
One-Pass CPS Translation of Dependent Types
(Talk Proposal)

Youyou Cong
Tokyo Institute of Technology

Tokyo, Japan
cong@c.titech.ac.jp

Abstract
Type preservation is an important property of compilers, es-
pecially in the case where the source and target languages are
dependently typed. Our goal is to define a type-preserving,
one-pass CPS translation of the Calculus of Constructions
with dependent pair types. In this talk proposal, we first re-
view the existing techniques for preserving dependent types
in ordinary CPS translations, and then describe our attempt
to adapt those techniques to an optimizing translation that
yields no administrative redexes.

Keywords: type-preserving compilers, dependent types, CPS

1 Introduction
Type preservation is an important property of compilers
that ensures safety of compiled code. In particular, when
the source and target languages are both dependently typed,
type preservation implies that any strong invariants captured
by source types will be respected at runtime.

As a common compiler pass for functional languages, Bow-
man et al. [2017] study CPS translations of a dependently
typed calculus. CPS translations make evaluation order ex-
plicit by introducing a continuation for every subterm, and
this change in the structure of terms makes it hard to reason
about equivalence of types. Bowman et al. solve this problem
by allowing one to extract the value of a CPS computation
and use it to establish required equivalence.
To scale their work to practical compilers, we aim to de-

fine a one-pass CPS translation [Danvy and Nielsen 2003]
of dependent types. A one-pass CPS translation yields no
administrative redexes, hence the output program is more
compact and efficient. While our development is not yet
complete, we have found challenges specific to one-pass
translations, namely the need for a special construct for rep-
resenting continuations and its impact on the structure of
the translation.

In the rest of this talk proposal, we describe how existing
work preserves dependent types in ordinary CPS transla-
tions, and how the ideas could be adapted to a one-pass
CPS translation. For clarity, we will hereafter use a non-bold
blue sans-serif font to typeset the source language of the

PEPM ’24, January 16, 2024, London, UK
2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

translation, and a bold red serif font to typeset the target
language.

2 Preserving Dependent Types in an
Ordinary CPS Translation

CPS translations can be understood as sequencing compu-
tations by naming the result of each computation. In a de-
pendently typed setting, these names may appear in types,
and their appearance necessitates non-trivial reasoning of
type equivalence. As a representative case, we consider the
second projection of a dependent pair.

snd e : B [fst e/x]
Assuming a call-by-name semantics for the source language,
we evaluate this term by first reducing e to a pair of compu-
tations ⟨e1, e2⟩ and then extracting the second element. To
reflect this evaluation to the CPS translation, we first CPS
translate e (by applying ÷1) and then pass it a continuation
that extracts the second element of the received value.

𝝀k : B [(fst e)÷/x]→⊥. e÷ (𝝀y : (𝚺x : A.B) . (snd y) k)
Unfortunately, the above term would be judged ill-typed in
an ordinary calculus. Specifically, the term snd y expects a
continuation whose domain depends on fst y, whereas the
continuation k has a domain that depends on (fst e)÷.

snd y : (B [fst y/x]→⊥)→⊥ k : B [(fst e)÷/x]→⊥
The good news is that it is possible to prove the equivalence
between fst y and (fst e)÷, as long as the source language
has no control effects. The equivalence relies on a property
called naturality [Thielecke 2003], which states: if the source
language is pure, the continuation passed to a CPS translated
term e÷ can only ever receive a value obtained by running
e÷ with the identity continuation.
Using naturality, Bowman et al. [2017] define call-by-

name and call-by-value CPS translations for the Calculus
of Constructions [Coquand and Huet 1988] and formalize
their common target language. To allow extraction of values,
they translate types using a polymorphic answer type, as
in 𝚷𝜶 : ∗. (A→𝜶 )→𝜶 . To specify the value passed to
continuations, they equip the target language with a typing

1The translation is in fact defined on the derivation of terms, not on terms
themselves as the notation used here would suggest. In this proposal, we
choose to be slightly informal for the sake of simplicity.

https://orcid.org/0000-0003-2315-6182
https://doi.org/10.1145/nnnnnnn.nnnnnnn


PEPM ’24, January 16, 2024, London, UK Youyou Cong

rule for the construction e1 A (𝝀y : B. e2) that introduces
the definition y = e1 B id into the typing context of e2. By
combining these techniques, Bowman et al. were able to
prove type preservation of both CPS translations.

3 Preserving Dependent Types in a
One-Pass CPS Translation

The CPS translations of Bowman et al. generate a number of
administrative redexes that need to be reduced in a second
pass. A practical compiler usually employs an optimizing
translation that converts terms and reduce redexes in one
pass. The question, then, is whether we can define such a
one-pass CPS translation in a type-preserving manner by
reusing Bowman et al.’s techniques.

Although we do not yet have a clear answer, we identified
new challenges that arise only for one-pass translations. To
illustrate these challenges, we consider the one-pass transla-
tion of the second projection. Following Danvy and Nielsen
[2003], we define an auxiliary colon translation to avoid
administrative redexes.

e÷ = 𝝀𝜶 : ∗.𝝀k : A→𝜶 . e : 𝜶 : k
snd e : C : 𝜿 = e : C : (𝝀y : (𝚺x : A.B). (snd y) 𝜿)

Notice that the colon translation carries an answer type
in addition to a continuation, reflecting the fact that the
CPS translation abstracts over both the answer type and the
continuation.
A notable difference from an ordinary CPS translation is

that the colon translation does not generate the application
e÷ C (𝝀y : (𝚺x : A.B). (snd y) C 𝜿). This means that we
cannot use Bowman et al.’s typing rule to establish well-
typedness of (snd y) C 𝜿 .
To solve the above problem, we propose to augment the

target language a new construct 𝝀(y = e1 : A). e2, which
we call a definition lambda. Intuitively, a definition lambda
is a function that receives a specific expression. In this sense,
a definition lambda works like a let expression.
With this new construct, we can perform the same rea-

soning as Bowman et al. do in their type preservation proof.
More precisely, we represent the continuation used for the
colon translation of e as a definition lambda 𝝀(y = (e : (𝚺x :
A.B) : id) : (𝚺x : A.B)) . (snd y) C 𝜿 , and thus be specific
about what value will be substituted for the variable y.
One question that remains unaddressed is how to type

definition lambdas. Our current idea is to give them a def-
inition arrow type (e : A)→B, where e is the expression
to be passed to the function. Such a type has been used by
Koronkevich et al. [2022] to preserve dependent types in
an ANF translation. Since CPS and ANF translations play a
similar role, it is natural to hypothesize that they require a
common typing mechanism.

However, the definition arrow type poses a new challenge
to the CPS translation. The source of this challenge is the

fact that, for any source type A, its top-level translation A÷

would refer to a source term e that inhabits A.

A÷ = 𝚷𝜶 : ∗. (((e : A : id) : A)→𝜶 )→𝜶 where e : A
The dependency of the type translation on source terms
seems to suggest that we need to translate terms and types
in parallel. This complicates the definition of the CPS trans-
lation, which in turn complicates the induction principle of
the type preservation proof.
In conclusion, we believe that it is possible to define a

type-preserving, one-pass CPS translation for the Σ type. We
hope to report our results in the near future.

References
William J. Bowman, Youyou Cong, Nick Rioux, and Amal Ahmed. 2017.

Type-preserving CPS Translation of Σ and Π Types is Not Not Possible.
Proc. ACM Program. Lang. 2, POPL, Article 22 (Dec. 2017), 33 pages.
https://doi.org/10.1145/3158110

Thierry Coquand and Gérard Huet. 1988. The calculus of constructions.
Information and Computation 76, 2 (1988), 95–120. https://doi.org/10.
1016/0890-5401(88)90005-3

Olivier Danvy and Lasse R Nielsen. 2003. A first-order one-pass CPS trans-
formation. Theoretical Computer Science 308, 1-3 (2003), 239–257.

Paulette Koronkevich, Ramon Rakow, Amal Ahmed, and William J Bowman.
2022. ANF preserves dependent types up to extensional equality. Journal
of Functional Programming 32 (2022), e12.

Hayo Thielecke. 2003. From Control Effects to Typed Continuation Passing.
In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (New Orleans, Louisiana, USA) (POPL ’03).
ACM, New York, NY, USA, 139–149. https://doi.org/10.1145/604131.
604144

https://doi.org/10.1145/3158110
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1145/604131.604144
https://doi.org/10.1145/604131.604144

	Abstract
	1 Introduction
	2 Preserving Dependent Types in an Ordinary CPS Translation
	3 Preserving Dependent Types in a One-Pass CPS Translation
	References

