → Set
Stack S = All (_ T→ StackVal T) S

Figure 10. Definition of Stacks

continuation and the stack s of the caller, but it additionally
contains a handler, enforcing the deep handler semantics.
CALLOP finds and executes the code of an operation clause
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data StackVal where
val : EnvVal A → StackVal (ValTy A)
cont : PureCodeCont Γ S1 (A , E) → RuntimeEnv Γ → StackVal (ContTy Γ S1 (A , E))
hand : HandlerCode Γ (A , E1) (B , E2) → RuntimeEnv Γ →

StackVal (HandTy Γ (ContTy Γ2 (ValTy B :: S1) (A’ , E2) :: S1 ++ HandTy Γ1 S2 S3 (A’ , E2) :: S2) S3 (A , E1))
init-hand : StackVal (HandTy Γ S (ValTy A :: S) (A , []))

Figure 11. Definition of Stack Values

{-# TERMINATING #-}
exec : Code Γ S S’ → Stack S → RuntimeEnv Γ→ Stack S’
exec (PUSH v c) s = exec c $ (val (pval v)) :: s
exec (ABS c’ c) s env = exec c (val (clos c’ env) :: s) env
exec (LOOKUP x c) s env = exec c ((val $ lookup env x) :: s) env
exec (APP c) (val v :: val (clos c’ env’) :: s) env = exec c’ (cont c env :: s) (v :: env’)
exec (APP c) (v :: val (fc-resump (c’ , s’ , env2) (h , envh)) :: s) env =
exec c’ (v :: (s’ ++s (hand h envh :: cont c env :: s))) env2

exec (CALLOP l c) (val v :: s) env with split s
… | (s1 , (hand h env’) , s2) with h
… | (_ , ops) = exec (lookup ops l) s2 (fc-resump (c , s1 , env) (h , env’) :: v :: env’)
exec (BIND c k) (val v :: s) env = exec c (cont k env :: s) (v :: env)
exec RET (val v :: cont c env :: s) _ = exec c (val v :: s) env
exec (MARK h mk c) s env = exec c (hand h env :: cont mk env :: s) env
exec (UNMARK) (val x :: (hand h env’) :: s) env with h
… | (ret , ops) = exec ret s (x :: env’)
exec (UNMARK) (val x :: init-hand :: s) env = val x :: s
exec (INITHAND c) s env = exec c (init-hand :: s) env

split : Stack (S1 ++ HandTy Γ1 S S’ (A , E) :: S) → Stack S1 × StackVal (HandTy Γ1 S S’ (A , E)) × Stack S
split {S1 = []} (H :: S) = ([] , H , S)
split {S1 = _ :: _} (V :: S) with split S
… | (S1 , H , S2) = (V :: S1 , H , S2)

Figure 12. Definition of Execution Function

using the label l, while adding the argument value to the
stack and the captured code continuation to the runtime
environment. Observe that the stack is split into two (s1 and
s2) by the split function. The two portions contain elements
that appear before and after the handler, and are used for
execution of the continuation and meta-continuation. BIND
adds to the runtime environment the value on the top of the
stack and shifts control to the body of let.
We are now left with instructions for effect handling.

MARK pushes a handler h and its continuationmk, and starts
execution of a computation c. UNMARK behaves differently
depending on whether the handler on the stack is a regular
handler or a top-level handler init-hand. In the former case,
the instruction pushes the meta-continuation of the handler

and executes the return clause. The meta-continuation is
resumed by RET when the execution of the return clause
finishes. In the latter case, the instruction simply pushes the
value v. Lastly, INITHAND pushes init-hand onto the stack,
allowing us to start execution of a top-level computation.

3.6 Stack Polymorphism
As we saw earlier, in the type PureCodeCont of pure code
continuations, we universally quantify the type of the stacks
before and after executing the continuation of the handler.
The need for this quantification comes from the fact that,
when capturing a continuation, we do not know the stack at
the point where the continuation is resumed.
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Source term

hand

s

s

s

k unit

s

handle (k unit) with hand’

let x = do op unit in return x1

handle (let x = do op unit in return x) 
with hand

let x = unit in return x

Target stack

resume 
continuation

2

3

4

where hand = handler {...; op _ k → handle (k unit) with hand’ }

mk1

hand’ mk2

shand’ mk2

hand mk3

capture 
continuation

A

mk1

mk1

mk1

Figure 13. Example of Continuation Capture and Resumption

To understand the challenge, let us consider the example
in Figure 13. The source computation performs an operation
>? within a handler ℎ0=3 whose operation clause resumes
the captured continuation : within a handler ℎ0=3 ′. The
execution of this computation goes as follows.

1. The handler ℎ0=3 is installed. This is done by pushing
handler and its meta continuation<:1 onto the stack.

2. The handled computation is executed. This involves a
call to the operation >? , which captures the continua-
tion and binds it to : .

3. The operation clause of the handler hand is executed.
This involves pushing the handler ℎ0=3 ′ and its meta
continuation<:2 onto the stack.

4. The continuation : is resumed with a stack that is
extended with the handler ℎ0=3 stored in the continu-
ation.

With this in mind, we consider the type of the handler
ℎ0=3 , which appears in the type of the captured continu-
ation. When the captured continuation is resumed, the stack
has additional elements ℎ0=3 ′ and<:2 as in stack A. These
elements appear in the type of the captured continuation.
However, when the continuation is captured, we do not know
what will be in the stack at the point of resumption.

The above problem can be solved by universally quanti-
fying over the stack types in PureCodeCont. This way, we
can be abstract about the stack types when we capture a
continuation, and instantiate them appropriately when we
resume the continuation.

Note that theHandlerCode type in Figure 11 also requires
stack polymorphism (observe the universal quantification on

(2 and (3). The reason is similar to that for PureCodeCont:
when we compile a handler, we do not know what the stack
looks like when it is used, hence we need to be abstract about
the stack types.

4 Intrinsically Typed Compiler
We formalize an intrinsically typed compiler from !( to !) .
We do this by defining compiling functions for top-level
computations, values, and general computations.
We first define compile (Figure 14) that takes care of top-

level computations. The function produces an instruction
that pushes the top-level handler init-hand, performs the
source computation, and returns the resulting value via
UNMARK. Notice that the signature of compile tells us that
the function is type-preserving: if the source computation
has type�, then the output instruction pushes onto the stack
a value of ValTy � where ValTy is a translation from source
types to target types.
We next define compileV and compileC, which respec-

tively compile values and computations. These functions
receive a code continuation to be executed after execution
of the output instruction. Again, the signatures can be read
as type preservation statements.

Compilation of values produces an instruction that pushes
the values of themselves onto the stack. For lambda abstrac-
tions, compileV produces an ABS instruction that pushes a
code closure. In the compilation of the function body, theRET
instruction is used as the code continuation because control
must return to the caller after the function application.
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compile : Cmp Γ (A , []) → Code Γ S (ValTy A :: S)
compile c = INITHAND (compileC {S1 = []} c UNMARK)

compileV : Val Γ A → Code Γ (ValTy A :: S) S’ → Code Γ S S’
compileC : Cmp Γ (A , E) → PureCodeCont Γ (ValTy A :: S1) (A’ , E) → Code Γ (S1 ++ HandTy Γ1 S S’ (A’ , E) :: S) S’
-- auxiliary function for compiling handlers

compileH : Hdl Γ (C =⇒ D) → HandlerCode Γ C D
-- auxiliary function for compiling operation clauses

compileOps :
OperationClauses Γ E1 (B , E2) →
∀{S1 S2 S3 Γ1 Γ’1 A} →
OperationCodes B E1 E2 Γ (ContTy Γ’1 (ValTy B :: S1) (A , E2) :: (S1 ++ HandTy Γ1 S2 S3 (A , E2) :: S2)) S3

compileV Unit = PUSH unit
compileV (Var x) = LOOKUP x
compileV {A = A ⇒ (B , E1)} (Lam e) =
ABS (_ {S1 S2 S3 Γ1 Γ’1 A’} → compileC {S1 = (ContTy Γ1 (ValTy B :: S1) (A’ , E1)) :: _} e RET)

compileC (Handle e With h) k = MARK (compileH h) k (compileC {S1 = []} e UNMARK)
compileC (Let_In_ {A = A}{E = E1}{B = B} e1 e2) k =
compileC e1 $ BIND (compileC {S1 = (ContTy _ (ValTy B :: _) (_ , _) :: _)} e2 RET) k

compileC (Return v) k = compileV v k
compileC (Do l v) k = compileV v $ CALLOP l k
compileC (App v1 v2) k = compileV v1 $ compileV v2 $ APP k

compileH {D = (B , E2)} (_x ret |_x,r ops) {Γ1} {Γ’1} {S1} {S2} {S3} {A’} =
(compileC {S1 = ContTy Γ’1 (ValTy B :: S1) (A’ , E2) :: _} ret RET , compileOps ops)

compileOps {E1 = []} [] = []
compileOps {E1 = (op A’ B’) :: E’}{B = B}{E2 = E2} (e :: es) {S1} {S2} {S3} {Γ1} {Γ’1} {A1} =
(compileC {S1 = ContTy Γ’1 (ValTy B :: S1) (A1 , E2) :: _} e RET) :: (compileOps es)

Figure 14. Definition of Compiler

Compilation of computations pushes the value of their
subterms onto the stack and then performs necessary actions.
For effect handling, compileC uses the MARK instruction to
push a compiled handler. In the compilation of handler by
compileH, the RET instruction is used as the code continua-
tion because the meta-continuation must be invoked after
handling. The code continuation passed toMARK is the code
continuation passed to compileC, meaning that the latter
is a meta-continuation for the handled computation. In the
compilation of the handled computation, the UNMARK in-
struction is used as the code continuation because the return
clause of the handler must be executed after the execution
of the handled computation.

The compiling functions all pass the type checking of Agda.
This means that our compiler is type preserving.
In Figure 15, we provide a test of our compiler. The test

compiles the source program discussed in Section 3.1. The

source program is defined as c, which includes the handled
computation c1 and the handler h1. The compiled version of
these expressions are named code, code1, and hcode, respec-
tively. The correctness of the compiler is checked by proving
the equivalence between compile c and c1

5 Related Work
Type-Preserving Compilers. Type-preserving compilers

have been actively studied since the late 90’s. The pioneer
work byMorrisett et al. [14] defines a series of type-preserving
program transformations: CPS translation, closure conver-
sion, hoisting, allocation, and code generation. The source
and target languages of these transformations are all strongly
typed: the highest level is System F, the lowest level is a typed
assembly language, and the middle levels are typed inter-
mediate languages with specific constructs introduced by
the transformations. Our compiler differs from Morrisett et
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eff : Eff
eff = [ op Unit Unit ]

c1 : Cmp [] (Unit , eff)
c1 = Let Do (here refl) Unit In Return (Var $ here refl)

h1 : Hdl [] ((Unit , eff) =⇒ (Unit , []))
h1 = _x Return (Var $ here refl)

|_x,r (App (Var $ here refl) Unit :: [])

c : Cmp [] (Unit , [])
c = Handle c1 With h1

code1 : Code [] (HandTy Γ1 S S’ (Unit , eff) :: S) S’
code1 = PUSH unit $

CALLOP {S1 = []} (here refl) $
BIND {S = []}
(LOOKUP (here refl) $ RET)
UNMARK

hcode : HandlerCode [] (Unit , eff) (Unit , [])
hcode {S1 = S1} =
LOOKUP (here refl) RET ,
(LOOKUP (here refl) $ PUSH unit $

APP {S1 = ContTy _ _ _ :: S1} $ RET) :: []

code : Code [] S (ValTy Unit :: S)
code = INITHAND $

MARK {S1 = []} hcode UNMARK (code1)

compileTest : compile {S = S} c ≡ code {S = S}
compileTest = refl

Figure 15. Test for compile function

al.’s in that it converts a source program directly into low-
level code. However, we believe that it is possible to build a
multi-pass version of our compiler.

Intrinsically Typed Compilers. Intrinsically typed com-
pilers are a more recent approach to correct and secure com-
pilation. Chlipala [6] presents a compiler for the simply-
typed lambda calculus implemented in Coq. They define the
source, intermediate, and target languages all as intrinsically
typed ASTs, and implement each compiler pass as a function
between those ASTs. Guillemette and Monnier [8] develop
a similar compiler in Haskell, using generalized algebraic
data types [5, 21] to encode typing rules. Rouvoet et al. [19]
show an Agda formalization of a compiler for an imperative
language with conditionals and while loops. They use linear
types to maintain the invariant that every label in the target
language is defined exactly once. Pickard and Hutton [16]
formalize in Agda two compilers for functional languages,

one featuring exceptions and the other featuring functions.
They introduce the notion of code continuations to discard a
portion of computation upon exception raising. Our compiler
can be understood as a combination of Pickard and Hutton’s
compilers extended with resumable code continuations.

Type-PreservingCompilation of EffectHandlers. There
are several program transformations that compile effect han-
dlers to more primitive (but still high-level) constructs. For
example, the evidence translation of Xie et al. [22] eliminates
operations and handlers by packaging operation clauses as
an evidence vector, which is passed to functions as an addi-
tional argument. The CPS translation of Schuster et al. [20]
does a similar job by making the continuation inside each
handler explicit. Our compiler translates into lower-level lan-
guage for a stack-based machine. It would be interesting to
investigate what we obtain by combining these transforma-
tions and the above-mentioned compilers for pure languages.

Stack Polymorphism. Stack polymorphism, which we
use to type continuation resumptions, was originally intro-
duced by Morrisett et al. [13]. Their goal is to design a stack-
based typed assembly language, and they use stack poly-
morphism for two purposes: (i) to prevent a function body
from manipulating the caller’s stack frame, and (ii) to allow
functions to be invoked from states with varying stacks. Our
purpose of using stack polymorphism is close to the second
one: we allow continuations to be resumed from a state with
an arbitrary stack.

6 Conclusion and Future Work
In this paper, we implemented an intrinsically typed compiler
for effect handlers. Following previous work, we formalized
the source and target languages as intrinsically typed ASTs,
and defined the compiler as a function between those ASTs.
To solve the challenge with capture and resumption of con-
tinuations, we introduced stack polymorphism that abstracts
over the shape of unknown stacks.
With type preservation established, a natural next step

is to prove semantics preservation. We conjecture that the
property would hold, as our compiler is essentially an exten-
sion of Pickard and Hutton’s compiler [16] for exceptions,
which is correct.

After proving semantics preservation, we plan to inves-
tigate type-preserving compilation of other continuation
facilities. For instance, the shift0/reset0 operators [12]
have a close relationship with deep effect handlers [7, 17],
hence we believe that they can be compiled to a target lan-
guage similar to !) .

As an orthogonal direction, we intend to extend our com-
piler withmultiplicities. This notion comes from quantitative
type theories [1], where one can express at the level of types
how many times a variable is used in a program. The in-
formation about multiplicities has been proven useful for
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optimizations: for example, in Idris 2 [4], function arguments
with multiplicity 0 are erased at runtime since they are not
used for computation. In the context of effect handlers, we
can use multiplicities to eliminate unnecessary continua-
tion capture: for example, in Koka [10], an operation whose
handler calls the continuation only once at a tail position
is executed in place. Our plan is to decorate our Agda data
types with multiplicities and thus realize a compiler that is
efficient by construction.
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