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Abstract

Parallel and distributed programs often have hardware/problem speci�c optimiza-

tions for improving quality of the program such as e�ciency and robustness. Those

optimizations, unfortunately, degrade portability and re-usability as they are inter-

twined with the original algorithm description. Reective languages, which provide

the application programmer extensible and abstract implementation of the language,

can describe such optimizations as extensions to the language. The separation of opti-

mization descriptions gains portability and re-usability of both application programs

and optimizations. However, the interpretive execution model of reective languages

imposes a large amount of performance overhead, which sometimes outweighs bene-

�ts of optimizations. Previous reective languages prohibit some of operations being

modi�ed via reection, so as to reduce the amount of interpretation overhead. The

imperfection of this approach is that it still leaves a considerable amount of overhead,

and it yields less exible, unclear reective architecture.

This dissertation investigates design and compilation framework of meta-

interpreters and meta-objects in an object-oriented concurrent language ABCL/R3.

By using partial evaluation to compile reective programs, ABCL/R3 achieves exible

and lucid reective architecture and e�cient execution at the same time. We design

full-edged meta-interpreters by examining several concurrent programming exam-

ples. A newly proposed delegation mechanism enables to de�ne modular and scope

controlled extensions to meta-interpreters. We design meta-objects by exploiting the

notion of reader/writer methods in a concurrent object-oriented language Schematic,

so that they can be e�ectively partially evaluated. The compilation frameworks of

meta-interpreters and meta-objects basically translate concurrent object de�nitions

into a sequential program, then apply partial evaluator for a sequential language,

and generates a program in a (non-reective) concurrent object-oriented language,

in which base-level and meta-level objects are collapsed to single level objects. The

e�ciency of generated programs is demonstrated by several benchmark programs, in

which our compiler exhibits performance close to non-reective languages.
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Chapter 1

Introduction

The thesis of this dissertation is that new implementation techniques using partial

evaluation are bene�cial to e�ciency and extensibility of concurrent object-oriented

reective languages.

Over the past decade, reection has been recognized as useful for parallel and

distributed programming[17, 46, 67, 87, 93, 103, 125, 129] because the application pro-

grammer can investigate and modify a language by means of an abstract model of

the language. One of the most serious problems of reection is that the model of

a language requires interpretive execution. Some na�ive implementations, which run

full-edged interpreters, degrade run-time performance by a factor of 10 to 1000 over

the non-reective languages with optimizing compilers.

Previous performance improvement techniques usually come along with less ex-

ible model, and still leave considerable amount of overhead. In those techniques, a

part of a program is interpreted for extensibility, and the rest is executed by using

compiled code. It improves the performance, but still has overhead a factor of 10 over

non-reective languages. Moreover, such a hybrid interpreter saps the extensibility

and clarity of the meta-level architecture.

Partial evaluation technique can be a tool that radically remove the run-time

overhead from reective programs, and, at the same time, it is capable of less restric-

tive reective model. This is because partial evaluation can compile programs that

is executed under a user-de�ned interpreter, and generate a specialized and e�cient

program before execution. However, it is not trivial to compile reective programs by

1



using partial evaluation. The meta-level architecture should be reconsidered so that

it suits partial evaluation. Partial evaluation technique itself should also be improved

so that it can properly handle our target languages|concurrent object-oriented lan-

guages. Also, language mechanisms that foster meta-level programmability (e.g.,

inheritance, delegation, etc.) could be incorporated without degrading the run-time

performance, if those mechanisms can be optimized by partial evaluation.

Before presenting our solutions to those issues, we �rst introduce the background:

an overview of existing reective concurrent object-oriented languages, how useful

they are for parallel and distributed applications, and an overview of a (non-reective)

concurrent object-oriented language Schematic as a description language.

1.1 Background

1.1.1 Requirements to Parallel and Distributed Programming Lan-

guages

Improvements in computer networks and high-performance parallel computers give

more and more opportunities to develop parallel and distributed programs. The de-

velopment of those programs will face various issues that are not apparent in sequen-

tial programming such as e�ciency (e.g., load-balancing and prioritized scheduling),

robustness (e.g., fault-tolerance and security), and portability over di�erent paral-

lel/distributed execution environments.

Without special support from programming languages, it is di�cult to cope with

all the issues at once. If we had to improve e�ciency or robustness for a speci�c

execution environment, an application program would have intertwined description

of the original algorithm and the machine speci�c improvements.

A number of language mechanisms have been studied to cope with those issues.

For example, the distributed language Emerald[52] has an object-migration mecha-

nism; one of two tightly communicating objects can be moved to the host where the

other object resides, to reduce the overheads of remote communication. Another dis-

tributed language Argus[63{65] has a transaction mechanism, which easily handles

and recovers faulty processes in distributed systems.

If we had the desired mechanisms built-into a language, it would be easier to

2



develop e�cient, portable, modular and robust application programs. However, few

of them are available to the actual language implementations. This is because:

� most mechanisms are not generic to all circumstances. A mechanism, which

is useful in a certain situation, may not be useful, or even harmful in another

situation. For example, the transaction mechanism, which is especially useful

to distributed database systems, may not be useful to parallel scienti�c appli-

cations running on parallel computers. Moreover, the run-time system of the

language may perform expensive lock operations to support transactions, even

for programs that do not need transactions.

� implementation of the mechanisms is burdensome. Since the inside of a lan-

guage system is not uniform over di�erent implementations, a new mechanism

may not be portable among di�erent implementations of the same language.

In addition, the internal structure of a language implementation is too mono-

lithic to be extended. For example, the implementation of the object migration

mechanisms would be very di�erent depending on whether the underlying sys-

tem supports global address space.

1.1.2 Reective Concurrent Object-oriented Languages

1.1.2.1 Advantages of Extensible Languages

A promising approach is to provide a relatively small, extensible language, and then

implement useful mechanisms as extensions. Advantages of this approach are as fol-

lows. (1) Since a language mechanism that is only useful in a certain situation is

not provided by default, there is no performance degradation of programs that do

not need such a mechanism. Of course, an application that will be executed in the

supposed situation can enjoy the mechanism as if it is built-into the language. (2)

Optimizations that are speci�c to a certain situation can be split from the application

program descriptions, by de�ning those optimizations as extensions to the language.

Without the language support, application programs tend to have situation-speci�c

optimizations that are intertwined with the algorithm description of the problem. (3)

The implementation of the language requires smaller amount of burden to implemen-

tors. Similar advantages can be observed in implementation of sequential languages.

3



An implementation of Lisp, for example, consists of a small language kernel and a

number of macros and functions; i.e., a large part of Lisp's language speci�cation is

implemented as extensions to the language kernel.

1.1.2.2 Basic Concepts of Reective Concurrent Object-oriented Lan-

guages

Based on this observation, several studies, including this study, focus on computation

reection[71, 72, 112] as a theory of extensible languages. In reective languages,

customizable meta-objects, which are the abstract implementation of a language,

gives extensibility in a separated and portable manner. The rest of the section

gives basic concepts in reective concurrent object-oriented languages, by taking

ABCL/R[125] and ABCL/R2[75, 76, 84]1, which are the predecessors of our proposed

language ABCL/R3, as examples.

Non-reective part of ABCL/R is based on ABCM/1[130, chapter 2], a model

of concurrent object-oriented computing. In ABCM/1, an object has own state (in-

stance variables), behavior (methods), and activity (thread of control). In ABCM/1,

computation is performed by exchanging messages among objects. When an object

receives a message, it (1) changes own state, (2) sends messages to other objects,

and (3) creates new objects, by following a method that is speci�ed by the received

message. (Figure 1.1)

In ABCL/R, an object in an application program (a base-level object) has a meta-

object, which has all information about the base-level object, and speci�es behavior of

that object. (Figure 1.2) The instance variables of the meta-object contain following

information: a queue of pending messages, names and values of instance variables, a

list of methods, and current state of the object (e.g., waiting for a message and exe-

cuting a method). The methods of the meta-object de�ne how a method invocation

request is processed|i.e., policy for mutual exclusion and method selection. Also,

an auxiliary object (what we call an evaluator object or a meta-interpreter) of the

meta-object determines how a base-level method is interpreted.

1ABCL/R2, which is a successor of ABCL/R, has the similar reective architecture to ABCL/R,

except for the notion of `object groups.' Since the object groups are beyond the focus of the disser-

tation, we regard ABCL/R as a representative of those two.
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instance
vars.
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Figure 1.1: Objects in ABCM/1.

A meta-level object is also an object in ABCL/R. The user can customize the

language by de�ning a new meta-object with additional instance variables and cus-

tomized methods for message acceptance. A meta-object can also be accessed from

application-level objects and other meta-objects in order to inspect the state of the

base-level objects, and installation/removal of base-level methods.

N.B. In the dissertation, we call any object at the meta-level a meta-level object. Es-

pecially, a meta-level object that represents a base-level object is called a meta-object

of the base-level object. A meta-interpreter is an object that interprets expressions

in base-level programs. In the dissertation, we often distinguish meta-interpreters

from meta-objects, unlike other reective languages.

1.1.2.3 Use of Reection for Concurrent Applications

The advantages of extensible languages discussed in Section 1.1.2.1 can be realized

by customizing meta-level objects in ABCL/R. The examples are as follows:

� In ABCL/R, the messages sent to an object are processed in the arrival order

by default. A customized message queue in a meta-object can provide a priority

scheduling policy. The A*-algorithm for search problems, for example, can be

implemented in this approach.
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Figure 1.2: ABCL/R objects.
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� Fault-tolerant communication can be achieved by customizing meta-objects and

meta-interpreters. For method invocation between objects, a customized meta-

object at the receiver's side returns an acknowledgment when it receives a

method invocation request. A customized meta-interpreter at the caller's side

waits for an acknowledgment of the invocation, and retries when no acknowl-

edgment is returned for a certain period. An advantage of this approach is

transparency; application-level objects become fault-tolerant by only specify-

ing that those objects use the customized meta-object.

� The simplest way to \migrate" an object to a remote processor is creation of

a copy of the object at the remote processor, and forwarding mechanism of

method invocation requests from the original object to the copy object. This

can be easily implemented by means of ABCL/R's meta-object, since it has

internal information about an object, and it implements the behavior upon

method invocation.

The migration mechanism, implemented by the customized meta-object, can

be used as if it is built-into the language; i.e., no additional descriptions such

as marshaling and unmarshaling code are needed in base-level applications.

Other examples of customized meta-level objects in ABCL/R and ABCL/R2 are used

to implement a mechanism to support discrete event simulation[125], a language for

soft real-time systems[37], an implementation of synchronization constraints among

multiple objects[43], a system for shared resource management[38], a distributed

simulation environment[26], and so forth.

1.1.3 Schematic: a Concurrent Object-Oriented Language

In this dissertation, a reective language ABCL/R3 is proposed. The non-reective

features of the language are based on Schematic2[98, 122], while the reective features

are inherited from ABCL/R and ABCL/R2. This section presents basic concepts and

syntax of Schematic.

2The early version of ABCL/R3 was based on ABCL/f [119{121], which is a yet another concurrent

object-oriented language.
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Schematic is a parallel and object-oriented extended Scheme. Its key features for

concurrent programming are as follows:

� It has parallel constructs future,3 which creates a new thread, and touch, which

combines synchronization and communication between threads.

� It has a class-based objects. Like many concurrent object-oriented languages,

Schematic integrates method invocation and mutual exclusion to easily preserve

consistency of mutable data. The mutual exclusion mechanism is similar to the

\multiple reader and single writer" model.

Figure 1.3 and 1.4 shows an example program in Schematic.

class and object creation. A class declaration form takes a class name (btree),

a super-class (\()" for no super-class), and instance variables. A function that

has the same name to a class (e.g., btree in the function make-empty-node)

creates an object in the class. The arguments to the function specify the initial

values of instance variables in the created object. The order of arguments

matches to the order of instance variables in the class declaration.

reader method. The third form ((define-method ...)) de�nes a reader method.

It takes a class name (btree), a parameter list consisting of a method name

(lookup) and formal variables. The �rst formal variable (self) will be bound

to the receiver object. The form (lookup left v) in a clause of the cond form

in method lookup is a method invocation form, whose method name, receiver

object, and argument are lookup, left, and v, respectively. In a reader method,

the value of an instance variables of the receiver object can be referenced via

the name of the instance variable (e.g., has-value?), but not be modi�ed. The

referenced values in a reader method are the ones when the method is invoked;

even if some instance variables are modi�ed by the other thread during the

execution of a reader method, the modi�cation will not be observed within the

reader method.
3The future invocation is originally proposed in Multilisp[33]. In the context of object-oriented

languages, ABCL/f is the �rst language that has the future mechanism.
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writer method. The fourth form ((define-method! ...)) de�nes a writer method,

which uses the same syntax to the reader methods. A writer method can modify

the values of instance variables in the receiver object by evaluating the become

form. For example, the form

(become #t :has-value? #t :value v

:left (make-empty-node)

:right (make-empty-node))

updates instance variables has-value? to true, value to v, and left and right

to newly created empty nodes; and then the expression #t, which we call the

result expression, is evaluated. The invocation of a writer method (except for

the result expressions in become forms) is mutually excluded from the other

writher method invocations on the same object. In this example, two threads

cannot execute insert! on a node object at the same time. However, when

a thread that is executing insert! on a node reaches to the result expression

(insert! left v) in the cond form, another thread can start insert! on the

same node.

future and touch. The �fth form is an example of future and touch. For a non-

empty node, this method creates two threads that compute the sums of values

in sub-trees, by evaluating (future (sum left)) and (future (sum right)).

The evaluation of the future form immediately returns a reply channel, instead

of waiting for the end of the invocation. Therefore, summation processes of

two sub-trees are performed concurrently. A reply channel is a storage where

the return value of the future invocation will be placed. When the touch

operation is performed on a reply channel, the stored value is returned whenever

the invocation performed by the future returned any value; otherwise, it will

wait for return value from the invocation. The reply channels can be implicit

at the callee's side. If a method is invoked with future, a return value of the

method is automatically placed in the reply channel by default. In this example,

the value of (+ value (touch left-channel) (touch right-channel)) will

be placed an appropriate channel at the caller's side, if the invocation was

performed with future.
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;; A class of a node in a binary tree.

(define-class btree ()

has-value? value left right)

;; A function that creates an empty node. All instance variables are

;; initialized to false.

(define (make-empty-node)

(btree #f #f #f #f))

;; A method that tests whether a value is stored in a tree.

(define-method btree (lookup self v)

(if has-value? ; test if it is an empty node.

(cond ((< v value) (lookup left v)) ; dispatch to its sub-node

((> v value) (lookup right v)) ; ibid.

(else #t)) ; i.e., (= v value)

#f)) ; return false for an empty node.

;; A method that adds a value in a tree. (writer method)

(define-method! btree (insert! self v)

(if has-value? ; test if it has a value.

(cond ((< v value) (become (insert! left v))) ; dispatch to

; its sub-node.

((> v value) (become (insert! right v))) ; ibid.

(else (become #f))) ; do nothing when it already has the same value

;; store the value if it is an empty node, and create empty sub-nodes.

(become #t :has-value? #t :value v

:left (make-empty-node) :right (make-empty-node))))

Figure 1.3: Binary tree in Schematic.
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;; A method that concurrently sums up values in a tree.

(define-method btree (sum self)

(if has-value?

;; Concurrently invoke the sum method both on the left and right

;; sub-nodes.

(let ((left-channel (future (sum left)))

(right-channel (future (sum right))))

;; Receive returned answers, and sum up values from the

;; sub-nodes and this node.

(+ value (touch left-channel) (touch right-channel)))

;; An empty node immediately returns zero.

0))

Figure 1.4: Binary tree in Schematic (continued).

This example shows the simplest usage of channels. A channel in Schematic is

the �rst class object; this property enables exible usage of channels in concurrent

applications[122]. The callee of a method invocation can manipulate the channel that

the return value of the current invocation will be placed; it can store the channel into

an instance variable in order to reply in future, or can explicitly put a value into the

channel so that the caller can continue the process after the touch operation. Also,

a caller can specify its own channel as the reply channel of an invocation; this makes

it possible to collect return values of multiple future invocations into one channel,

and to forward the current reply channel to another invocation. Various usage of

channels can be found in the other literature[122].

1.2 Contributions

This dissertation studies on a reective concurrent object-oriented language ABCL/R3,

especially on their reective architecture design and compilation techniques using par-

tial evaluation. The purposes of the reective architecture design are to show that
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extensibility and programmability of reective architecture can be enlarged by as-

suming compilation using partial evaluation, and to present guidelines of reective

architecture that enable successful partial evaluation. The purposes of the compi-

lation techniques are to investigate the frameworks to apply partial evaluation to

the meta-level of reective concurrent object-oriented programs, and to show the

e�ectiveness of the partial evaluation.

The direct contributions of the dissertation include:

� Full-edged meta-interpreters and their delegation-based extension mechanism,

which are proposed in this study, were shown to be useful for implementing sev-

eral programming constructs and meta-level controls in parallel and distributed

applications[79].

� A compilation technique of a base-level method that is executed by meta-

interpreters was presented. The technique, which translates the meta-interpreter

de�nition into a sequential program, and then applies a partial evaluator for

a sequential language, drastically improves run-time performance by orders of

magnitude[74, 78].

� We proposed the preactions mechanism for online partial evaluators, which

correctly handles I/O type side-e�ects. The technique was proved to be useful

in compiling reective programs that intrinsically contains I/O operations[74].

� We investigated the meta-object design of previous reective concurrent object-

oriented languages from the viewpoint of partial evaluation, and showed that

the programming style in which meta-objects are de�ned as state transition

machines causes di�culties in applying partial evaluation. We also showed

that an approach that splits state-related operations in meta-object de�nitions

makes partial evaluation easier, and presented a new meta-object design by

exploiting Schematic's reader/writer methods[80, 81].

� An optimization technique that specializes a meta-object with respect to a base-

level object by using partial evaluation was presented. The technique applies

partial evaluation in a sequential language by translating meta-object de�nition.
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The e�ectiveness of the technique was demonstrated by several benchmark ap-

plications, where our optimized meta-object runs those applications more than

six times as fast as the unoptimized meta-objects[80, 81].

1.3 Organization of the Dissertation

The rest of the dissertation is organized as follows: Chapter 2 gives a brief introduc-

tion to reection and reviews implementation techniques of reective languages. It

also introduces partial evaluation.

Chapters 3 and 4 form the core part of the dissertation, which present meta-level

design of our language ABCL/R3 and optimization techniques using partial evalua-

tion. Chapter 3 focuses on meta-interpreters, which execute base-level expressions.

Chapter 4 focuses on meta-objects which manage base-level objects.

Chapter 5 discusses related topics that are not covered in the previous two chap-

ters. Chapter 6 concludes the dissertation with a list of contributions. The examples

of meta-level programming and how they are optimized appear in appendices A and

B.
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Chapter 2

Reective Languages and

Implementation Techniques

This chapter �rst introduces the notion of reection, and then reviews implementation

techniques of reective languages.

2.1 Computational Reection

Computational reection is a computational process that is performed on its own

computation[72, 112]. A computational system, whose purpose is to solve a certain

problem, manipulates data objects, which represent entities in the problem domain,

according to some algorithm. A system is called reective when its problem domain

includes its own activity; i.e., how the system solves a problem.

In order to manipulate own activity, a reective system has its self-representation

as a data object, and establishes causal-connection between the representation and

the system itself; i.e., modi�cation of the self-representation is reected on the sys-

tem's state and behavior, and vice versa.

In many reective programming languages, the causally-connected self-representation

is realized by means of a tower of interpreters, in which an application program at

level 0 (base-level) is executed by the interpreter at level 1 (meta-level), the level

1 is executed by the level 2 (meta-meta-level), and so forth. Modi�cation of the

self-representation is realized by a level-shifting operation, which switches current ex-
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ecution level to the one level above. This framework automatically preserves casual-

connection because programs are actually interpreted by the interpreters. In other

words, the execution of a program at the lower level is achieved as indirect e�ects of

manipulation of self-representation by the interpreter at the higher level.

The design of self-representation of a reective system|called meta-level archi-

tecture|is crucial to the extensibility of the system. With carefully designed self-

representation, the user can extend the system by manipulating abstract, not raw

implementation. Such extensions can be:

portable. A self-representation of a reective language is uniform over di�erent

implementations. Thus an extension to the language, which modi�es and cus-

tomizes objects in the self-representation, can also be applied to the other

implementation of the same language even if it uses di�erent internal structure

for actual implementation. MOP (Metaobject Protocol) for CLOS (Common

Lisp Object System)[55] is the successful example as it is available in many

commercial and non-commercial CLOS implementations.

modular. In reective languages, an extension is usually written as a `di�erence'

to the original self-representation. Moreover, many reective languages employ

modern language mechanisms and programming conventions, such as function

closures and class inheritance, so as to make composition of di�erences easier.

scope-controlled. When a traditional language is extended by modifying its raw

implementation, the modi�cation usually a�ects whole execution of base-level

programs. This is undesirable when the modi�cation is intended to a�ect a

speci�c portion of a base-level program. Some reective languages support

such a requirement by dynamically attaching/detaching modi�cations to the

self-representation according to the portion of the base-level program currently

interpreted.

2.2 Issues of Reective Languages

Though there are number of advantages in reective languages, there are several

problems to be solved in practice:
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In�nity: The in�nite number of processes in the tower of meta-interpreters must be

represented as a �nite process.

Generally, a technique called lazy creation of meta-levels solves this problem.

For example, the implementation of the �rst reective language 3-Lisp[25, 112],

starts with only the level-1 interpreter. When a level-shifting operation at

level-n is requested (which is interpreted by an interpreter at level-(n+ 1)), it

spawns a new interpreter at level-(n+ 2) that executes subsequent operations

at level-(n+ 1).

There are also studies that give formal semantics to the lazy creation technique,

where a tower of interpreters is understood as an interpreter with an in�nite

data structure called meta-continuation[23, 124].

This study, for the sake of simplicity, assumes a reective system that has only

the base-level and the meta-level. This simpli�cation does not decrease the

exibility of reective languages. In fact, most practical examples of reec-

tive languages are implemented only by customizing the meta-level. Further

discussion on the in�nite tower can be found in Chapter 5.

Performance: The tower of interpreters in reective languages causes a performance

problem. A straightforward implementation poses tremendous amount of over-

heads. Compilation is not trivial because customized interpreters may execute

base-level programs.

Roughly, execution with a straightforwardly implemented interpreter su�ers or-

ders of magnitude slowdown from the compiled execution. In fact, our previous

study showed that ABCL/R (a reective concurrent object-oriented language)

is more than 100-fold slower than ABCL/1 (a non-reective language)[75, 76].

Such serious performance overheads, if it were not solved, would easily over-

whelm the bene�ts of reective languages.

Many implementation techniques are investigated to tackle this problem. The

following sections has detailed discussion on those techniques.

Level of abstraction: Appropriate level of abstraction should be chosen as a self-

representation of a reective language, so that the user's desired customization
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can be described at the adequate cost. If the level of abstraction is too high,

the user cannot describe desired customization. On the other hand, too low

level of abstraction complicates the user's customization. Moreover, it could

pose additional run-time overheads.

For example, 3-Lisp has expression, environment, and continuation as its self-

representation. Under the representation, the user cannot control policies at

the machine instruction level such as register allocation. On the other hand,

if the self-representation were given at the machine instruction level, such as

registers, instructions, and memory, it is inadequate for the customization at the

high-level languages. Moreover, the interpretation for each machine-instruction

execution would cause tremendous amount of overhead.

Programmability: The meta-level architecture should be designed so that the user

can easily describe customizations. Especially, the properties discussed in Sec-

tion 2.1 (i.e., portability, modularity, and scope-controllability) should be max-

imized.

The mechanisms exploited in existing reective languages are as follows: CLOS

MOP[53, 55], CodA MOP[86{88] and many other object-oriented reective lan-

guages use the inheritance mechanisms to extend meta-level objects. AL-

1/D[92{96] and aspect-oriented programming[100] provide multiple self-

representations for a single system. Simmons' �rst class interpreters[111],

MPC++[45{47], and EPP[42] provide ways to compose fragments of meta-

level descriptions using function closures, delegation, and mix-ins. Reection-

oriented programming[114] exploits monads.

Unfortunately, those techniques come along with some run-time overheads. For

example, an interpreter with a delegation mechanism or an interpreter con-

sisting of a number of sub-objects would be less e�cient than a monolithic

interpreter because they have to perform dynamic dispatch. Moreover, those

mechanisms could prevent the optimizations that can be applied to simpler

meta-interpreters.

The last two issues suggest that as long as we are using interpreter based implemen-

tation, we cannot achieve �ne-level of abstraction and good programmability, and
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good performance at the same time.

2.3 Implementation Techniques of Reective Languages

We categorize implementation techniques of reective languages into the following

four groups. (1) Reective languages that are implemented without much attention

to run-time performance usually have na�ively implemented meta-interpreters. (2)

Others have meta-interpreters with narrower target of interpretation in order to re-

duce the interpretation overheads. Some of recent reective languages substantially

eliminate the overheads by moving interpretive execution from run-time to compile-

time; (3) the compile-time meta-object protocol is an approach that explicitly runs the

meta-level before execution of base-level programs; and (4) the �rst Futamura pro-

jection, which is the central technique in the dissertation, removes the interpretation

from an interpreter de�nition. The last two techniques assume the meta-level and

base-level programs are not dynamically modi�ed. The discussion in the following

chapters also follow this assumption.

2.3.1 Na��ve Implementations

Many of early studies on reection pursuit �nite representation of the tower of meta-

interpreters and elaborate meta-level architectures. Implementations in those stud-

ies usually have full-edged interpreters. For example, Lisp-based reective lan-

guages such as 3-Lisp[25, 112], Brown[124], Blond[23], Je�erson's simple reective

interpreter[49] and the Simmons' �rst class interpreters[111] have meta-circular inter-

preters that take an expression, environment, and continuation. Even object-oriented

reective languages have full-edged meta-interpreters such 3-KRS[71], ABCL/R[125],

AL-1/D[92{96], and ACT/R[126].

2.3.2 Narrowing Target of Interpretation

To improve the run-time e�ciency, it is a natural idea to narrow the target of inter-

pretation. In other words, it allows the user to customize the execution of a part, not

whole, of a base-level program via reection. To do this, the following techniques have
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been proposed. All but the last one are used in ABCL/R2[75, 76, 84], a predecessor

of ABCL/R3.

Non-reifying object. When an object in a program is executed under the default

(i.e., not customized) interpreter throughout its life, the all program fragments

for the object can be compiled. In ABCL/R2, we call such an object a non-

reifying object. The compilation of non-reifying objects, which is initiated by

user's declaration, is essentially the same as the one in non-reective languages,

except that the compiled objects should be able to interact with the other

reective objects.

RbCl, which is a reective concurrent object-oriented language, allows the user

to de�ne non-reifying objects in a di�erent language by using the linguistic

symbiosis technique[40, 41].

Coarser grained interpreter. A full-edged meta-interpreter is a function that

dispatches an expression to a sub-function that corresponds to the given ex-

pression type. When we decide some expression types are not reective, it is

possible to compile the corresponding sub-expressions in a program, and to

replace sub-functions for those expression types in the meta-interpreter with

invocations to the compiled code.

In ABCL/R2, object and concurrency related expressions are reective; i.e.,

expressions for variable access, message sending/receiving, and object creation

are processed by interpreters. The partial compilation technique generates,

from a base-level program, hybrid code consisting of expressions and compiled

code where callbacks to the meta-interpreter are embedded in the compiled

code.

Similar techniques can be found in other reective languages. Some reective

languages based on impure object-oriented languages1, such as CLOS MOP[55]

1`Impure object-oriented languages,' as opposed to pure object-oriented languages, have some

features that lacks abstraction of objects. For example, the control structures, primitive data types,

arithmetic operations, functions are not objects in CLOS and C++. On the other hand, everything

is object in pure object-oriented languages such as Smalltalk and Self.
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and the early version of OpenC++[17, 19], de�ne that only object-related ex-

pressions, such as method invocation, are reective. As a result, the impure

part of the languages can be compiled. There is also a study that provides a

MOP only for method dispatch[105].

The problem of this approach is that the `black-boxes' in the meta-interpreters

make the meta-level architecture unclear.

Dynamic adjustment. A reective application may use customized meta-objects

to objects/expression-types according to the run-time condition. In such a case,

it would be better if a reective system could adjust the target of interpretation

in response to the run-time reective requests. Such a system �rst starts the ap-

plication with compiled|faster|code for all objects/expression-types. When a

request to install a customized meta-object for an object or an expression type,

the system switches the execution of the selected object or expression-type from

the compiled representation to the interpreted|slower|one.

ABCL/R2 gives three meta-object representations to objects: (1) No meta-

object: a compiled object is executed. (2) Pseudo-meta-object: a meta-object

in which limited functionality (e.g., it can only receive method invocation re-

quests to the base-level object) is provided. (3) Full-edged meta-object, in

which all functions are provided. By default, an object is created with no

meta-object, which is the fastest representation. It will be switched to more

powerful, but less e�cient representation according to the run-time access to

its meta-object.

The lazy creation technique for the tower of interpreters is similar to this tech-

nique. A meta-interpreter is �rst implemented with native machine instruc-

tions. When a level-shifting operation is requested, it is switched to the expres-

sions and data that are interpreted by another meta-interpreter.

Structural reection. An extreme way to maximize e�ciency is to make all types

of expressions not reective. The reective operations that are allowed in this

case are to access meta-level information of the system such as the class of an

object, the list of the methods in a class, and how much memory is available.

This style of reection is called structural reection, as opposed to behavioral
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reection. For example, Meta-Information-Protocols for C++[11] and Java

Core Reection[48] provide ways to read the class name, name and type of

methods and instance variables, etc., but no ways to modify the interpretation

of a program.

2.3.3 Compile-Time Metaobject Protocol

Reective languages that have compile-time MOP perform the meta-level computa-

tion at compile-time. Since they leave no meta-level computation to the run-time,

there are no problems of e�ciency. The self-representation in those languages is usu-

ally an internal structure of a compiler (e.g., parser, code-generator, optimizer, etc.)

or a source-to-source translator. Di�erent from the traditional reective languages

(sometimes called run-time MOP as opposed to compile-time MOP), run-time state

of a system, such as environment in a Lisp interpreter, is not available.

Intrigue[60] is a Scheme compiler that can customize low-level implementations

compilation strategies, such as representation of a closure and the code generation

routines, bymeans of meta-level programming. Anibus[103] is a parallelizing compiler

whose parallelization strategies can be customized by using the compile-time MOP.

There are studies on compile-time MOP at source-to-source translation level,

such as MPC++[45, 46] OpenC++[15, 16], EPP[42], and OpenJava[118]. In those

languages, the user can de�ne a function that takes a base-level expression as a

parse tree, and returns a transformed expression. This is conceptually similar to

Lisp macros, but practically di�erent in that the transformation functions can be

associated with base-level classes. This association enables to de�ne class library

where an expression using a class in the library is transformed by the MOP in the

library.

Compile-time MOP can be designed even at binary level. OpenJIT[83] has a

self-representation of a `just-in-time compiler,' which translates virtual machine in-

structions into native machine instructions.

Aspect Oriented Programming[69, 70, 100] (AOP) can be regarded as compile-

time MOP at the source-to-source level. In AOP, there are a base-level program

and programs that customize the base-level program from di�erent aspects. Those

programs are weaved at the compile-time.
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2.3.4 The First Futamura Projection

The �rst Futamura projection is another approach to shift meta-level computation

to the compile-time. Di�erent from the compile-time MOP, this approach gives a

meta-interpreter as a self-representation to the user.

A meta-interpreter is a program which takes an expression from a base-level pro-

gram, and executes speci�c operations that correspond to the type of the expression.

When we have a meta-level program and a base-level program, the behavior of the

base-level program, which is a series of operations executed by the meta-interpreter,

can be determined before the execution. Moreover, the behavior can be represented

as a program that consists of the operations that will be executed by the interpreter.

A technique to generate such a program is known as the �rst Futamura projec-

tion[29], which compiles a program by partially evaluating an interpreter de�nition

with respect to an interpreted program. Since this technique is important part of our

study, we give detailed discussion in the following section.

The partial evaluation technique itself has been known useful for reective lan-

guages in many years. Danvy[22] and Ruf[106] pointed out relationship between

the tower of interpreters in sequential languages and partial evaluation. Chiba and

Masuda[18] proposed an optimization technique for the early version of OpenC++,

which does the similar transformation to the one a partial evaluator does, but in an

ad-hoc manner. Asai, et al.[6, 7] showed an interpreter in a reective tower can be

derived by partially evaluating two interpreters. However, construction of the actual

system is not trivial. To the best of the author's knowledge, our language ABCL/R3

is the one of the �rst languages that uses the �rst Futamura projection technique to

compile reective programs in object-oriented concurrent languages.

2.4 Partial Evaluation, the First Futamura Projection,

and Reective Architectures

We �rst present a brief introduction to partial evaluation. Then present the basic

idea of compilation, which is called the �rst Futamura projection. Finally, we discuss

the freedom and restrictions on the reective architecture that are brought by the

use of partial evaluation.
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2.4.1 Brief Introduction to Partial Evaluation

Partial evaluation is a program transformation technique that automatically special-

izes a program with respect to a part of program's input[50, 51]. Let p(x; y) be a

program that takes two parameters. Partial evaluation of p with respect to x is to

generate a specialized program of p by assuming that a certain value of the �rst

parameter x. When the x's value is v, pv is a result of partial evaluation, and often

called residual program. This partial evaluation process is written as follows:

PE (p; v) = pv :

The residual program pv takes p's remaining parameter y, and has the following

two properties: (1) The program pv is correct. For any w, if p(v; w) terminates2

and p(v; w) = z, then pv(w) also terminates and pv(w) = z. (2) The program pv is

e�cient. The static expressions in p, which are p's expressions depending on constant

values, the parameter x, and results of other static expressions, are eliminated in pv.

Suppose there is a program that computes n'th power of x in Scheme:

(define (power n x)

(if (= n 0)

1

(* x (power (- n 1) x))))

Partial evaluation of the program power with respect to 3 (as for the parameter n)

is taken place in the following steps:

1. The body expression of power is symbolically executed under the environment:

fn 7! 3; x 7! unknowng.

2. Since n is a `known' value in the environment, the sub-expression (= n 0) is

static, and reduced to false. The latter clause (* x (power (- n 1) x)) is

then selected. Its sub-expression, (- n 1) is reduced to 2. The entire expres-

sion is thus reduced to (* x (power 2 x)).

2When p(v;w) does not terminate or reports an error, pv(w)'s behavior is not de�ned.
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3. The expression (power 2 x) is further expanded to the body expression of

power with the environment: fn 7! 2; x 7! unknowng. It is reduced to (* x

(power 1 x)), and then (power 1 x) to (* x (power 0 x)).

4. Finally, the execution terminates by reducing (power 0 x) to 1.

The specialized program becomes like this:

(define (power-3 x)

(* x (* x (* x 1))))

Note that static expressions (e.g., (= n 0), (- n 1), and recursive invocation of

power) are eliminated in the specialized program; thus it is more e�cient than the

original one.

Whether an expression is static or dynamic is called the binding-time of the ex-

pression. There are two approaches to determine the binding-time. The one is called

an online approach[107,127], which determines during specialization of each expres-

sion. The other is called an o�ine approach, which determines the binding-time of

every expression in a program by only using the binding-times of input parameters in

advance to specialization process. The determination process in the latter approach

is called binding-time analysis (BTA). The o�ine approach leads to a simpler and

faster partial evaluator, but requires sophisticated BTA.

The important properties of binding-time are: (1) e�ectiveness of partial eval-

uation strongly depends on the binding-times of the target program, and (2) the

accuracy of binding-times is a�ected by the programming-style of the target pro-

gram. Especially, side-e�ects, polymorphism, and complicated data structure often

cause problems without careful programming and sophisticated partial evaluation

techniques.

2.4.2 The First Futamura Projection

When there are an interpreter de�nition and a program to be interpreted, partial eval-

uation of the interpreter with respect to the program returns a compiled program of

the interpreted program. We call this application the �rst Futamura projection[29]3.

3Futamura proposed two more projections in his study. The second one is construction of a

compiler: PE (PE ;L) = compiler; and the third one is to construction of a compiler generator:
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Let LL
0

be an interpreter of language L written in language L0, and pL be a

program p written in L. The interpreter LL
0

takes a program pL and input data for

pL, and returns an answer:

LL
0

(pL; x) = v:

A partial evaluator PE is a function that takes LL
0

and pL, specializes LL
0

with

respect to pL, and returns a residual program LL
0

p , which is the specialized version of

LL
0

:

PE(LL
0

; pL) = LL
0

p :

The residual program LL
0

p is correct to the execution of original interpreter LL
0

:

LL
0

p (x) = v if LL
0

(pL; x) = v:

The above partial evaluation can be regarded as compilation from L to L0 because it

yields LL
0

p , which has the same behavior to pL but is written in L0, from the de�nition

of pL.

The residual program is not only correct but also more e�cient than the inter-

preted execution. Suppose an interpreter shown in Figure 2.1 is partially evaluated

with respect to an expression. The static expressions in eval are predicates of the

conditional branch (e.g., (const? exp)) and selectors that extracts sub-expressions

from exp (e.g., (operator exp) in the application? branch). The residual pro-

gram, therefore, will not have those expressions. On the other hand, variable ref-

erences, conditional branch (e.g., the if expression in the conditional? branch),

primitive applications in the given expression will still appear in the residual pro-

gram. As a result, the residual program will have the operations that are speci�ed in

the expression, but not the one that manipulates the expression itself. Consequently,

the program is almost the same expression to the given one.

The �rst Futamura projection is useful for compiling reective programs because

an interpreter de�nition, which may be customized by the user's meta-level program-

ming, is mere data for the partial evaluator in the projection. There are several

PE(PE ;PE ) = compiler-generator. This study does not use those two projections, though they are

important for accelerating compilation processes. Chapter 5 has the discussion on a technique for

run-time specialization.
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;; evaluate an expression under an environment.

(define (eval exp env)

(cond ((const? exp) exp)

((variable? exp) (lookup exp env))

((conditional? exp)

(if (eval (predicate exp) env)

(eval (consequence exp) env)

(eval (alternative exp) env)))

((application? exp)

(let ((rator (eval (operator exp) env))

(rands (eval-list (operands exp) env)))

(apply rator rands)))))

Figure 2.1: A Simple interpreter de�nition.

studies that use partial evaluation to compile programs that are executed by cus-

tomized interpreters[34, 36, 57, 108, 109] for Lisp, pure functional languages, and logic

programming languages. Meta-interpreters in those studies, however, are monolithic

and strictly separated from the base-level programs, unlike many reective languages.

2.4.3 Impact of the �rst Futamura projection on Reective Archi-

tectures

The use of the �rst Futamura projection brings new pieces of design consideration

to meta-level architecture of reective languages. As is mentioned in Section 2.3.2,

many reective languages have restricted meta-level architecture by narrowing the

target of interpretation for the sake of run-time performance. However, use of partial

evaluation, which resolves the interpretation overheads, gives larger degree of freedom

in meta-level architecture. At the same time, it also poses some restrictions for

successful partial evaluation.

As for freedom, full-edged interpreters become a�ordable in terms of e�ciency,

as long as they can be partially evaluated e�ectively. Thus the meta-level architecture
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becomes more clear to the users. Moreover, language mechanisms that support meta-

level programming (e.g., dynamic dispatching, delegation, etc.) can be incorporated

without incurring additional run-time overheads.

As for restriction, meta-level programming style should be suitable for partial

evaluation. For example, mutable data and complicated data structures should be

avoided as much as possible because they are sometimes harmful to the quality of

residual programs. Moreover, it would be better to provide mechanisms or documen-

tation to ensure that such harmful programming styles can be avoided in the users'

customizations.

2.5 Summary

This chapter introduced computational reection, and important notions of reec-

tive languages such as causally-connected self-representation and tower of meta-

interpreters. The major issues of reective languages are the in�nity in the exe-

cution model, run-time overheads of interpretation, and meta-level programmability.

Many implementations of reective languages often sacri�ce adequate level of ab-

straction and programmability to reduce the run-time overheads. This chapter also

reviewed implementation techniques of reective languages, which are classi�ed into

four groups: na�ive implementation, narrowing the target of interpretation, compile-

time MOP, and the �rst Futamura projection.

The main implementation technique used in the dissertation is the �rst Futamura

projection, which is based on partial evaluation. The use of the �rst Futamura

projection to implement reective language is promising to allow less restrictive, yet

e�ciently implemented meta-level architecture.
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Chapter 3

Design and Implementation of

Meta-interpreters

A meta-interpreter in ABCL/R3 is an object that evaluates base-level expressions

as a traditional Lisp meta-circular interpreter does. A meta-interpreter, which is

one of the meta-level objects representing internals of a base-level object, is a major

source of extensibility but ine�ciency of reective languages. This chapter presents

design and implementation issues of meta-interpreters. The meta-interpreters in

ABCL/R3, which has �ne-grained protocols for maximizing exibility, are �rst dis-

cussed along with several concurrent programming examples. The latter half of the

chapter presents an e�cient implementation technique of meta-interpreters using

partial evaluation and performance evaluation.

3.1 Design Issues

To provide various parallel language constructs, extensible languages based on reec-

tion are attractive for both implementors and users. The �rst section of the chapter

describes our proposed meta-interpreter design of a concurrent object-oriented lan-

guage ABCL/R3, which has the following characteristics: (1) the full-edged meta-

interpreters o�ering a clear model for customization, (2) the �ne-grained protocols

and the delegation mechanism facilitating modular and scope-controlled meta-level

programming, and (3) the reective annotations realizing separation and cooperation
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of base- and meta-level programs.

On designing meta-interpreters, the following issues should be considered:

� Among various reective capabilities, meta-interpreters are suitable abstrac-

tion to customize existing language constructs and to provide novel ones, as

many previous studies show[7, 23, 24, 111, 112, 124]. This is also true, or even

more important, for concurrent programming, as it often requires various lan-

guage constructs to adapt special hardware, to implement application speci�c

optimizations, etc.[26, 37, 38, 76, 84, 125, 126]

� Mechanisms that support easier meta-level programming should be provided

as long as they do not pose critical performance impact. Speci�cally, modular-

ity: the ability to compose meta-level programs, and scope-controllability: the

ability to limit the e�ect of a meta-level program to speci�c part of base-level

programs, are primary concerns.

The solutions in this study are:

� full-edged interpreters with �ne grained protocols by assuming partial evalu-

ation

� delegation for modularity. The delegation relationship can be extended pseudo-

dynamically manner|useful to match the scope at the base-level.

In the following sections, we show concurrent programming examples that require

optimizations, as requirements for syntactic and semantic extensions to the language.

We then show proposed meta-interpreter design. Finally, the use of customized meta-

interpreters that solves the presented examples are demonstrated.

3.1.1 Examples of Extended Concurrent Programming Constructs

We �rst examine several concurrent programming constructs which improve pro-

grammability and e�ciency of parallel and distributed applications. We will see

desired a mechanism and syntactic support for each example. Especially, we focus

on required mechanisms and desired syntactic support to provide such constructs.
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3.1.1.1 Object Replication

Object replication greatly improves performance of programs in a distributed mem-

ory environment. When a program frequently accesses a remote object that is not

frequently updated, creating a replica of the object within the local processor will

substantially reduces the number of remote messages. Such an optimization has

been supported several distributed languages; for example, Emerald[9, 52] provides

a call-by-move mechanism that migrates objects in the parameter list of a method

invocation to the receiver's site.

For concreteness, assume there are two vector objects v1 and v2 on di�erent

processors, and a method product (Figure 3.1) is called on the processor on which

v1 is placed. Since v2 is a remote object, each invocation of nth-element on v2

sends and waits on a remote message; the number of remote messages in this case is

twice the length of v2.

If replication mechanism were available as a language feature, this program could

be optimized by creating a replica of v2 at the local processor during the computation

of product. This optimization not only reduces the number of messages transferred,

but also the time for waiting for answers to each request|so called latency. However,

this is not a simple task: for e�ective execution, we must consider the following as-

pects: (1) how replicas are created and managed (mechanism), (2) how programmers

specify creation of replicas (syntax), and (3) how to decide whether an object should

be replicated (policy).

Mechanism: There could be a variety of replication algorithms one could provide

as a built-in feature of a language. This is not simple as it may seem, because

of interaction with other parts of the language. For example, an original object

should be locked if instance variables of its replica could be updated and written

back afterwards. Some language systems provide more than one variants for such

a mechanism[8], but it would be better if such variants can be programmed by the

user.

Instead, meta-objects in reective languages could be used to implement di�erent

replication algorithms transparent to the user program depending on his base-level

algorithmic requirements.
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;; De�nitions for the vector class.

(define-class vector () ...) ; Class de�nition.

(define-method vector (length self) ...) ; Return the size of the

; vector.

(define-method vector (nth-element self index) ; Return the element at the

...) ; speci�ed index.

;; Return the dot-product of the vector and v.

(define-method vector (product self v)

(let ((size (length self))) ;The size of the vector.

(let loop ((sum 0.0) (i 0))

(if (= i size)

sum ; Return the sum at the end of the loop.

(loop (+ sum ; Add the product of i'th elements to sum.

(* (nth-element self i)

(nth-element v i)))

(+ i 1)))))) ; Increment the index.

The form (let l ((v0 e0) (v1 e1) . . . ) e) in the �gure is a shorthand

of

(letrec ((l (lambda (v0 v1 . . .) e))

(l e0 e1 . . .)))

in Scheme. It de�nes a loop with loop parameters v0 v1 . . . whose initial

values are e0 e1 . . .. The invocation of l in e speci�es that the loop pa-

rameters in the next iteration of the loop have the values of the arguments

of the invocation.

Figure 3.1: A na�ively written dot-product method.
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Syntax: The usefulness of the extended mechanism is not only determined by what

the mechanism does, but also how the mechanism can be used in programs. Therefore,

non-intrusive syntax would help portability and clarity of programs, by separating

optimization speci�cations from base-level programs. If the replication mechanism

were provided as mere library functions, the programmer had to modify programs

for each usage of the replication mechanism.

High Performance Fortran (HPF)'s distribution directives are declarative anno-

tations (comments) which allow the programmers to control the distribution and

replications in a non-intrusive manner to base-level programs[35]. The key idea is to

provide directives as comments, so that they are non-intrusive. However, the syntax

and semantics of HPF directives are �xed and not extensible. Instead, we propose

the reective annotations as non-intrusive syntactic extensions at the base-level, and

ways of meta-programming to de�ne the associated interpretation of annotations at

the meta-level.

Policy: Since creation of a replica has larger overhead than normal method invo-

cation, it does not always improve performance. Unfortunately, there are no general

rules to tell when replication is bene�cial, but rather, rules are heuristic and situation-

dependent. For example, in product, v2 should be replicated when it is larger than a

certain size, or when the communication is performed through high-latency network

connection.

To incorporate such rules, replication mechanism should be exible so that users

can specify their own heuristics. For example, we could have an extended annotation

syntax, which accepts an optional expression to decide whether speci�ed objects are

to be replicated using run-time values. Our ABCL/R3 allows meta-programming of

interpretation of the annotations to cope with such cases.

3.1.1.2 Latency Hiding

Latency hiding is an optimization technique to eliminate time to wait for remote

messages, where the basic idea is to overlap local computation and remote communi-

cation. This is usually realized by modifying programs manually, i.e., by breaking up

a single thread of control into multiple threads. The problem is that the modi�cation
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;;; Latency hiding versions of dot-product.

;;; (A) The element for the next iteration is prefetched.

(define-method vector (product self v)

(let ((size (length self)))

(let loop ((sum 0.0) (i 0)

;; requests the element for the �rst iteration.

(prefetch-channel (future (nth-element v 0))))

(if (= i size)

sum

(let ((next-prefetch-channel ;; requests the element for

;; the next iteration.

(if (< (+ i 1) size)

(future (nth-element v (+ i 1))))))

(loop (+ sum

(* (nth-element self i)

(touch prefetch-channel))) ;; use of the prefetched value

(+ i 1)

next-prefetch-channel))))))

Figure 3.2: \Manual" latency hiding versions of dot-product (A).

to the program is not small, and varies according to the number of overlapped remote

messages. Since the appropriate number of such messages is sensible to the ratio of

computation speed and communication latency, the manual approach is not portable.

Figure 3.2 and 3.3 show two versions of the function product, which are manually

modi�ed for latency hiding from Figure 3.1. These two versions are di�erent in the

number of method invocation requests that are sent in advance to the actual use of

the data (e�ectively, prefetching). In (A), only a request for the element that is used

in the next iteration is sent in advance to its use, while requests for all the elements

are sent before the computation in (B). The communication diagrams for the na�ive

and latency-hiding versions are shown in Figure 3.4.

We provide a mechanism for latency hiding, in which the programmer speci�es
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;;; Latency hiding versions of dot-product.

;;; (B) The whole remote elements are prefetched.

(define-method vector (product self v)

(let ((size (length self))

;; performs future invocation of "nth-element" method on

;; the remote vector v, and builds a list of the resulted channels.

(prefetch-channels

(let prefetch-loop ((i 0))

(if (= size i)

'()

(cons (future (nth-element v i)) ;; requests the i'th element

(prefetch-loop (+ i 1)))))))

;; an extra loop variable "channels" are introduced.

(let loop ((sum 0.0) (i 0) (channels prefetch-channels))

(if (= i size)

sum

(loop (+ sum

(* (nth-element self i)

(touch (car channels)))) ;; use of the prefetched value

(+ i 1)

(cdr channels))))))

Figure 3.3: \Manual" latency hiding versions of dot-product (B).
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Figure 3.4: Communication diagrams of dot-product.

when and what method invocation should be requested for prefetching in advance to

the actual use of the result of the prefetch in the expressions by means of annotations

embedded in the original programs.

Assume the annotation for latency hiding has the following form.

e{prefetch ea}

This annotated expression is interpreted as follows. Before evaluation of the expres-

sion e, the expression ea is evaluated. When ea is a synchronous method invocation

form (i.e., present type messages in ABCM[130]), it is executed as an asynchronous

(i.e., future type) one. When the method invocation form that has the same method

name and parameters values to ea appears during the subsequent evaluation of e,

it performs the touch operation to the reply box that is generated by the asyn-

chronous invocation in the evaluation of ea. When ea is a compound expression such

as a loop that performs multiple method invocations, all the subexpressions except

for synchronous method invocations are evaluated as usual, and each synchronous

invocation is executed as an asynchrounous invocation.

For example, there is an iterative computation that improves some value by using
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data in arrays. The �rst iteration uses an initial value and a local array, and the

second uses the result of the �rst iteration and a remote array. In such a case,

fetching from the remote array can be performed during the �rst iteration. The

following expression realizes such a prefetching by using the prefetch annotation:

(let* ((initial-value ...)

(first-value (compute

initial-value

(get-data local-array first-index))))

(compute first-value

(get-data remote-array second-index)))

prefetch (get-data remote-array second-index)

Using this mechanism, the annotated latency hiding versions of product become

simpler as is shown in Figure 3.5 and Figure 3.6. Note that without annotations,

these two programs are identical to the original one in Figure 3.1.

3.1.1.3 Termination Detection

Some concurrent applications, such as search problems, invoke a large number of

threads, where termination detection of all the threads is a di�cult problem because

there is no global control. Several algorithms (cf. [85, 104]) have been proposed to

solve this problem.

However, when we incorporate a termination detection algorithm into a na�ively

written concurrent program, we often have to modify the structure of the original

program, such as additional parameters to each function de�nition and invocation,

sending control messages to the other objects, etc. In addition, using a di�erent

termination detection algorithm requires di�erent modi�cation, which results in loss

of portability.

To cope with this problem, we provide new language constructs fork and fork/wait

for termination detection, and termination detection algorithms that are implemented

at the meta-level.

Special forms fork and fork/wait are similar to the asynchronous invocation

form future, except that they detect global termination. The form fork/wait in-
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;;; Latency hiding versions of dot-product.

;;; (A) The element for the next iteration is prefetched.

(define-method vector (product self v)

(let ((size (length self)))

(let loop ((sum 0.0) (i 0))

(if (= i size)

sum

(loop (+ sum

(* (nth-element self i)

(nth-element v i)))

{prefetch (if (< (+ i 1) size) )(nth-element v (+ i 1))}

;; The element for the next iteration is requested before computing

;; the product for this iteration.

(+ i 1))))

{prefetch (nth-element v 0)} ;; The �rst remote element is requested before

)) ;; the iteration begins.

Figure 3.5: Latency hiding versions of the dot-product function using annotations.
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;;; (B) The whole remote elements are prefetched.

(define-method vector (product self v)

(let ((size (length self)))

(let loop ((sum 0.0) (i 0))

(if (= i size)

sum

(loop (+ sum

(* (nth-element self i)

(nth-element v i)))

(+ i 1))))

;; The following annotation is associated to the above loop; i.e., the whole remote

;; elements are requested before the beginning of the loop.

{prefetch (let loop ((i 0))

(if (< i size)

(begin

(nth-element v i)

(loop (+ i 1)))))}

))

Figure 3.6: Latency hiding versions of the dot-product function using annotations.

(continued)
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fork/wait
         waits for termination of all

computations in the circle
fork

does not wait

search
computations

Figure 3.7: Constructs fork/wait and fork for termination detection.

vokes a speci�ed method or function, and waits for the termination of all subsequent

sibling computations invoked with fork (Figure 3.7).

For example, Figure 3.8 is a n-queens problem using this termination detection

support. The annotation at the �rst line declares that a termination detection al-

gorithm called weight will be used. The top-level caller invokes function n-queens

using the fork/wait form. Subsequent recursive n-queens invocations are achieved

with the fork form. The top-level caller waits for the termination of all sibling

n-queens computations. Note that the de�nition of n-queens is independent of the

underlying termination detection algorithms.

3.1.1.4 User-Level Scheduling

Application level information is often useful for controlling scheduling to improve

performance. For example, the A*-search is an algorithm to �nd the best answer

in terms of some evaluation function. It uses the estimated value of the answer,

which is computed from the intermediate status, as a scheduling priority of a thread.

As the branch-and-bound algorithms do, its pruning|terminating subcomputations

that have no possibility to reach the best answer|is e�ective for reducing the search

space.

Since such scheduling facilities are not provided in most language systems, pro-

grammers are forced to write a program that explicitly controls the order of execution.
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;;; specify the termination detection algorithm

{termination-detection weight}

(define-class n-queens () size counter)

;; an entry method for searching

(define-method! n-queens (solve self size)

;; set parameters to the instance variables, and then start searching

(become

(begin (fork/wait (search self 0 '())) ; invoke and wait for the

; termination.

(print "Number of answers are: " (get-count counter)))

:size size

:counter (make-counter)))

;; a search process

(define-method n-queens (search self col rows)

(if (= size col)

(count-up counter) ; an answer is found

(let loop ((row 0))

(if (< row size)

(begin ;; check for each row in the given column

(if (not (attacked? size col rows row))

;; invocation without waiting for the termination

(fork (n-queens self (+ col 1) (cons row rows))))

(loop (+ row 1)))))))

Figure 3.8: Description of n-queens problem using fork and fork/wait.
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Usually, this is realized with a user-level scheduler object as a server embedded in the

base-level application code, and searcher objects as clients, as is shown in Figure 3.9,

Figure 3.10 and Figure 3.11. (1) The scheduler activates a searcher object. (2) The

object sends requests for object creation and activation, instead of creating its sub-

objects, for the next search step. These requests are stored in the queue belonging to

the scheduler object. (3) When the activated object �nishes its execution, it yields

its execution by sending a message to the scheduler. (4) The scheduler then selects a

request having the highest priority from the queue, and creates and activates a search

object that corresponds to the selected request. The queue of the scheduler is sorted

by the priority value of each request, and the scheduler can prune requests from the

queue.

One of the problem of this programming style is that the control ow in the orig-

inal algorithm, which is represented as dashed arrows in the �gure, is replaced with

more complicated communications, which is represented as solid arrows. As a result,

the program becomes unclear and di�cult to maintain. Our goal is to provide syn-

tactic support which hides such explicit communications with the scheduler, allowing

a programmer to write their search algorithms in a `natural' style of Figure 3.8.

3.1.2 The Meta-Interpreter Design

We propose the meta-interpreter design of ABCL/R3. The primary concern is pro-

grammability. It is designed so that it can easily implement various programming

constructs, such as the ones shown before, by assuming partial evaluation based

compilation. The major features are as follows:

Full-edged meta-interpreter, which interprets every expressions in base-level

programs, provides clear view of `behavior' of programs. Such an otherwise

sluggish interpreter can be e�ciently implemented by our compilation tech-

nique.

Fine-grained methods minimize the amount of description of customizations.

Delegation mechanism enable to de�ne modular customizations. This mecha-

nism, di�erent from the traditional inheritance mechanisms, allows to compose

customizations dynamically.
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;; a priority scheduler

(define-class scheduler ()

searcher (queue '()))

(define-method! scheduler (request self parameters priority-value)

(become #t :queue (cons (cons priority-value parameters)

queue)))

;; When a search node yielded, most promising search node in the

;; scheduling queue is scheduled.

(define-method! scheduler (yield self)

(let ((sorted-queue (sort queue (lambda (pair) (car pair)))))

(become

(search searcher (cdr (car sorted-queue)))

:sorted-queue (cdr sorted-queue))))

;; a searcher

(define-class a-star () scheduler)

(define-method a-star (begin-search self configuration)

(become (search self (initial-parameters configuration))

:scheduler (make-priority-scheduler self)))

Figure 3.9: Explicitly implemented search algorithm with a user-level scheduler.
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;; a process for a search node

(define-method a-star (search self parameters)

(let ((children-parameters

(generate-child-nodes parameters)))

;; put parameters for the child-nodes into the scheduling queue

(map (lambda (parameters-for-a-child)

(let ((estimated-value (estimate parameters-for-a-child)))

(request scheduler parameters-for-a-child estimated-value)))

children-parameters)

(yield scheduler)))

Figure 3.10: Explicityl implemented search algorithm with a user-level scheduler.

(continued)

(1) activate

(2) subobject
creation

(2) request

(3) yield

scheduler

(4) create
& activate

actual communication
search path

Figure 3.11: Explicit user-level scheduling system.
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Reective annotations serves as a exible programmable directive to the meta-

level from the base-level programs.

3.1.2.1 Fine-grained Methods

A meta-interpreter in ABCL/R3 de�nes the semantics of base-level programs in a

similar manner to the traditional Lisp meta-circular interpreters. A prominent fea-

ture is that it de�nes the semantics by using a number of �ne-grained methods, so

that user's customizations can reuse many of existing methods. Basically, for each

syntactic construct x, a method eval-x parses the expression and passes the parsed

sub-expressions to a method do-x that performs actions. Part of the method de�ni-

tions in the primary|i.e., the default|meta-interpreter are as follows:

(eval-entry self exps env): The method eval-entry serves as an entry point of a

base-level method/function1. The argument exps is unevaluated expressions

of the method, and env is an environment, which binds instance variables of an

object, and formal parameters of the method. The default method evaluates

subexpressions in exps in a sequence. Since the method do-begin, which is

de�ned for the begin construct, sequentially evaluates expressions, eval-entry

merely passes exps to do-begin.

(eval self exp env): The method eval serves as a dispatcher|it calls an appropri-

ate sub-method, such as eval-var, eval-if and eval-method-call, according to

the expression type. Each sub-method, whose method name is pre�xed `eval-,'

parses the given expression, and then calls another method, which is pre�xed

`do-,' in order to execute desired action.

(eval-var self var env): The method eval-var handles variable references|it re-

turns value of the variable in the environment.

(eval-if self exp env): The method eval-if handles a conditional brach. it merely

parses (i.e., takes the second, third, and fourth elements, and supplies #f for

1In ABCL/R3 (and Schematic), base-level programs can use functions (in an ordinary sense)

in addition to methods. This means that meta-interpreters receive the expressions in base-level

functions, as well as those in methods. We write, however, that the meta-interpreters operate on

methods in the following discussion.
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an omitted fourth element) the given expression, and then invokes the do-if

method of self with parsed elements and env.

(do-if self exp1 exp2 exp3 env): The method do-if, like the one in traditional

meta-circular interpreters, evaluates exp1 by invoking method eval of self,

and then conditionally evaluates exp2 or exp3.

(eval-become self exp env): The method eval-become is for become forms, which

update instance variables. It merely parses the sub-expressions and calls do-

become.

(do-become self body vars exps env): When exp is (become r :v0 e0 :v1 e1

. . . ), do-become �rstly evaluates e0, e1, . . . , and builds a vector with the

evaluated values. The vector is then sent to the meta-object via a state-update-

channel, which is stored in env. (The mechanism to manage instance variables

in meta-objects are discussed in the next chapter.) Finally, it continues the

evaluation of r by invoking eval of self.

(eval-invocation self exp env): The method eval-invocation handles method-

and function-invocation forms in base-level programs. First, it examines exp

to determine (1) the invocation type (e.g., future type or present type), (2)

the invocation form (i.e., the method-name, receiver object, and arguments),

and (3) optional arguments such as an explicit reply channel, a site where the

invocation will be performed, and any other user de�ned options. Then it calls

do-invocation.

(do-invocation self type form options env): The method do-invocation eval-

uates the arguments in the invocation form, and then generates a message object

that contains the method-name, arguments, reply-channel, and other optional

arguments. Finally it invokes the method method-call of the meta-object of

the receiver object (i.e., target object). If necessary, it waits for an answer to

the invocation.
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3.1.2.2 Delegation Mechanism

ABCL/R3 has a delegation mechanism to customize meta-interpreters, instead of

the inheritance mechanism. The delegation mechanism uses a `chain' of objects for

dispatching. When a method is invoked on a chain of objects, it �rst searches the

method table of the �rst object in the chain. If the �rst object does not have the

named method, or explicit delegation is performed in the method of the �rst object,

method tables of objects in the subsequent positions in the chain will be examined

in turn.

The ABCL/R3's delegation mechanism allows a chain to be extended dynami-

cally. It is bene�cial to describe scope-controlled extensions, and to compose those

extensions.

Assume that we de�ne a set of meta-interpreters that print trace messages during

evaluation of predicate part of each conditional expression. When it evaluates an

expression (g (if (f x) y z)), for example, it prints the evaluation process of f

and x. An approach to implement such a tracing mechanism might be to de�ne

a pair of interpreters; the �rst interpreter prints trace messages when it evaluates

any expression, and the second interpreter, which evaluates all the expressions in

a standard manner except for conditionals, creates the �rst interpreter and let it

evaluate predicate part of conditional expressions.

It is di�cult to add the tracing mechanism to other interpreters by using static

inheritance mechanisms. This is because the static inheritance mechanisms require

that the class to be extended should be known. Therefore, in order to add the tracing

mechanism to an extended interpreter (an interpreter with the latency hiding mecha-

nisms, for example), we have to de�ne sub-classes from the extended interpreter (a set

of interpreters that has the latency hiding mechanisms and the tracing mechanism).

We therefore employ delegation, which enables to dynamically extend behavior

of objects, as a mechanims to extend interpreters.

the composed behavior can be naturally implemented by dynamically extending

the tracing evaluator before evaluating (f x), no matter which evaluator is used for

the enclosing expressions.

Forms and functions for the delegation mechanism are as follows:
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(de�ne-delegation-class hclass-namei ()

hsloti ...)

It declares a new delegation class. It has the essentially same syntax to the

ordinary class declarations, except it allows only an empty list to be speci�ed

as superclasses.

(de�ne-method hclass-namei

(hmethod-namei hself-vari hargi ...)

hexpi ...)

It de�nes a method for the speci�ed delegation class. The variable hself-vari

is bound to the front-end in a delegation chain, and a special variable super

is bound to the `next' element in the delegation chain. Note that no writer

methods (i.e., de�ne-method!) can be de�ned for delegation classes.

(make-empty-chain):

It returns an empty delegation `chain,' which is a basis for any delegation chain.

(extend-chain hchaini hclassi hargumentsi):

It creates and returns an extended chain of objects based on the given hchaini.

The �rst object in the created chain is a newly created object belonging to the

speci�ed hclassi whose instance variables are initialized by hargumentsi.

Figure 3.12 is an example that uses the delegation mechanism. The class noisy-

predicate-eval only de�nes a method do-if, which execute base-level conditional

expressions. When invoked, it extends the current chain with noisy-eval, and eval-

uates the predicate (exp1) by the extended chain (ex-eval). Note that the remaining

expressions (exp2 and exp3) are not traced since they are evaluated by self.

The class noisy-eval is an evaluator that prints an expression for each step.

In the method eval of noisy-eval, the form (eval super exp env) invokes the

method eval of the `next object in the chain,' which will be determined at run-time.

The notion of delegation is not itself a novel idea, as it is used in Self[113, 123] and

other languages. Even though Self allows to dynamically change delegation chains,

the run-time system re-compiles methods whenever a chain is changed. Contrastingly,

this study uses partial evaluation to compile delegation chains.
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;;; declaration of a new delegation class called noisy-predicate-eval.

(define-delegation-class noisy-predicate-eval ())

;;; do-if is overridden.

(define-method noisy-predicate-eval (do-if self exp1 exp2 exp3 env)

;; It �rst extends the delegation chain.

(let ((ex-eval (extend-chain self 'noisy-eval '())))

(if (eval ex-eval exp1 env) ; It evaluates the predicate under

; the extended evaluator.

(eval self exp2 env) ; It evaluates one of the consequences under

(eval self exp3 env)))) ; the original evaluator self.

;;; declaration of another delegation class.

(define-delegation-class noisy-eval ())

(define-method noisy-eval (eval self exp env)

(display exp) (newline) ; prints the current expression.

(eval super exp env)) ; delegates the actual evaluation.

Figure 3.12: Example of meta-interpreter customization using delegation.
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3.1.2.3 Reective Annotation

In ABCL/R3, annotations can be used as directives to the meta-level from base-

level programs. An annotation to an expression consists of a keyword and argument

expressions; and it is written as follows:

body{keyword args. . .}

Our annotations, called reective annotations, can be customized how they are in-

terpreted. In fact, an annotated expression is evaluated by the following method at

the meta-level:

(eval-annotation self keyword args body env):

When an annotated expression is to be evaluated, this method is called be-

forehand. By default, a new evaluator object whose class is speci�ed by the

keyword argument is created, and then the body expression is evaluated by

the created evaluator.

Since the method de�nition can be overridden by user-de�ned methods, the

above interpretation can be changed, as will be shown in Sections 3.1.3.1 and

3.1.3.2.

3.1.3 Implementation of Customized Language Constructs

We have seen several language constructs which can be bene�cial for parallel pro-

gramming. This section shows how these constructs are implemented using meta-

interpreters in ABCL/R3. In those implementations, meta-interpreters are used to:

� change the behavior of existing language constructs; e.g., a method invocation

is interpreted as a prefetch request or use of the prefetched value in the latency-

hiding example.

� non-intrusive annotations; e.g., the annotation for requesting object replication.

� construct new language constructs; e.g., the creation form of a thread with the

termination-detection facility.
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3.1.3.1 Object Replication

Mechanism Since the meta-object of an object contains enough information to

create a replica, the replication mechanism is implemented as a method of the class

metaobject.

First, we de�ne two subclasses of metaobject: a class replicatable for objects

that can create their replicas, and a class replica-meta for replicated objects. (Fig-

ure 3.13) A method copy-object creates a replica on a speci�ed processor (p), which

is de�ned as follows:

;;; metaobjects of objects that can create replicas

(define-class replicatable (metaobject))

;;; metaobjects of replicated objects

(define-class replica-meta (metaobject)

original) ; an additional instance variable

;;; creation of a replica of an object

(define-method replicatable (copy-object p &reply-to r)

(future

(replica-meta :state-vars state-vars :state-values state-values

:methods methods :original self)

:on p :reply-to r))

In addition, policies for maintaining consistency between an original object and

replicas can be controlled. For example, one might want to allow method invocations

to an original object while it has replicas. Such a control can be programmed by

overriding the methods message and accept of the class replicatable.

Syntax Here, we show an example syntax that creates replicas. The syntax uses

the reective annotation so that base-level programmers can exploit the replication

mechanism without modifying the structure of the original programs. The annotation

to create replicas is written as follows:

exp{replicate (v1 v2 . . .) :when pred}
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metaobject

replicatable

(copy-object p)
creates a replica
object

replica-eval

(eval-annotation
...)

evaluator

replica-meta

(copy-back)
reflects local
changes on the
master object

original

inheritance

Figure 3.13: Meta-level objects for object replication.

When this annotated expression is to be evaluated, pred in the annotation is evaluated

�rst. If the result is true, replicas of objects that are bound to the variables v1 v2 . . .

are created; and the exp is evaluated in an environment such that the variables

v1 v2 . . . are bound to the replicas.

We can add annotations to the function product shown in Figure 3.1, so as to

employ replicas. The program with annotations is shown in Figure 3.14. Note that

the only di�erence between this program and the original one is the addition of the

annotation.

As stated in the previous section, the interpretation of annotations can be modi-

�ed by overriding method eval-annotation. Here, we de�ne a class replica-eval

and a method eval-annotation, as is shown in Figure 3.15. In the �gure, for an an-

notated expression (let ...){replicate (v) :when (< 20 size)}, replica-eval

�rst evaluates (< 20 size). If true, it then looks up variable v and creates a copy

by invoking the method copy-object of the meta-object of v. The expression (let

...) is evaluated under a newly constructed environment that binds v to its replica.

Before returning from the method, it invokes the method copy-back of the replica,
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;;; specify the customized meta-object and evaluator

(define-class vector ()

...

:metaobject-creator replicatable

:evaluator-creator replica-eval)

(define-method vector (product self v)

(let ((size (length self)))

(let loop ((sum 0.0) (i 0))

(if (= i size)

sum

(loop (+ sum

(* (nth-element self i)

(nth-element v i)))

(+ i 1))))

{replicate (2) :when (< 20 size)}

;; before beginning of the loop, when 20 < size,

;; a copy of v is created at the self's site, and

;; accesses to v in the loop is redirected to the copy.

))

Figure 3.14: Dot-product function using a replica.
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so that instance variable in the replica is written back to the original's.

3.1.3.2 Latency Hiding

Here, we show how the latency hiding mechanism described in Section 3.1.1.2 is im-

plemented at the meta-level. The implementation consists of two parts: invoking

methods to prefetch the arguments before their usage in an expression, and substi-

tution of results of the prefetch where needed.

Let us review the annotation syntax that requests prefetch method invocations,

which is proposed in Section 3.1.1.2:

e{prefetch ea}

To perform method invocations in ea, we de�ne two evaluator classes prefetch-eval

and prefetch-annotation-eval, and a method for each|de�nitions are shown in

Figure 3.16, Figure 3.17 and Figure 3.18

Let's see how those evaluators interpret the following expression:

(begin (some-computation) (m obj)){prefetch (m obj)}

1. Since this is an annotated expression, eval-annotation of prefetch-eval is

invoked. It extends the evaluator chain with prefetch-annotation-eval, and

let the extended chain evaluate `(m obj)' in the argument of the annotation.

2. The method do-invocation of prefetch-annotation-eval is invoked. It in-

vokes the method in a future type (i.e., asynchronous invocation),

3. and records the `reply-box' of the future invocation in the environment.

4. Then prefetch-eval starts evaluation of the body of the annotated expres-

sion, `(begin ...).' At the evaluation of `(m obj),' since its method name

and parameters are recorded, do-invocation of prefetch-eval touches the

recorded reply-box, instead of actually invoking the method.

3.1.3.3 Termination Detection

Here, we show that an automatic termination detection mechanism is implemented

at the meta-level of ABCL/R3 using two layers of delegating evaluators. The �rst
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;;; Evaluator for replica-creating annotations.

(define-delegation-class replica-eval ())

(define-method replica-eval

(eval-annotation self keyword args body env)

(cond

;; annotations other than replicate

((not (eq? keyword 'replicate))

(eval-annotation super keyword args body env))

;; when c yields true

((eval self (replica-predicate args) env)

(let* ((target-vars (replica-target args));; get v1, v2, ...

(originals (map (lambda (v) (lookup env v)) target-vars))

;; create replicas

(replicas

(map (lambda (obj)

(den-of (copy-object (meta-of obj) (this-pe))))

originals))

;; create an extended environment

(ex-env (extend env target-vars replicas)))

(let ((answer (eval self body ex-env))) ; evaluate the body

;; copy-back replicas

(map (lambda (replica) (copy-back (meta-of replica)))

replicas))

answer)) ; return the answer of the body

;; when c yields false

(else (eval self body env))))

Figure 3.15: Interpretation of replica-creating annotations.
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(... (m obj ...) ...){prefetch ... (m obj ...) ...}

(1) eval-annotation
extends the chain

(2) do-method-
invocation changes it
to a future invocation

env
(3) and stores the reply box

(4) do-method-
invocation 'touches'

prefetch-eval
delegation

prefetch-
annotation-eval

Figure 3.16: Behavior of customized interpreters for latency hiding.

one de�nes each speci�c termination detection algorithm, and the second one de�nes

the syntax commonly used in all termination detection algorithms. (Figure 3.19)

At the syntax layer, we de�ne an evaluator class TD-eval, which simply dispatches

forms (fork/wait ...) and (fork ...) to the methods eval-fork/wait and

eval-fork, respectively.

At the frontmost layer, an evaluator class is de�ned for each termination detec-

tion algorithm. Figure 3.20 presents the simplest one in which an acknowledgment

message is returned for each fork invocation. Other algorithms|e.g., the one using

global weight[85, 104]|can be implemented in similar ways.

The overview of the algorithm is as follows (operations written in the slanted font

are performed at the meta-level):

(1) A method/function is invoked.

(2) A reply box is created for each child.

(3) A child (i.e., sub-computation) is forked. The reply box is passed onto the child

along with the invocation.

(4) It waits for acknowledgment messages from all of its children.

(5) Each child returns an acknowledgment message when it �nishes.

(6) When all acknowledgment messages are collected, it returns an acknowledgment

message to its own parent.
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;;; for expressions that may have {prefetch ...}

(define-degelation-class prefetch-eval ())

;;; interpretation of the annotation

(define-method prefetch-eval (eval-annotation self keyword args body env)

(if (eq? keyword 'prefetch)

;; extend the chain withprefetch-annotation-eval

(let ((eval-a (extend self 'prefetch-annotation-eval '())))

;; evaluate expressions in the annotation.

;; method invocations in args are regarded as prefetch requests.

(do-begin eval-a args env)

;; evaluate the body expression

(eval self body env))

;; other annotations

(eval-annotation super keyword args body env)))

;;; method invocation in ordinary expressions

(define-method prefetch-eval (do-invocation self type form options env)

;; check whether the method is already invoked in an annotation

(let ((rbox (prefetched? env type form)))

(if rbox

;; if it is already invoked, do touch

(touch rbox)

;; otherwise, invoke as usual

(do-invocation super type from env))))

Figure 3.17: Interpreter de�nition for latency hiding.
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;;; for expressions in annotations

(define-degelation-class prefetch-annotation-eval ())

;;; method invocation in the annotation

(define-method prefetch-anno-eval (do-invocation self type form options env)

;; change the invocation type to the `future'.

(let ((rbox

(do-invocation super 'future form options env)))

;; remember the returned reply box in the environment.

(remember-prefetched-method env type form rbox)))

Figure 3.18: Interpreter de�nition for latency hiding. (continued)

ack-TD-eval

weight-TD-eval

TD-eval primary-eval

termination
detection

algorithms
syntax definition interpretation of

normal expressions

Figure 3.19: Delegation paths of evaluators for termination detection.
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The evaluator for this termination detection algorithm can be de�ned as follows.

The method do-invocation is customized to create, and send a reply box along

with base-level arguments; and the method eval-entry is customized to add special

behavior at the beginning and the end of a base-level method invocation.

3.1.3.4 User-Level Scheduling

In Section 3.1.1.4, we have seen an example of user-level scheduling that is achieved

by explicitly sending messages in application programs. Here, we show a simi-

lar scheduling mechanism that is achieved by implicitly communicating with the

scheduler object. An evaluator class schedule-eval and two methods are de�ned:

(do-invocation) instead of invoking a method, a message data is sent to the sched-

uler object; (eval-entry) at the end of each method execution, it noti�es the sched-

uler to yield its thread of control. We assume that the scheduler object is accessible by

evaluating (lookup-meta env 'scheduler) where env is the current environment,

and has methods put! and get!.

3.2 Implementation Issues

In ABCL/R3, base-level programs, whose behavior is de�ned by full-edged meta-

interpreters, are compiled by using partial evaluation technique, or what we call the

�rst Futamura projection. Although the �rst Futamura projection has been studied

for long years, it is not trivial to apply to ABCL/R3's meta-interpreters due to

concurrency, dynamic dispatching, etc.

This section presents our framework that compiles ABCL/R3 programs under

customized meta-interpreters. The techniques we have developed are as follows:

� Pre-processing that converts object-oriented meta-interpreters, which are using

the delegation mechanism, into functions of a sequential language Scheme, so

that they become applicable to partial evaluation.

� An extension to partial evaluation called preactions, which preserves the order

and the number of I/O side e�ects.

58



(define-delegation-class ack-TD-eval ())

(define-method ack-TD-eval (eval-entry self exp env)

;; at the beginning of a method: create a queue to record reply boxes

(let* ((new-env (extend-meta env 'rboxes (make-queue)))

;; run the body of the method

(result (eval-entry super exp new-env)))

;; at the end of a method: wait for termination of all children

(for-each (lambda (rbox) (touch rbox))

(pop-all! (lookup-meta new-env 'rboxes))) ; (4)

;; notify its parent of the termination

(reply #t (lookup-meta env 'ack)) ; (5,6)

result))

(define-method ack-TD-eval (do-invocation self type form options env)

(if (eq? type 'fork)

;; create a reply box

(let ((rbox (make-reply-box))) ; (2)

;; and remember it in the queue

(push! (lookup-meta env 'rboxes) rbox)

;; invoke the method with the created reply box

(do-invocation super 'future form

(cons (cons 'ack rbox) options) env)) ; (3)

(do-invocation super type form options env))) ; for the other forms

Figure 3.20: Meta-interpreter implementing termination-detection algorithm using

acknowledgment messages.
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;;; an evaluator class for user-customized scheduling

(define-delegation-class schedule-eval ())

;;; reference to the scheduler is stored in the environment

(define-method schedule-eval (get-scheduler self env)

(lookup-meta env 'scheduler))

;;; send a request to the scheduler for method invocation

(define-method schedule-eval (do-invocation self type form options env)

(if (eq? type 'future)

(let ((thunk (lambda ()

(do-invocation super type form options env))))

(put! (get-scheduler self env) thunk))

(do-invocation super type form options env)))

;;; yield the control to the scheduler

(define-method schedule-eval (eval-entry self exp env)

;; evaluates the body of the method.

(eval-entry super exp env)

;; at the end of the method, it runs a thunk in the scheduling queue.

(let ((thunk (get! (get-scheduler self env))))

(thunk)))

Figure 3.21: Meta-interpreter implementing customized scheduling.
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� Post-processing that further optimizes the partially evaluated programs before

passing it on to the back-end compiler.

We have developed a prototype compiler for an object-oriented concurrent reec-

tive language ABCL/R3 according to our compilation framework. Benchmarks show

that: (1) interpretation overhead is e�ectively eliminated, i.e., the programs com-

piled by our compiler exhibit almost identical performance to the ones compiled by

non-reective compilers, and is more than 100 times faster compared to interpreter

execution; and (2) parallel applications on a massively parallel processor Fujitsu

AP1000 optimized via meta-level programming adds only small overhead compared

to hand-crafted source-level optimizations, and runs faster than non-optimized base-

level programs compiled by a non-reective compiler. This facilitates creation of a

portable, meta-level class framework for optimization and language extensions.

3.2.1 Overview and Problems

3.2.1.1 A Simple Compilation Example in ABCL/R3

We give an overview of our compilation framework with a simple meta-interpreter

example shown in Figures 3.22, 3.23, and 3.24. The base-level program de�nes a

broker, which assigns a job request to one of servers according to the estimated cost

of the job. The meta-level embodies a simple tracing system over some variable

references. A method request (Figure 3.24) of the class broker asks each server

object the estimated cost and throws the job at the least one. Here, we customize

the meta-level interpreter of the base-level algorithm so that when variables worker2

and job are referenced, the reference events are reported to the object *console* by

messages notify.

In ABCL/R3, the default meta-circular interpreter is de�ned as methods of the

primary evaluator object primary-eval (the de�nition is omitted). The above cus-

tomization is achieved by de�ning a new evaluator object watch-eval to override the

method eval-var that de�nes the behavior of variable references (Figure 3.23). The

method sends a noti�cation to the object *console* if the name of the referenced

variable matches worker2 or job. The execution of all the other expressions is sent

to the delegate (i.e., super), which is a default meta-interpreter primary-eval in
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server2 job)
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eval
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eval
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meta-level

base-level

(eval evaluator
'server2 env)

(notify *console*
'server2)

(eval evaluator
'server2 env)

delegation

Figure 3.22: Example of customized meta-interpreters in ABCL/R3.

;;; customized interpreter to monitor variable references.

(define-delegation-class watch-eval ()

(*console* (get-console-object)))

(define-method watch-eval (eval-var self var env)

;; noti�es if the name of the variable matches to the list.

(if (memq var '(server2 job))

(notify *console* var))

;; requests the delegate to perform variable reference.

(eval-var super var env))

Figure 3.23: Customized meta-interpreters for monitoring variable references.
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(define-class broker ()

server1 server2 ; instance variables for servers.

:evaluator-creator watch-eval) ; specify the customized interpreter

(define-method broker (request self job)

;; it acquires estimated cost by each server,

(let ((cost1 (estimate server1 job))

(cost2 (estimate server2 job)))

;; and throws the job at who returned the lower cost

(start-job (if (< cost1 cost2)

server1 server2)

job)))

Figure 3.24: A base-level program monitored by the customized interpreter.

this case.

Since the customization changes the semantics of the language from the origi-

nal ABCL/R3, a na�ive implementation has to execute the compiled base-level pro-

gram under the customized meta-interpreter, instead of directly executing the base-

level program. This execution is more than 100-times slower as we will see in Sec-

tion 3.2.3.1. The changes of the semantics, however, can also be realized by changes

of the base-level program that is executed under the default (i.e., unchanged) se-

mantics. For example, the semantics that reports speci�c variable references can be

realized by a base-level program that is inserted a noti�cation expression for each

designated variable references. By all means, having the programmer do so manu-

ally throughout the entire program would be quite cumbersome. Figure 3.25 shows

such a manually modi�ed program; in fact, our proposed compilation framework

automatically generates a very similar program to this.

As mentioned earlier, the principal technique of our compiler is the �rst Futamura

projection[29] that eliminates meta-level interpretation by using partial evaluation[50,

51]. The readers should note that traditional inlining optimization techniques such

as the ones in Self[12{14], if applied to the meta-interpreters, would have replicated
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(define-method broker (request self job)

(let ((cost1 (estimate server1 (begin (notify *console* 'job) job)))

(cost2 (estimate (begin (notify *console* 'server2) server2)

(begin (notify *console* 'job) job))))

(start-job (if (< cost1 cost2)

server1 (begin (notify *console* 'server2) server2))

(begin (notify *console* 'job) job))))

The underlined expressions are manually inserted for notifying variable

references.

Figure 3.25: A base-level program with manually inserted noti�cations.

almost the entire interpreter code, instead of the noti�cation code. Thus, partial

evaluation is a quite essential part of the compilation process. However, simply

applying traditional partial evaluation techniques is insu�cient. Below, we review

the basic idea of compiling reective programs using partial evaluation, and the

problems when applied to concurrent objects, as is mentioned in Section 2.4.

3.2.1.2 Problems in existing Partial Evaluation Techniques when Applied

to Concurrent Objects

In practice, existing partial evaluation techniques do not allow us to directly deal

with the meta-circular interpreters written in concurrent object-oriented languages.

Here we explain the underlying problems and our proposed solutions.

Concurrent meta-system. As the previous studies show[76,94, 125], it is natural

to design the meta-system of a concurrent object-oriented language with concur-

rent objects. However, it is di�cult to eliminate the meta-level interpretation

by partially evaluating the entire meta-system, because of the concurrency and

indeterminacy of concurrent objects. To the best of our knowledge, partial

evaluation studies that deal with meta-circular interpreters assume functional-

or logic-programming languages.
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Solution: Although the meta-level architecture of ABCL/R3 consists of a

number of concurrent objects, meta-interpreters for each meta-object do not

interfere with each other. Therefore, when we focus on meta-interpreters, we

can use a partial evaluator for sequential languages. For each meta-object,

the system converts associated meta-interpreter de�nitions into functions, and

separately apply partial evaluation to them. Interactions to other objects are

regarded as side-e�ects.

Dynamic dispatching. The delegation mechanism, which dynamically determines

an appropriate method for an invocation, may cause a partial evaluator to yield

uncompiled results. This is because, for each function/method invocation, if

the body of the invoked function/method were not determined at the partial

evaluation time, the partial evaluator would not perform further specialization.

Solution: Our system restricts method invocations of delegation chains to be

resolved at partial evaluation time. Otherwise, it reports an error2.

Side-e�ect in programs. The meta-interpreter de�nitions may have side-e�ecting

operations, with which simple partial evaluators may incorrectly translate pro-

grams. They include: (1) a method invocation at the base-level is represented

by a method invocation of a respective meta-object, which is treated as I/O

type side-e�ecting operations; (2) user de�ned meta-interpreters may assign

some values to variables at the meta-level in order to record some information;

(3) in many meta-circular interpreters, the assignment operation at the base-

level may be realized by the destructive assignment operations (e.g., set-cdr!)

into environment data structures.

Solution: For (1), we propose a partial evaluation mechanism called preaction

for preserving the characteristics of I/O operations (including method invoca-

tions of objects other than meta-interpreters). With this mechanism, the num-

ber and the order of operations in the interaction are preserved after partial

evaluation. As for (2), we simply prohibit assignments in meta-interpreters.

Finally, for (3), the meta-interpreters implement an assignment in base-level

2Errors are reported during the partial evaluation process. With an o�ine partial evaluator, such

errors can be captured by checking binding time of each delegation chain.
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* Generation of class and method templates from user-de�ned meta-

objects are explained in Chapter 4.

Figure 3.26: Compilation phases of ABCL/R3.

programs by message transmission to a meta-object, so that no explicit assign-

ments appear in the meta-interpreters.

3.2.2 Compilation Scheme

We have developed a compilation scheme of ABCL/R3 methods that are executed

by customized meta-interpreters. To implement the above solutions, we divide the

compilation into four phases (Figure 3.26) each of which performs the following:

(a) pre-processing: the meta-interpreter de�nitions (including both default and

user de�ned ones) are converted into a set of Scheme functions to be partially

evaluated;
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(b) partial evaluation: the converted functions are specialized with respect to each

base-level method, yielding a set of residual expressions;

(c) post-processing: the residual expressions are further converted into a Schematic

program by adding class/method interface (this process will be explained in

Chapter 4); and

(d) back-end compilation: the generated program is compiled into an executable

code by the Schematic compiler.

Details of each step are as follows.

N.B. As this chapter focuses on the meta-interpreters, the following descriptions

assume that no customized meta-object, except for customized meta-interpreters are

used.

3.2.2.1 Pre-Processing: Conversion from Meta-interpreters into Scheme

Functions

The pre-processing phase translates class and method de�nitions of meta-interpreters

into Scheme functions. This is not a complicated task because the meta-interpreters

are written in essentially functional style.

We represent a delegation chain as a pair of delegation object lists, where the �rst

list is used for dispatching and the second is for `self.' A delegation object in the lists

is a pair of a class name, and values of instance variables:

Chain = List(Dobj)� List(Dobj) (delegation chain)

Dobj = Class � List(Val) (delegation object)

where Class is a symbol and Val means a domain of any data. The functions that

manipulate delegation chains are de�ned as follows:

(make-empty-chain) � h[ ]; [ ]i

(extend-chain h ; ci n a) � hc0; c0i where c0 = hn; ai :: c

(self-of h ; ci) � hc; ci

(super-of hh :: t; ci) � ht; ci

(class-of hhn; i :: ; i) � n

(nth-arg-of hh ; ai :: ; i n) � n'th element of a
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where hx; yi constructs a pair of x and y, h :: t creates an list of t by putting h in

front of t. Both operations are actually implemented by cons. The variable ` ' in the

left hand side of each de�nition denotes `don't care' in pattern matching.

For each method of a delegation class, it generates a function with a unique name.

Below is the translation rule:

P [[(define-method n (m s a . . .) e . . .)]]

= (define (n**m t a . . .)

(let ((s (self-of t))

(super (super-of t))

(v0 (nth-arg-of t 0))

(v1 (nth-arg-of t 1))

� � �

)

e . . .))

where v0, v1, . . . are the instance variable names of class n.

For each method name m, it also generates a dispatching function. The function

takes a same number of arguments to the respective methods, and has conditional

branches each of which calls function n��m, when a method m is de�ned for class n,

and the class-of the �rst argument is n. If the class does not match to any branch,

it recursively calls the dispatcher by replacing the �rst argument with its super-of.

Figure 3.27 shows the translated and generated functions for the example program

in Figure 3.23.

Though it does not appear in the above example, other ABCL/R3 speci�c forms,

such as future, are translated into a form that invokes an unknown function.

3.2.2.2 Partially Evaluating Meta-Level Code

Next, the pre-processed meta-level program is specialized with respect to each base-

level method using a partial evaluator. We use an online partial evaluator for

Scheme[5], which properly operates on programs with I/O type side-e�ects using

our invented preactions mechanism.
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;; a function for method eval-var of class watch-eval

(define (watch-eval**eval-var t0 var env)

(let ((self (self-of t0))

(super (super-of t0)))

(if (memq var '(server2 job))

(notify *console* var))

(eval-var super var env)))

;; a dispatching function for eval-var

(define (eval-var self var env)

(cond ((empty-chain? self) (error 'eval-var "does not understand"))

((eq? (class-of self) 'watch-eval)

(watch-eval**eval-var self var env))

((eq? (class-of self) 'primary)

(primary**eval-var self var env))

(else (eval-var (super-of self) var env))))

Figure 3.27: Translated meta-interpreter functions.

PE : Exp ! (Sym! Sval) ! Sval

Sval = Const(Bval) + Pair(Sval � Sval)

+Lam(List(Sym); Exp;Env) + Top(Sym;List(Sval))

Bval = Num + Bool + � � �

Env = Sym ! Sval

Figure 3.28: Domains for partial evaluation
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(rules)

PE [[c]]� = const(c) c is constant

PE [[v]]� = if v 62 Dom(�) then top(var; [v]) else �(v) v is variable

PE [[(if e0 e1 e2)]]� = case r0 of

const(true) : PE [[e1]]�

const(false) : PE [[e2]]�

otherwise : top(if; [r0;PE [[e1]]�;PE [[e2]]�])

where r0 = PE [[e0]]�

PE [[(e0 . . . em)]]� = case hresidualize(r0; . . . ; rm); r0i of

htrue; i j hfalse; top( ; )i : top(apply; [r0; . . . ; rm])

hfalse; const(o)i : o(r1; r2; . . . ; rm)

hfalse; lam([x1; . . . ; xm]; e; �0)i : PE [[e]]�0[ri=xi] (i = 1 . . .m)

where ri = PE [[ei]]� (i = 0 . . .m)

PE [[(lambda (x1 . . . xm) e)]]�

= lam([x1; . . . ; xm]; e; �)

(initial environment)

�0 = [const(plus)=+; const(cons)=cons; const(car)=car; . . .]

(operators)

plus = �r0r1:case hr0; r1i of

hconst(n0); const(n1)i : const(n0 + n1)

otherwise : top(+; [r0; r1])

cons = �r0r1:pair(r0; r1)

car = �r:case r of

pair(r0; r1) : r0

otherwise : top(car; [r])

Figure 3.29: Simple partial evaluation rules.
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Handling Side-E�ects (1): Preactions for I/O type side-e�ects

The proposed compilation framework depends on a partial evaluation technique.

However, simple partial evaluators turn out to be insu�cient since they may not

correctly handle side-e�ects. Figure 3.28 and Figure 3.29 shows simpli�ed rules of

an online partial evaluator, which uses graph representation[107, 127]. Basically, a

partial evaluator PE takes an expression and an environment, and returns a graph

structure called symbolic value (Sval). The rules are similar to those of interpreters

of a language, except that PE returns a symbolic value, which represents a program

fragment. The �rst rule means that a constant symbolic value is returned for a con-

stant expression. The rule for a variable returns a `top' value containing the name

of the variable when the variable is free in the current environment, otherwise, it

returns a value associated for the variable in the environment. The rule for the if

form �rst evaluates the conditional expression e0. If the result is a constant value,

the corresponding sub-expression will be partially evaluated. Otherwise, it returns

a symbolic value top(if; [. . .]) representing a if-form that dynamically branches to

either of sub-expressions. The rule for an application form denotes that (1) it re-

turns either an application form when a termination detection algorithm residualize

(which is not speci�ed here) tells so, or the value of the operator is unknown; (2) it

applies the partially evaluated arguments to the prede�ned operator; or (3) it further

processes the body of the lambda closure. The rule for a lambda form merely creates

a symbolic value a lambda-closure with its formal parameter names, expression, and

environment. The initial environment has constant symbolic values for primitive op-

erators. The behavior of primitive operators, such as +, cons and car, are de�ned in

the bottom part of the �gure. They either returns a symbolic value that represents

a dynamic application of the primitive, or the result of the primitive application at

partial evaluation time, depending on whether the values of arguments have su�cient

information. For example, if two constant symbolic values are applied to the primi-

tive plus (+), a constant symbolic value contatining the result of addition is returned.

Otherwise, the symbolic value that repsents an addition is returned. Note that the

primitive car performs its operation whenever the parameter is known to be a pair

symbolic value, regardless the value of its car- and cdr-part.

One of the advantages of the graph representation is its capability to handle
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partially static data|a data structure that has both static and dynamic values. For

example, the following expression, which generates a cons cell whose car part is static

and cdr part is dynamic, is e�ectively partially evaluated:

PE [[((lambda (p) (cons (* (car p) 2) (* (cdr p) 2)))

(cons 3 x))]]�0

= pair(const(6); top(apply; [*; top(var; [x]); const(2)]))

= (cons 6 (* x 2))

(N.B. The bottom line is a Scheme expression, which is reconstructed

from the immediate result of partial evaluation.)

Such a capability is useful to handle environments in meta-interpreters.

Base-level concurrent object-oriented programs involve I/O operations such as

message passing, synchronization among objects, etc., that are di�erent from side-

e�ects caused by assignments. (Hereafter, we will refer to these side-e�ects as the

I/O type side-e�ects, as opposed to the side-e�ects by assignments.) It might seem

that such operations could be merely treated as function calls that are executed at

run-time (i.e., not subject to unfolding during partial evaluation) by simply extending

a partial evaluator for functional languages.

However, such a partial evaluator may move or duplicate operations during its

execution, and as a result, I/O operations may be eliminated or duplicated, or may

appear in a di�erent order to the original one in the residual program(Figure 3.30).

To solve this problem, we devise a mechanism called preaction, which properly

preserves the trace of I/O operations in symbolic values of online partial evaluators.

Preactions of a symbolic value can be regarded as a history of I/O operations that

should be performed before the use of the value. For example, the value of a form:

(begin (m obj) 123)

is 123, but the action (m obj) should be performed before the value is returned. In

our partial evaluator, such a value is represented as:

hhtop(apply; [top(var; [m]); top(var; [obj])])iiconst(123)

The partial evaluation rules extended with preactions is shown in Figure 3.31. An

extended symbolic value has a sequence of symbolic values as its preactions. When
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1. Disappearance:

PE [[(* 5 (begin (m obj) 2))]] = 10

2. Wrong ordering:

PE [[(let ((x (m1 obj1))) (begin (m2 obj2) x))]]

= (begin (m2 obj2) (m1 obj1))

3. Duplication

PE [[(let ((x (m obj))) (cons x x))]]

= (cons (m obj) (m obj))

Figure 3.30: Examples that I/O side-e�ects are not properly preserved.

a compound expression is partially evaluated, the preactions of the expression will

be the series of preactions in the partially evaluated result of its sub-expressions.

The rule for a constant expression returns a constant symbolic value with an empty

precation, because no operations should be performed for generating the constant

value. The rule for an if-expression shows a typical use of preactions. First, it

evaluates the conditional expression e0. The result A0r0 means that the value of

the expression itself is r0, and that operations in A0 are performed to obatin r0.

Therefore, when r0 is true and the result of partial evaluation of its �rst branch e1 is
A1r1, then the result of the entire if-expression should be A0::A1r1, meaning that the

value of the expression is r1, but operations in A0, and A1 should be performed to

obtain r1. The rule for an application form generates a symbolic value with a series

of preactions, which consist of (1) the preactions in the partially evaluated result

of sub-expressions (A0 :: � � � :: Am), (2) the preactions generated during the partial

evalaution of the body of a lambda closure (A0), and (3) the symbolic value of the

application form itself (r). When the application form is a side-e�ecting operation,

the operation itslef is registered in the preactions of the result of the form.

Some rules place the same operation in the body and preactions, which may
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PEp : Exp ! (Sym! Sval0) ! Sval0

Sval0 = List(Sval)� Sval

PEp[[c]]� = hhiiconst(c) c is constant

PEp[[(if e0 e1 e2)]]� = case r0 of
A0const(true) : A0::A1r1
A0const(false) : A0::A2r2

otherwise : A0top(if; [r0;A1r1;
A2r2])

where Airi = PEp[[ei]]�

PEp[[(e0 . . . em)]]�

= let Airi = PEp[[ei]]� (i = 0 . . .m);
A0

r = case hresidualize(r0; . . . ; rm); r0i of

htrue; i j hfalse; top( ; )i : hhiitop(apply; [r0; . . . ; rm])

hfalse; const(o)i : hhiio(r1; r2; . . . ; rm)

hfalse; lam([x1; . . .]; e; �
0)i : PEp[[e]]�

0[ri=xi]

(i = 1 . . .m)

in A0::���::Am::A0
::hhriir

PEp[[(lambda (x1 . . .xm) e)]]�

= hhiilam([x1; . . . ; xm]; e; �)

Ar is a symbolic value r with preactions A. A0 :: A1 concatenates preac-

tions A0 and A1.

Figure 3.31: Extended partial evaluation rules with preactions.
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cause duplication. Our partial evaluator uses a graph (DAG) structure to represent

symbolic values, in order to avoid duplication. When a certain value is used by

multiple expressions, it is shared in the graph structure during partial evaluation. At

the �nal phase of the partial evaluation, the shared nodes in the graph are converted

to let-forms so that the sharing could be expressed as references to the let-bound

variables in the let-body3.

As an example, consider the following expression is being partially evaluated:

(+ 5 (begin (m obj) 2))

Since m and obj are unknown,

PE [[(m obj)]]�0 = top(apply; [top(var; [m]); top(var; [obj])]) (� r0):

The rule for begin copies this value as a preaction:

PE [[(begin (m obj) 2)]]�0 =
hhr0iiconst(2):

The rule for application copies the preactions of sub-expressions, and also performs

computation by using the results of sub-expressions:

PE [[(+ 5 (begin (m obj) 2))]]�0 =
hhr0iiconst(7):

This result is further translated into the following expression:

(begin (m obj) 7)

which properly preserves the I/O operations in the original program.

Handling Side-E�ects (2): Instance Variable Assignments

As mentioned, partial evaluators have di�culty in handling assignments to vari-

ables and data structures. Although there are studies on partial evaluation that

address this problem[4, 5, 97], they still require heavy global analysis and program-

ming style specialized for partial evaluation.

Fortunately, the programming model of ABCL/R3 (and Schematic) assures that

assignment to instance variables can be performed at most once for each method

3This conversion is similar to a technique called lambda-lifting.
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execution, and that the modi�ed values are observed only by method invocations

that are processed after the assignment (i.e., even the method that executes the

assignment does not observe). As a result, a meta-interpreter can safely represents a

base-level assignment operation (become) as a message to the meta-object, which is

treated as an I/O type side-e�ecting operation by partial evaluators.

As is presented in Section 3.1.2.1, the default meta-interpreter of ABCL/R3 eval-

uates a become form via the following method:

(define primary-eval (do-become self body vars exps env)

(let ((values (map (lambda (e) (eval self e env)) exps))

(channel (lookup-meta env 'state-update-channel)))

(reply (generate-instance-variable-set vars values)

channel)

(eval self body env)))

The method �rst evaluates the expressions for the updated instance variables. It

then gets a channel to send a set of instance variables to the meta-object by evaluat-

ing lookup-meta. The updated instance variables are packed by evaluating function

generate-instance-variable-set, and are sent to the channel (reply). After that,

it evaluates the result expression of the become form (body). Obviously, the assign-

ment operation is replaced by the reply form, which generates only an I/O type

side-e�ect.

Alternative Approach Though the current version of ABCL/R3 handles assign-

ments by the above scheme, there could be another approach. Below, a technique

to handle base-level assignments by converting meta-interpreters into store-passing

style. This approach would be useful when the base-level language directly allows

assignment operations, such as set! in Scheme. (In fact, ABCL/f , on which the

previous version of ABCL/R3 is based, is such a language; thus the previous version

of our compiler uses the following technique.)

The alternative approach is to (1) design the meta-level to interpret base-level

assignment operations without using side-e�ects, and (2) reconstruct assignments

after the partial evaluation through post-processing.
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The meta-interpreter `shown' to the user for reective programming is in direct

style, in which the environment is represented as an association list. During pre-

processing, the de�nition is converted into store passing style in addition to CPS

(continuation passing style) conversion, so that an assignment operation at the base-

level is represented as copying of an environment list at the meta-level. The resulting

evaluator functions processed by the partial evaluator takes three arguments: an

expression, an environment, and a continuation, which is a function that takes two

arguments: a result and an updated environment. The store passing style is a stan-

dard technique to describe semantics of imperative language in functional framework.

Assume that standard assignment operations to instance variables (set!) are

allowed in base-level methods. Since store passing style represents an assignment

as a creation of a new `store' that holds the updated values, the original variable

might not be updated at all in the residual program. To resolve this, we insert

functions that explicitly update instance variables at the end of method execution,

and then reconstruct the actual assignment forms during post-processing. In the

compiled program, execution of assignment operations might be delayed until the end

of a method, but this is not a problem for ABCL/R3 since the order of assignment

operations within a method cannot be observed from other objects. For example,

suppose a class account has a method withdraw de�ned as follows:

;;; class de�nition

(define-class account () (current 0))

;;; method de�nition

(define-method account (withdraw amount)

;; if the request is too much,

(if (< current amount)

0 ; do nothing.

(begin ; otherwise, update the account.

(set! current (- current amount))

amount)))

When the compiler partially evaluates the default meta-interpreter eval with the

method withdraw, the expression shown in Figure 3.32 is passed on to the partial

evaluator by the pre-processor.
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(eval primary-evaluator

'(if (< current amount) ; expression

0

(begin (set! current (- current amount))

amount))

(list (cons 'current 0) (cons 'amount 1) ...) ; env.

(lambda (result env store) ; continuation

(let ((channel (store-ref store

(lookup-meta env 'state-update-channel))))

(reply (generate-instance-variable-set

'(current amount)

(lookup-variables '(current amount) env store))

channel))

result)

(list current amount ...)) ; store

(Note that variables current and amount are regarded as `unknown' by

the partial evaluator.)

Figure 3.32: Expression to be passed onto the partial evaluator.
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(if (< current amount)

(begin

(reply (vector current) state-update-channel)

0)

(begin

(reply (vector (- current amount)) state-update-channel)

amount))

This result is generated under the assumption that the function

generate-instance-variable-set eventually creates a vector contain-

ing the values of instance variables. Some redundancies, which will be

removed in the post-processing phase, are already removed here for the

clarity.

Figure 3.33: Residual code yielded by the partial evaluator.

The function eval interprets the assignment operation in the expression as copy-

ing of the environment value. At the end of the method, the continuation, which

generates and sends an updated set of instance variables to the meta-object, is in-

voked. The code yielded by the partial evaluator is shown in Figure 3.33.

3.2.2.3 Post-processing

Residual programs from the partial evaluator, like the one shown in Section 3.2.2.2,

is not itself runnable. Moreover, they may have redundancies that could be harmful

to the optimizations of the back-end compiler. Residual programs are converted and

optimized into Schematic programs in the post-processing phase, including:

Removing redundancies: Redundancies in the residual code, such as unnecessary

let-bindings, unused variable references, nested begin forms, etc., are removed.

The removal would not be necessary if the backend compiler were powerful

enough to optimize those redundancies.
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Reconstructing concurrency constructs: Some concurrency constructs, such as

future, have been translated into function calls and lambda closures. The post-

processing will recover those constructs by �nding converted function calls in

the residual program.

Adding a method interface: The residual code is converted into a method def-

inition of Schematic so that it has the same method interface as the original

one. As the method invocation is managed by meta-objects, this conversion is

presented in the next chapter.

3.2.3 Performance Evaluation

We executed benchmark programs to evaluate the performance of the proposed com-

pilation framework. The evaluation measures e�ciency of programs executed under

(default and customized) meta-interpreters. The rest part of a meta-object is as-

sumed to be default one, and executed without interpretation.

The benchmark programs were executed on the early version of ABCL/R3 system,

which is built on top of ABCL/f [121]. Therefore, the comparison is made between

ABCL/R3, ABCL/f (as a non-reective concurrent system), and Common Lisp (as

a non-reective sequential system).

3.2.3.1 Basic Performance: Interpretation Overhead

We have performed preliminary benchmarks using a ABCL/R3 compiler based on

our framework. The �rst benchmarks compare the sequential execution speed of the

the interpreter and our compiler to illustrate the e�ectiveness of `compiling away' the

unnecessary interpretation. Sequential benchmark programs (Boyer[30] and n-queens

problem) are written in ABCL/R3 without using parallel constructs, nor reective

operations (although side-e�ects are employed). The programs are executed in three

styles: (NR) compiled without the meta-level and directly executed, (INT) executed

by a CPS interpreter for ABCL/R3, and (PE) the meta-level is e�ectively `compiled

away' using our compiler. Programs are executed on a workstation (SUN Sparcstation

10: SuperSparc 50MHz, 128MB memory) with two Common Lisp compilers (Allegro
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Table 3.1: Performance comparison between compiled and interpreted executions.

benchmark elapsed time (sec.) improvement residual overheads

applications PE INT NR INT/PE INT/NR

Boyer 2.02 2349 2.06 1143 0.99

1.71 269 1.62 166 1.058

8-queens 0.050 390 0.043 9073 1.16

0.190 34.6 0.191 182 0.999

10-queens 1.14 9363 1.19 7901 0.965

4.19 1011 4.45 227 0.940

Top and bottom numbers in each row correspond to the execution on

Allegro Common Lisp and CMU Common Lisp, respectively.

Common Lisp 4.1 and CMU Common Lisp 17e) as the back-end compiler4.

From Table 3.1, we can observe that (1) the proposed compilation scheme exhibits

equivalent performance to traditional (i.e., non-reective) compilers, and (2) com-

pared to na�ive interpretation, our compilation scheme improves performance more

than 100-fold5.

4For this benchmark, we used Common Lisp compilers, instead of the ABCL/f compiler as

the back-end compiler for the following reason. The ABCL/f compiler used in the benchmarks

does not support function closures, which is necessary for execution of the interpreter in (INT).

In order to do a fair comparison, we judged that we should employ the same back-end compiler.

Fortunately the sequential part of ABCL/R3 is almost identical to Common Lisp; thus, we can easily

convert sequential ABCL/R3 program into Common Lisp programs by replacing message sends with

function calls, for example. Note that this was done for benchmark purposes only; since under

normal circumstances the partial evaluator unfolds possible function applications, the residual code,

compiled with the ABCL/f compiler, does not contain function closures.
5The interpreter used in this benchmark is not highly optimized. However, it is worth pointing

out that previous studies to optimize/minimize interpreters still result in a factor of 10 times slower

execution compared to the non-reective compilers even with limited `openness'[18, 76].

81



3.2.3.2 Overhead of Meta-Level Programming in Parallel Applications

The next benchmark is to measure the overhead caused by meta-level programming in

parallel applications. We compare the executions in three ways. (Original) The orig-

inal program without meta-level optimizations is directly compiled by the ABCL/f

compiler, and executed on Fujitsu AP1000, a massively parallel processors with 64

Sparc-based nodes and very fast torus network interconnection[110]. (Hand-craft)

The application is manually optimized (see below) and compiled by the ABCL/f

compiler. (Meta) The same optimizations are extracted and separately speci�ed as

a meta-level class library, and the original program at the base-level is not modi�ed

except for a few annotations; these programs are compiled together by our compiler,

and executed.

Target application programs are as follows:

Parallel Search: The �rst base-level application is a simple parallel search program

(n-queens problem). Each object is generated as a node in the search tree.

Optimizations in Hand-craft and Meta are: (1) Locality control|child nodes

(objects) at deep levels in the search tree are created at the same processor as

their parents' in order to reduce remote communication overhead (the default

is to randomly choose a processor). (2) Weighted termination detection[104]|

`weight' is propagated along the search tree in order to detect the end of a search

process as presented in Section 3.1.3.3. By default, the detection is achieved by

collecting acknowledgments in the search tree; therefore, intermediate search

nodes cannot be released until all its descendant nodes terminate. The meta-

level program and its compiled code in the Meta case are given in Appendix A.

N-Body Simulation The second base-level application is a parallel Barnes-Hut N-

body simulation algorithm. The optimization technique employed in a hand-

tuned ABCL/f code is to cache sub-space data, and exhibits comparable per-

formance to highly optimized algorithm presented[32]. In Hand-craft, method

calls that access subspaces in the base-level program are modi�ed to �rst look-

up the cache. In ABCL/R3, this optimization is separately described at the

meta-level; a customized meta-interpreter is de�ned that looks up the cache on

speci�c method calls.
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Figure 3.34: Comparison of overhead of meta-level programming.

The graph in Figure 3.34 shows the benchmark results of above two applications:

11-queens problem, and 2,000/10,000 particles N-body simulations. All programs are

executed on Fujitsu AP1000 (64 nodes, each has a 25MHz Sparc processor and 16MB

memory). From the graph, we can observe that the Meta execution (1) signi�cantly

improves the performance of the Original program, and (2) has only small overhead

compared to the Hand-craft one, while encapsulating the optimizations into the meta-

level. (In the n-queens problem, the overhead was approximately 17%. In the N-body

simulation, the overhead in both cases was approximately 7%.) Consequently, we

have achieved high e�ciency as well as good programmability and re-usability at the

same time.

The source of the overhead is mainly that (1) the partial evaluator converts a loop

in the base-level program into recursive functions, which is less e�cient in ABCL/f ,

(2) management of `weights' for termination detection is implemented as separate

methods, while they are inlined into the search function in the Hand-craft case, (3)

unnecessary assignments of instance variables are performed because of the tech-
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nique described in Section 3.2.2.2. The overhead could be reduced by doing further

optimizations such as eager inlining as in Self[12{14], and static ow analysis.

To investigate the baseline e�ciency of above programs, we also executed bench-

mark programs written in C with a message-passing library, against those written in

ABCL/f and ABCL/R3 on the AP1000. The left bars in Figure 3.35 indicate elapsed

times for the execution of 11-queens problem (Original) written in C and ABCL/f .

The right bars are optimized ones in C, ABCL/f , and ABCL/R3. Only the locality

control technique is employed here; it is achieved by modifying the base-level applica-

tion (C and ABCL/f ), or customizing the meta-level (ABCL/R3). We observe that

(1) ABCL/f is only 1.5{1.6 times slower than C, and (2) the optimization e�ectively

improves performance about by 3-fold both in ABCL/f and C.

3.3 Summary

This chapter proposed a highly extensible meta-interpreter design for ABCL/R3,

and proposed a compilation framework where ABCL/R3 programs, de�ne under cus-

tomized meta-interpreters, are translated into e�cient code using partial evaluation.

They allow the ABCL/R3 users to straightforwardly describe language extensions,

which can be used with very low run-time overheads.
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The meta-interpreters are designed so as to maximize the extensibility for the

syntax and semantics of the base-level languages in an inexpensive manner assuming

the compilation technique using partial evaluation. In addition, customization of

meta-interpreters can be easily re-used by using standard object-oriented techniques

such as delegation in the same way as sequential reective object-oriented languages

(e.g., CLOS) allow. Reective annotations allow the programmers to write directives

to the meta-level programs as comments to a base-level program. The interpretation

of annotations can also be customized by modifying the meta-interpreters.

This chapter also presented descriptions of several common concurrent program-

ming strategies. Those include object replication, latency hiding, termination de-

tection, and customized scheduling, and are straightforwardly realized as language

constructs by using customized meta-interpreters. Those strategies can be incorpo-

rated into existing base-level programs without modifying their structures.

The latter half of the chapter presented a compilation framework based on par-

tial evaluation that almost completely `compiles away' the overhead of meta-level

interpretation. The techniques that make partial evaluation possible include (1) pre-

processing that converts object-oriented interpreter de�nitions to Scheme functions,

(2) a new partial evaluation technique called preactions that preserves trace of I/O

type side-e�ects, and (3) avoiding assignment-type side-e�ects in meta-interpreters

by prohibiting to have writer methods, which results in a simpler compilation frame-

work.

Benchmarks indicated that (1) meta-interpreters that are partially evaluated with

respect to sequential programs in our framework exhibit equivalent performance to

the programs compiled by non-reective compilers, (2) the partially evaluated meta-

interpreters are faster than the merely compiled ones by orders of magnitude, (3)

execution of customized meta-interpreters that have optimization algorithms for con-

current applications pose only 10{30% overheads, compared to the programs that had

been hand-tuned by embedding the optimizations, and compiled by a non-reective

compiler.
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Chapter 4

Design and Implementation of

Meta-objects

A meta-object, in the dissertation, is a meta-level object that de�nes behavior of

the respective base-level object except for interpretation of expressions in base-level

methods,1 which is de�ned by a meta-interpreter. More speci�cally, a meta-object

contains the class, list of methods, and list of instance variable names of the base-level

object, and de�nes how to �nd an appropriate method, mutually exclude multiple

invocation requests, and update instance variables.

Similar to meta-interpreters, meta-objects provide a mechanism to customize be-

havior of base-level objects by means of interpretive execution, which imposes run-

time overheads. As is presented in the previous chapter, partial evaluation of meta-

programs with respect to base-level programs is a promising technique to eliminate

the overheads.

Unfortunately, na�ive application of partial evaluators to meta-object de�nitions

does not yield e�ective result. Although a number of studies on partial evaluation of

interpreters have been made[29, 51], meta-objects, as a target of partial evaluation,

exhibit di�culties that do not appear in partial evaluation of interpreters.

This is because (1) the design of meta-objects in existing reective languages is

not suitable for partial evaluation, and (2) there are few partial evaluators that can

1In a broad sense, a meta-object refers to any object at the meta-level. In the dissertation,

however, we distinguish between meta-objects in a narrow sense and meta-level objects.
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deal with concurrent objects. We therefore redesigned meta-objects with considera-

tion to the application of partial evaluation, and here we will show an optimization

framework for the resulting meta-objects.

This chapter is organized as follows: The �rst section discusses meta-object de-

sign; it describes why partial evaluation of meta-objects is di�cult is described by

reviewing an existing meta-object design, and then presents our proposed meta-object

design. The second section discusses implementation; the optimization framework of

meta-object by using partial evaluation, and our performance evaluation of optimized

meta-objects are presented.

4.1 Design Issues

4.1.1 Problems of Existing Meta-object Design

Many concurrent object-oriented languages have mutual exclusion mechanisms to as-

sure consistency. A conservative, commonly found, approach is to mutually exclude

all method executions on an object. This approach alleviates the programmers' con-

cern about interference with multiple read/write operations on an instance variable.

The mutual exclusion mechanism in a language drastically a�ects the meta-object

design. This is because (1) the meta-objects explicitly implement the mechanism of

base-level objects, and (2) the meta-objects, themselves, are implicitly controlled by

a certain mutual exclusion mechanism, which is usually the same one as base-level

objects.

In order to meet the above requirements, a meta-object is de�ned as a state

transition machine in previous reective languages. For example, Figure 4.1 and

Figure 4.2 are a simpli�ed de�nition2 of the default meta-object in the language

ABCL/R[125]. Its state transition diagram can be illustrated as in Figure 4.3.

A method invocation on a base-level object is represented by an invocation of

the method receive!3 on its meta-object. In receive!, the message (an object

that contains the method name and arguments) is immediately put into the message

2The syntax of the de�nition is that of in Schematic's[122] for the sake of uniformity.
3The exclamation mark in the method name conventionally indicates that the method may change

the object's state.
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;;; Class de�nition

(define-class metaobj ()

mode queue state methods evaluator) ; instance variables

;;; Method de�nition for class metaobj

(define-method! metaobj (receive! self message)

;; Here, self is bound to the meta-object itself.

(put! queue message)

(if (eq? mode 'dormant) ; If it is dormant, the received

(begin (set! mode 'active) ; message is accepted immediately.

(future (accept! self)))))

;;; method dispatch

(define-method! metaobj (accept! self)

(let* ((mes (get! queue)) ; Get a message from the queue.

(m (find methods mes)) ; method lookup

;; creation of an evaluation env.

(env (make-env self (formals m) mes)))

(future (eval evaluator (exps m) env self)))); evaluation

Figure 4.1: De�nition of an ABCL/R meta-object.
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;;; end of method execution

(define-method! metaobj (finish! self)

(if (empty? queue) ; Check the queue for pending messages.

(set! mode 'dormant) ; If none, turn into the dormant mode.

(future (accept! self)))) ; Otherwise, accept one of them.

;;; meta-interpreter

(define-method! metaobj (eval self exp env owner)

;; It evaluates exp under env. When �nished, it invokes finish! of owner.

(cond ((constant? exp) (finish! owner exp))

((variable? exp) (lookup env exp owner))

...))

Figure 4.2: De�nition of an ABCL/R meta-object. (contiuned)

state state
message

condition, action

activedormant
true, accept

true, queue

|queue|=0, none
|queue|>0, accept

receive!

finish!

receive!

finish!

Figure 4.3: State transition diagram of an ABCL/R meta-object.
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queue (queue), so that it will eventually be processed. If the object is not processing

any methods (i.e., mode is 'dormant), the meta-object changes mode to 'active and

calls the method accept!.

The method accept! gets one message from queue and lets the evaluator execute

the matching method for the message. The evaluator interprets expressions of the

method recursively, and when it reaches the end of the base-level method, it invokes

the method finish! of the meta-object. The method finish! examines queue for

any pending messages received during the evaluation. If queue is empty, the meta-

object changes mode to 'dormant. Otherwise, it invokes accept! again for further

execution.

When we apply partial evaluation to this meta-object de�nition with respect to

a certain base-level object, the result is far from satisfactory. The reasons are the

following:

� Since the meta-object is de�ned as a state transition machine, its behavior

cannot be determined without static information on some key instance vari-

ables such as mode and queue. In the methods of the meta-object, several

conditional expressions by which the control ow branches depend on those

variables. A branch with a `dynamic' condition makes partial evaluation di�-

cult. For example, if the return value of (get! queue) in the method accept!

were \unknown" (dynamic) at the specialization time, method dispatch ((find

methods m)) and interpretation of the method body ((eval evaluator exp

env self)) would be left unspecialized. This means that a large amount of

interpretive computation cannot be eliminated by merely applying partial eval-

uation.

Although modern partial evaluators, such as the ones using the continuation-

passing style (CPS), can handle programs with dynamic branches, they dupli-

cate the continuation (i.e., rest of the computation) for both branches in the

conditional expression. This means that the code size will explode if the num-

ber of dynamic branches in a meta-object increases. In fact, it does in practical

reective languages; the full meta-object in ABCL/R has the waiting state in

addition to dormant and active ; and the meta-object in AL-1/D has 6 states

(dormant, ready, run, waiting, migrating, and stop)[94].
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� Information that should be \known" (static) to the partial evaluator is trans-

ferred via instance variables between consecutive method invocations. Such

information is not available on the receiver's side unless data structures are an-

alyzed extensively. For example, the value of (get! queue) in accept!, which

would be the value of message in receive!, is crucial for specialization, but

obtaining it requires analysis of queue. This requirement sometimes become

overwhelming because queue might be a user-de�ned object.

� The key instance variables are mutable; i.e., their values are changed during

execution. The execution model of the meta-objects|ABCM/1[130, chapter

2] in this case|however, speci�es that method invocations will be processed in

FIFO order in each object. We thus have to anticipate that the execution of two

consecutive methods may be interleaved. Conservatively, we have to assume

that values of mutable instance variables become unknown after method invo-

cations. For example, assume that the method receive! invokes the method

accept!. The variable queue at the beginning of accept! may have a value dif-

ferent from the one in receive! because other methods can be executed before

the execution of accept!. Though there are partial evaluators that can deal

with mutable variables, they regard a mutable variable as unknown (dynamic)

unless they can statically determine all update operations to the variable[4, 5].

The last two problems could be solved by the partial evaluation technique called `the

trick'[51, Section 4.8.3], which specializes the program by manually giving a set of

possible return values of (get! queue) beforehand. However, it would be better if

we could solve the problem without using such an awkward and ad-hoc technique.

For the above reasons, a partial evaluator conservatively regards most variables

as `dynamic.' Without much of `static' information, the partial evaluator yields

a program that still performs almost all the computation as the program for the

original meta-object does.

4.1.2 A New Meta-object Design

We propose, for a reective concurrent object-oriented language ABCL/R3, a meta-

object design that can be e�ectively optimized by partial evaluation. The key idea is
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;;; Class de�nition

(define-class metaobj ()

lock state-variables state-values methods evaluator)

;;; Reception of a message

(define-method metaobj (receive self message)

(if (writer? (selector message)) ; check message type

(accept-W self message) ; for a writer method

(accept self message 'dummy))) ; for a reader method

;;; Processing for a writer method

(define-method metaobj (accept-W self message)

(let ((c (make-channel))) ; channel for receiving

; updated state

(acquire! lock) ; mutual exclusion begins

(let ((result (accept self messages c)))

(cell-set! state-values (touch c)) ; update instance variables

(release! lock) ; end of mutual exclusion

result)))

Figure 4.4: Our new meta-object design.

to separate state-related operations from the other operations using the reader and

writer methods of Schematic, which is explained in Section 1.1.3.

4.1.2.1 Overview

The outline of a new meta-object design solving the problems discussed in Sec-

tion 4.1.1 is shown in Figure 4.4 and Figure 4.5, in which we exploit the reader/writer

methods of Schematic. Our design has the following characteristics:

� The behavior of the meta-object is principally de�ned in the reader meth-

ods. Operations that deal with mutable data are de�ned separately as writer

methods or as method invocations on external objects. For example, values
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;;; Method lookup and invocation

(define-method metaobj (accept self message update-channel)

(let* ((m (find methods message)) ; method lookup

(env (make-env self (formals m) message)))

(future (eval-entry evaluator (method-body m) env update-channel))))

;;; Creation of an evaluation environment

(define-method metaobj (make-env self formals message)

(extend-env

(make-env-from-alist

(make-alist state-variables (cell-ref state-values)))

(make-alist formals (message-parameters message))))

Figure 4.5: Our new meta-object design. (continued)

of instance variables that are mutable are packed in the mutable vector object

state-values, and accesses to state-values are e�ected by using the writer

methods cell-set! and cell-ref.

� The meta-object straightforwardly processes each method invocation request

and provides mutual exclusion by using blocking operations (e.g., acquire!

and release!). As a result, the meta-object is no longer a state-transition

machine. The reader methods, which can be invoked without mutual exclusion,

make it possible to de�ne such a meta-object. If the meta-objects were de�ned

with only writer methods, use of the blocking operations would easily lead to

deadlock.

� For mutual exclusion, a meta-object has the instance variable lock in place of

mode and queue. By default, lock is a simple semaphore that has the oper-

ations acquire! and release!. The user can replace lock with an arbitrary

object, such as a FIFO queue and a priority queue, by means of the meta-level

programming.
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These characteristics solve the application problems of partial evaluation that were

discussed in Section 4.1.1. (1) Under the execution model of Schematic[122], it is safe

to assume that consecutive invocations of reader methods are not interrupted by other

activities; we therefore can use most of partial evaluation techniques for sequential

languages by regarding the reader methods as functions. (2) Since the \known"

(static) information is propagated through the arguments of the method invocations,

the partial evaluators easily use such information for specialization. (3) The mutual

exclusion mechanism, which is implemented by the blocking operations, gets rid of

the dynamic branches (conditionals with dynamic predicates) that would cause a

termination-detection problem during specialization.

4.1.2.2 Protocols

Instance Variables.

lock: The variable lock is for mutual exclusion of writer methods. By default, this

has a simple `mutex' variable with acquire! and release! operations. By

customizing this variable, various scheduling policies such as FIFO scheduling

and priority scheduling can be realized. Since it represents the dynamic state of

the base-level object, it is treated as a dynamic value during partial evaluation.

state-variables: The variable state-variables has the names of the base-level

instance variables as a list. Since the names of instance variables are �xed (as

stated before, our compilation technique assumes that the base-level and meta-

level programs are statically given), this variable becomes a static value during

partial evaluation.

state-values: The variable state-values has a mutable cell that contains a vector

of values of the base-level instance variables. As this value represents the state

of the base-level object, it is also dynamic for the partial evaluator.

methods: The variable methods has a set of base-level methods. The function (find

methods message) searches a method speci�ed in the message. This variable

is static.
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evaluator: The variable evaluator is a meta-interpreter object, which is discussed

in the previous chapter. The meta-object evaluates base-level methods by in-

voking method eval and eval-entry of evaluator.

Methods. How the methods in Figure 4.4 and Figure 4.5 handle messages sent to

the base-level object is explained as follows:

(receive self message): When a method of a base-level object is invoked, the

method receive of the respective meta-object is actually invoked. The param-

eter message contains the necessary for the method invocation, including the

selector name (i.e., the name of the method), the parameters to the method,

and the `reply-box' of the invocation (i.e., where the return value of the method

is sent to). The method receive simply proceeds to invoke methods accept-W

or accept, depending on the type of the base-level method that is to be invoked.

(accept-W self message): The method accept-W wraps the method accept in

the code for mutual exclusion and update of base-level instance variables. It

�rst creates a channel c by calling a primitive make-channel, then evaluates

(acquire! lock), and then calls the method accept of the same object with

c.

In accept, a base-level method is selected and executed, as described below.

Eventually, a vector of updated instance variables is sent to c, in response to

the evaluation of become form in the base-level method. The evaluation of

the form (touch c) extracts the vector from c; and the vector is assigned to

state-values by evaluating the cell-set! form.

Finally, it evaluates (release! lock), and returns the result of the base-level

method.

Since the method accept-W itself does not modify its state, it is de�ned as

a reader method. The mutual exclusion of (base-level) writer methods are

achieved by performing acquire! and release! methods to an object lock.

The instance variables of base-level object is recorded in an object state-values,

and updated by evaluating cell-set!.
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(accept self message update-channel): The method accept de�nes the method

invocation process that is common to reader and writer methods.

It �rst looks up a method for a given message by evaluating (find method

message), and then creates an evaluation environment by evaluating (make-env

. . . ). The body of the selected base-level method (method-body m) is then

evaluated under the created environment by the method eval of evaluator.

(make-env self formals message): The method make-env is auxiliary to accept,

and creates an evaluation environment for the given formal parameters and

actual parameters in the message. More formally, the created environment

maps from the m'th element in formals to the m'th element in the actual

parameter list in message, and from the n'th element in state-variables to

the n'th element in the value of (cell-ref state-values).

Note that the values of base-level instance variables are extracted before the

execution of the body of the method, and the same values are used through-

out the method execution. In other words, it will not observe the result of

cell-set! once the environment is created. This conforms to the execution

model of Schematic's reader/writer methods, explained in Section 1.1.3.

(eval-entry evaluator exps env update-channel): The method eval-entry and

other auxiliary methods are the methods of the meta-interpreter object evaluator.

As explained in the previous chapter, they form a meta-circular interpreter that

evaluates the expressions exps under the environment env.

The last parameter last-channel is for sending information on the instance

variables by the become form in exps. For example, a base-level object has

two instance variables x and y, and whose values are 0 and 1, respectively.

When a base-level expression (become e :x 123) is being evaluated, the eval-

uator creates a vector containing 123 and 1, and then sends the vector to

update-channel. The vector, as explained in the protocol of accept-W, will

eventually be stored in state-values of the meta-object.

Compared to the meta-objects in ABCL/R, the proposed meta-objects have not only

di�erent programming style, but also give an extended semantics to the base-level
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objects. In other words, the proposed meta-objects are not only de�ned by using the

reader/writer methods, but also they de�ne the semantics of reader/writer methods

in base-level objects.

4.2 Implementation Issues

4.2.1 Optimization Using Partial Evaluation

In our proposed meta-objects, most operations are de�ned in the reader methods,

and a few invocations on external objects are used for mutual exclusion and state

modi�cation. As we stated earlier, the meta-objects can, from the viewpoint of

partial evaluation, be regarded as functional programs with I/O-type side-e�ects. In

this section we describe an optimization framework for our meta-objects by using

partial evaluation.

The biggest problem we face in using partial evaluation is that there are no

partial evaluators appropriate for our purpose because the meta-object is written

in a concurrent object-oriented language. Although there are studies on partial

evaluators for concurrent languages[31, 39, 73], they focus on concurrency and pay

little attention to the support of features crucial to sequential languages, such as

function closures and data structures.

Our solution is to translate meta-objects into a sequential program and use a

partial evaluator for a sequential language. Partial evaluation is applied for each

base-level method invocation; i.e., the specialization point is a base-level method

invocation. Since the methods of meta-objects exhibit almost sequential behavior, the

partial evaluator for a sequential language can e�ectively optimize the meta-objects.

Concurrency in the meta-objects will be residualized as applications to primitives.

Another problem is compatibility with other objects. The optimized object should

support meta-level operations that are de�ned in the original meta-object. At the

same time, the object should behave like a base-level object so that it can be used with

other base-level objects. To satisfy these two requirements, our framework generates

an object that combines the base- and meta-level objects in a single level. The object

has the same methods that are in the original base-level object, and the body of each

method is a specialized code of the meta-object.
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Figure 4.6: Overview of our optimization framework.

Figure 4.6 shows the overview of our optimization framework, in which there are

three steps: (1) translation from ABCL/R3 to Scheme, (2) partial evaluation, and (3)

translation from Scheme to Schematic. In the following subsections we explain each

step in detail by using an example base-level program (Figure 4.7) and the default

meta-object metaobj (Figure 4.4 and Figure 4.5).

4.2.1.1 Preprocessing

Meta-object de�nitions are translated into a Scheme program so that they can be

processed by a Scheme partial evaluator (Figure 4.6(a)). A meta-level object is con-

verted into a record4 whose �elds are its class name and values of instance variables.

A reader method is converted into a dispatching function and a class-speci�c func-

tion. The former examines the class-name �eld in the receiver and calls a matching

class-speci�c function. For example, the class metaobject is converted as follows:

� For each class, a record declaration and a constructor function are created. In

the following example, we assume that the define-record declares a record

type, and make-metaobject is a constructor of the record object.

;;; record declaration for class metaobject

4Since our partial evaluator does not natively support records, we further translate the record

into cons-cells.
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;;; 2d-point

(define-class point () x y)

;;; returns the distance from the origin|a reader method

(define-method point (distance self)

(sqrt (+ (square x) (square y))))

;;; moves a point|a writer method

(define-method! point (move! self dx dy)

(become #t :x (+ x dx) :y (+ y dy)))

Figure 4.7: Example base-level program.

(define-record metaobject (lock state-variables ...))

;;; constructor function for class metaobject

(define (metaobject lock state-variables ...)

(make-metaobject lock state-variables ...))

� For each method of a class, a class-speci�c function is created. It �rst extracts

the instance variables, and then performs the body of the method.

;;; class speci�c function for method receive of class metaobject

(define (metaobject*receive self message)

(let ((lock (metaobject-lock self)) ; extracts instance variables

(state-variables (metaobject-state-variables self))

...)

(if (writer? (selector message)) ; body of the method

...)))

;;; class speci�c function for method accept-W of class metaobject

(define (metaobject*accept-W self message)

...)
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� For each method name, a dispatcher function is created. It simply examines

the record type of the �rst argument, and calls an appropriate function to the

;;; dispatching function for method receive

(define (receive self message)

(cond ((metaobject? self)

(metaobject*receive self message))

((user-defined-meta? self)

(user-defined-meta*receive self message))

...))

Invocations of writer methods that are de�ned at the meta-level should not be

performed during the partial evaluation because they will modify the state of objects.

Therefore, the writer methods are not passed to the partial evaluators but are instead

simply copied into the resulting Schematic program (Figure 4.6(b)).

No translations are needed for the base-level de�nitions, since they are used as

data for the meta-level program. Functions, however, are simply copied to the re-

sulting Schematic program (Figure 4.6(c)).

4.2.1.2 Partial Evaluation

We partially evaluate the meta-level program for each base-level method invocation.

For example, given the base-level program like that in Figure 4.7, the meta-level

computation that will be processed is the one corresponding to the following base-

level method invocation:

(move! p dx dy)

where p = pointfx = x; y = yg:

The variables written in italic font (e.g., dx; dy; x; and y) are dynamic data. The

data denoted by the variable p is partially static; it is known as an object of class

point, but values of instance variables x and y are dynamic (unknown).

The corresponding meta-level computation is the following expression:

(receive mobj message)
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(define (specalization-point-move!-point state-values lock dx dy)

(let ((mobj (metaobject 'point '((distance (self) ...) ...)

'(x y) state-values lock

(make-evaluator)))

(message (message 'move! (list dx dy))))

(*this-is-self* mobj)

(receive mobj message)))

(The form (*this-is-self* mobj) is inserted to detect the identity of

`self' from the result of partial evaluation. This will be explained in the

postprocessing step.)

Figure 4.8: Specialization point function for method move! of class point.

where

mobj = metaobjfclass = 'point;

methods = '((distance (self) ...) ...),

state-vars = '(x y); state-values = s; lock = l;

evaluator = (make-evaluator)g;

message = messagefselector = 'move!; arguments = (list dx dy)g:

To partially evaluate a meta-level computation like the above one, we generate a

specialization point function for each base-level method (Figure 4.6(d)). The function

takes as its arguments a vector of instance variables, lock, and parameters for the

method. When called, it creates mobj and message , and it invokes the method

receive on mobj (Figure 4.8). The function is specialized under the assumption

that all the arguments are dynamic.

An online partial evaluator for Scheme[5] (Figure 4.6(e)) specializes not only the

methods of metaobj, but also those of evaluator5. The compilation techniques of

the meta-interpreter are described in Chapter 3.

5For convenience in executing the benchmark programs, instead of using a real meta-interpter

we used a fake evaluator that directly executes the body of methods. This will be discussed in

Section 4.2.2.
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4.2.1.3 Postprocessing

The �nal step is to translate the results of partial evaluation (in Scheme) back into

concurrent objects (in Schematic). Since our system performs partial evaluation in

Scheme, the resulted program is also in Scheme. For example, our partial evaluator

generates the following lambda expression from Figure 4.8:

(lambda (state-values lock dx dy)

(let ((mobj (list 'metaobject 'point ...)))

(*this-is-self* mobj)

(acquire! lock)

(let* ((state-update-channel0 (make-channel))

(values0 (cell-ref state-values))

(x0 (vector-ref values0 0))

(y0 (vector-ref values0 1))

(g0 (vector (+ x0 dx) (+ y0 dy))))

(reply g0 state-update-channel0)

(let ((new-state0 (touch state-update-channel0)))

(cell-set! state-values new-state0)

(release! lock)

#t))))

Using this code, the purpose of the �nal step is to generate class declarations, con-

structor functions, and methods as shown in Figure 4.9 and Figure 4.10.

� For each combination of base- and meta-level classes, a specialized class is

de�ned (Figure 4.6(f)). Since the class is a specialized version of the meta-level

class, it has the same instance variables as the original meta-object. (E.g., the

class metaobject**point in Figure 4.9.)

� A function that mimics the base-level constructor is de�ned for each specialized

class (Figure 4.6(g)). For example, the function point in Figure 4.9 is a base-

level constructor that creates an object belonging to class metaobject**point

with proper initial values.
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� Methods of the specialized classes are de�ned (Figure 4.6(h)). The name of

each method is the same as that of the original base-level method. (The method

distance and move! of class metaobject**point in Figure 4.9 and Figure 4.10

are examples.) The specialized object therefore has the same interface as the

original base-level program. The body of the method is the result of partial

evaluation. Note that because the generated methods are specialized versions

of receive of the meta-object, they should be de�ned as reader methods re-

gardless of the type of the corresponding base-level method.

� There is a problem around the identity of `self,' which is solved by a marker

function. Since a meta-object translated into cons-cells at the preprocessing, we

may lose the identity of the object after partial evaluation. If the reference to

the `self' is returned as a result, assigned to a variable, or passed to other object,

the residual program returns, assigns, or passes a reference to the cons-cells,

which are invalid after the partial evaluation.

To avoid this, we insert a form that applys the cons-cells for the `self' to a

marker function *this-is-self* as is shown in Figure 4.8. After partial eval-

uation, the postprocess scans the residual program to detect the value applied

to the marker function. The identity of self is recoverd by merely replacing

the value with variable self. Since our partial evaluator is using the graph

representation[5, 107, 127], the application form and the cons-cells are correctly

preserved during the partial evaluation.

When a meta-object is specialized with respect to a reader method, the opti-

mized method has the essentially same de�nition as the original base-level method,

except for the indirect accesses to the instance variables (cf. the method distance

in Figure 4.9). When it is specialized with respect to a writer method, on the other

hand, the optimized method evidently contains extra operations. Although most of

the operations in the optimized method are the same as the operations performed

in a writer method in Schematic, others are amenable to further optimization. For

example, the newly created vector of instance variables g0 is handed over by means

of reply and touch operations in the same thread because our current partial eval-

uator regards those operations as mere \unknown" functions. An optimized method
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;;; a combined class of metaobject w.r.t. point

(define-class metaobject**point ()

class methods state-vars state-values lock evaluator)

;;; constructor

(define (point x y)

(metaobject**point

(quote *metaobject*) (quote *methods*) (quote (x y))

(make-cell (vector x y)) (make-lock) (quote *evaluator*)))

;;; reader method

(define-method metaobject**point (distance self)

(begin (let* ((values0 (cell-ref state-values))

(x0 (vector-ref values0 0))

(y0 (vector-ref values0 1))

(g0 (square x0))

(g1 (square y0)))

(sqrt (+ g0 g1)))))

Figure 4.9: Result of optimization (the underlined expressions come from the base-

level method).
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;;; writer method

(define-method metaobject**point (move! self dx dy)

(begin (acquire! lock)

(let* ((state-update-channel0 (make-channel))

(values0 (cell-ref state-values))

(x0 (vector-ref values0 0))

(y0 (vector-ref values0 1))

(g0 (vector (+ x0 dx) (+ y0 dy))))

(reply g0 state-update-channel0)

(let ((new-state0 (touch state-update-channel0)))

(cell-set! state-values new-state0)

(release! lock)

#t))))

Figure 4.10: Result of optimization (continued)

less extra operations could be produced by using partial evaluators for concurrent

languages or by applying static analysis for concurrent programs[44, 58, 59] to the

resulting code.

4.2.2 Performance Evaluation

To evaluate the e�ciency of our partially evaluated meta-objects, we executed bench-

mark programs in the following three ways:

PE(partially evaluated): The default meta-object was partially evaluated with re-

spect to each benchmark program, and the generated code was further compiled

by Schematic. This showed the performance of our optimization framework.

INT(interpreted): The default meta-object was directly compiled by Schematic, and

then the compiled code interpreted the benchmark programs. This showed the

performance of na�ively implemented meta-objects.

105



NR(nonreective): The benchmark programs were directly compiled by Schematic6.

This showed the performance of nonreective languages.

All programs were executed on Sun UltraEnterprise 4000 that had 1.2GB memory,

14 UltraSparc processors,7 each operating at 167MHz, and was running SunOS 5.5.1.

The di�erences between the PE and INT performances show the amount of speedup

gained by partial evaluation, while the di�erences between the PE and NR perfor-

mance show the residual overheads|the overheads that the partial evaluator fails to

eliminate.

The overheads solely caused by the meta-objects, were evaluated by executing

the body expressions in PE and INT without meta-interpreters. For example, when a

base-level program has an expression \(distance p)," then a meta-object looks up

distance in its method table and extracts instance variables from p. However, the

method body \(sqrt (+ (square x) (square y)))" should be executed directly.

To do this, we generate a fake evaluator for each base-level class (Figure 4.11).

Without fake evaluators, interpretive execution of method bodies would make an

overwhelmingly large contribution to the execution time in INT. The fake evaluators

are also useful for skipping over the partial evaluation of meta-interpreters whenever

a base-level object uses only the default meta-interpreter.

4.2.2.1 Base-level Applications

The following three kinds of programs were executed as the base-level applications:

Null Readers and Null Writers: Elapsed time for 1,000,000 method invocations was

measured by repeatedly calling a null method on an object. We tested ob-

jects with di�erent numbers of instance variables (i) and tested methods with

di�erent numbers of arguments (j). The average time over some parameter

combinations (i 2 f0; 5; 10g; j 2 f1; 5; 10g) are shown as a representative result.

6Our Schematic compiler has some overheads for concurrent execution; a sequential program

(Richards) compiled by a sequential Scheme compiler (DEC Scheme-to-C) was faster than the one

compiled by Schematic by a factor of 5.4.
7Though we used a multi-processor machine, the programs are executed on a single processor

execution.
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;;; Class de�nition

(define-class evaluator**point ())

;;; The method called by the meta-object.

(define-method evaluator**point (eval-begin self method-name exp env)

(cond ((eq? method-name 'distance) ; for method distance

(let ((x (lookup 'x env)) (y (lookup 'y env)))

(sqrt (+ (square x) (square y)))))

((eq? method-name 'move!) ; for method move!

(let ((x (lookup 'x env)) (y (lookup 'y env))

(dx (lookup 'dx env)) (dy (lookup 'dy env)))

(let ((new-values (vector (+ x dx) (+ y dy))))

(update self new-values))))))

Each clause of the cond form in eval-begin corresponds to the method of the

base-level class point. A clause is selected by the argument method-name. The

body part of a clause has the code for extracting the base-level arguments and

instance variables and for the method body. A become form in the original

program is converted into an invocation of the update method of the meta-

object, which takes a vector of the updated instance variables as an argument.

Figure 4.11: \Fake" evaluator for point.
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Become: Elapsed time for 1,000,000 invocations of writer methods which update

instance variables was measured by repeatedly calling a method that imme-

diately performs become. We tested objects with di�erent numbers of up-

dated variables (k), and the average time over the parameter combinations

i = 10; j = 1; k 2 f1; 5; 10g is shown as the representative result8.

Richards: The Richards benchmark is an operating system simulation that is used as

a nontrivial program in evaluating several object-oriented languages[14].

RNA: RNA is a parallel search program for predicting RNA secondary structures[91,

119]. This program uses an object to share information on the best answers

that have been discovered among concurrently running threads. Each thread

in the system constantly checks the object, and terminates (i.e., prunes) itself

when there are no chances to �nd a better answer than the best answers in the

object. When a thread �nd a new answer, it updates the best answers entry in

the object for the sake of pruning other threads.

Since Richards and RNA use both functions and methods, their executions show how

the e�ciency of the meta-objects a�ects overall execution speed in realistic applica-

tions.

The results are summarized in Table 4.1. As the \improvement" column shows,

the programs in PE are more than four times faster than the ones in INT. This

improvement is signi�cant even in realistic applications such as Richards and RNA,

whose speeds are increased by factors of 6.8 and 30.8, respectively.

As the \residual overheads" column shows, the programs in PE are slower than

the ones in NR by factors of 1.1{3.0. These overheads are mainly due to the limi-

tations of current partial evaluators, as we have pointed out in Section 4.2.1.3. In

fact, when we further optimized the partially evaluated meta-objects for Become

by hand|eliminating obvious channel communications, etc.|the average factor by

which programs are slowed because of residual overheads was reduced to 1.4.

8The combination of the values of i and j yields the worst result in Null Writers.
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Table 4.1: Performance improvement and residual overheads.

benchmark elapsed time (sec.) improvement residual overheads

applications PE INT NR INT/PE PE/NR

Null Readers 3.2 107.7 2.3 33.6 1.4

Null Writers 40.7 190.8 16.9 4.7 2.4

Become 46.6 272.8 15.7 5.9 3.0

(w/manual opt.) (21.3) (12.8) (1.4)

Richards 20.7 140.7 9.4 6.8 2.1

RNA 1.7 53.3 1.6 30.8 1.1

4.2.2.2 Performance of Customized Meta-objects

The above benchmark programs were executed under the default meta-objects, but

of more practical interest is the e�ciency of customized meta-objects. The next

benchmark program was a bounded-bu�er that uses the guarded method invocation

mechanism, which is implemented by a customized meta-object. Since the guarded

methods are not directly supported in Schematic, we simulated them by user-level

programming, in which objects are programmed to check the guard conditions and

to suspend/continue their invocation requests. The programs are described in Ap-

pendix B.

Table 4.2 shows the elapsed time for 1,000 read/write operations from/to a

bounded bu�er whose size is 10. The PE bu�er shows almost the same e�ciency

as does the NR one. This result could be understood as that the the overheads

caused by frequent method invocations in NR cancel out the residual overheads in

the PE bu�er. The NR bu�er uses three methods in order to represent a guarded

method. On the other hand, the PE bu�er uses only one because the partial evalu-

ator successfully inlines the methods of the meta-object that deal with the guarded

methods.

The partially evaluated meta-objects are approximately 10 percent faster than the

interpreted ones (INT). This improvement is less signi�cant than that observed with
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Table 4.2: Performance of bounded bu�er with guarded methods.

elapsed time (sec.) improvement residual overheads

PE INT NR INT/PE PE/NR

Bounded Bu�er 3.94 4.46 3.96 1.13 0.99

the previous benchmarks. We conjecture that this is because each of these bench-

mark programs requires a large number of context switches, and context-switching

is expensive in the current Schematic implementation. The time spent for context-

switching is thus so great that the e�ciency di�erences between the three programs

are relatively small.

4.3 Related Work

In CLOS Meta-Object Protocols (MOP), meta-level methods are split into functional

and procedural ones for caching (or memoization)[55, 56]. This splitting approach in

principle similar to our meta-object design, but the memoization technique requires

more careful protocol design because the unit of specialization is function. Thus the

\functional" methods cannot include operations that touch dynamic data. On the

other hand, such operations can be written in our reader methods, since the partial

evaluator automatically residualizes them.

There are several studies that specialize meta-objects with respect to base-level

programs. For example, an implementation of the early version of OpenC++[18]9

specializes meta-objects. Although the technique is e�ective for some cases, it is

limited since it is based on \idiom recognition." The proposed technique in the

dissertation, which is based on partial evaluation, is e�ective to a larger variety of

meta-objects.

9Unlike the later version based on compile-time reection, the early version has run-time meta-

objects. Similar to CLOS MOP, meta-objects in the version interprets narrowed set of events in-

cluding a method invocation, an object creation and an instance (member) variable access.
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4.4 Summary

In this chapter, a method for designing meta-objects in the reective language ABCL/R3

is described, and a framework for their optimization using partial evaluation is pre-

sented. In the meta-object's description, operations that are state-related are sep-

arated from operations that are not, and it is this separation that makes partial

evaluation e�ective. The meta-objects and their reader methods are translated into

records and functions in Scheme, and they are then optimized by using a Scheme

partial evaluator. The optimized code is a combination of the base-level and meta-

level programs, a combination from which most interpretive operations at the meta-

level (such as the method dispatch and the manipulation of the environment) have

been removed. E�ectiveness of this optimization framework is shown by benchmark

programs in which the partially evaluated objects run signi�cantly faster than the

interpretive meta-objects. Moreover, the partial evaluation lets a program with cus-

tomized meta-objects run as e�ciently as an equivalent nonreective program.
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Chapter 5

Discussions

5.1 Dynamic Modi�cation

In the dissertation, we concentrated on the situation where both base- and meta-level

programs are not modi�ed at run-time. This is a reasonable assumption for many

practical reective applications, and a crucial prerequisite for the �rst Futamura

projection.

However, reection has potential to exploit dynamic modi�cations. Since base-

level programs are treated as data at the meta-level, it can elegantly describe pro-

cesses that changes base-level programs. Since a meta-level program can embody a

policy of the language system, replacement of meta-level programs can realize dy-

namic changes of policies.

From the viewpoint of implementation, types of dynamic modi�cations can be

classi�ed by whether meta-level objects and base-level objects can be modi�ed dy-

namically, and whether the combination of them|which meta-objects are applied to

a base-level object|can be speci�ed dynamically:

1. No ability to modify dynamically; i.e., both base- and meta-level object de�-

nitions are known at the compile-time, and the combination of them are also

known. The techniques in the dissertation assume this case, where meta-level

objects are partially evaluated with respect to base-level objects.

2. Only combinations of base- and meta-level objects can be speci�ed dynamically.
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3. Base-level objects can be modi�ed dynamically, but meta-level objects are un-

modi�able.

4. Both base-level and meta-level objects can be modi�ed dynamically.

For the last three cases, it is possible to dynamically apply partial evaluation (and

subsequent compilation) whenever the system gets de�nitions of meta-level and base-

level objects. However, sluggishness of partial evaluation would easily sap the overall

performance.

Possible solutions for the case 2. and 3. are code versioning and dynamic code

generation, respectively. We briey describe those techniques below.

5.1.1 Code Versioning

When de�nition of meta-level and base-level objects is statically given, it is possible to

apply partial evaluation, and support dynamic modi�cations to the meta-interpreter

outside of the partial evaluation framework. Firstly we have restricted ABCL/R3 so

that a base-level object is allowed to choose its meta-level objects (i.e., meta-object

and meta-interpreter) only at its creation-time1. For a single method of a base-level

object and de�nitions of meta-level objects (speci�ed by a pair of classes of meta-

objects and meta-interpreters), multiple compiled methods are generated for each

interpreter. On creating an object, appropriate compiled object is selected according

to the speci�ed meta-level objects.

For brevity, we describe meta-object classes as MO1;MO2; . . ., meta-interpreter

classes as MI1;MI2; . . ., and base-level object classes as B1;B2; . . .. Our compilation

framework partially evaluates a meta-object MOi and a meta-interpreter MIj with

respect to a base-levelBk, and yields a combined class de�nition Cijk, for all combina-

tions of i; j; and k. (Needless to say, if the meta-object classes and meta-interpreter

classes that are used by a base-level class are statically known, only possible combina-

tions should be generated.) At run-time, when a base-level object of class Bk is being

created with a meta-object MOi and meta-interpreter MI j , then the pre-compiled

de�nition Cijk will be used for actual run.

1Replacement after object's creation could be possible with more elaborate run-time support.
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An obvious problem of this approach is space e�ciency. Since the number of

specialized classes is product of the numbers of meta-object, meta-interpreter, and

base-object classes, this technique cannot be applied without heuristics that reduces

the number of combinations.

5.1.2 Dynamic Code Generation

Using a dynamic code generation technique, the specialization process could be ac-

celerated so that meta-level objects can be dynamically specialized at run-time. Dy-

namic code generation[21, 27, 28, 61, 62, 99, 115] is a technique to construct a special-

izer for each target program. The construct specializer receives an input for the

target program, and directly generates specialized code in machine instructions. By

preparing compiled machine instructions at the construction-time of the specializer,

the code generation is tremendously faster than the partial evaluation and subsequent

compilation process.

Let L be a high-level language (e.g., Scheme), M be a machine language, pL be a

program written in L, pM be a compiled version of p, and DCGG be a dynamic code

generator-generator for language L. DCGG creates a code generator specialized to a

given program:

DCGG(pL) = DCGM
pL ;

The generated program DCGM
pL

is a code generator that takes one of the pL's inputs,

and generates a specialized version of pL:

DCGM
pL(x) = pMx : (5:1)

The result pMx is a compiled function that takes the remaining argument of pL, and

returns the same answer to pL:

pMx (y) = r if pL(x; y) returns r.

Let C be a compiler that compiles a program in L. Application of partial evalu-

ation and compilation can basically generate the same program to pMx :

PE(pL; x) = pLx ; and then (5.2)

C(pLx ) = pMx : (5.3)
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The advantages of dynamic code generation is (a) the execution of DCGM
pL

does not

interpret p, and (b) the specialization process (5.1) is much more e�cient than the

partial evaluation (5.2) plus subsequent compilation (5.3) processes, since DCGM
pL

directly generates compiled code.

We could use this technique to reective language by applying a customized meta-

level program L0 to the dynamic code generator-generator, having a code generator

DCGM
L0 :

DCGG(L0) = DCGM
L0 :

The code generator DCGM
L0 can compile program in L0:

DCGM
L0 (p

L0) = L0M
p :

The advantages of the dynamic code generation technique are as follows:

� The code generator for a meta-level program (DCGM
L0 ) can be constructed with-

out base-level program (p). This means that when a base-level program is mod-

i�ed, the system only applies the second process to obtain a new specialized

code. Using partial evaluators, on the other hand, it has to partially evaluate

the meta-level object.

� The specialization process (i.e., generation of L0M
p ) is faster, as it directly gen-

erates machine instructions. Using partial evaluation, since it is a source-to-

source transformation technique, compilation of partially evaluated programs

is needed to obtain machine instructions.

Despite those advantages, there are a number of di�culties in order to bring the

technique into practical reective systems[116, 117]. They are beyond the scope of

this dissertation.

5.2 In�nite Tower

The dissertation also assumes that the target reective language consists of only the

base- and meta-levels. Many models of reective languages, on the other hand, have

an in�nite tower of meta-levels.
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Figure 5.1: Compilation of a reective tower.

We claim that most practical applications customize only the meta-level. More-

over, our proposed techniques could be useful to applications that exploit meta-meta-

level and above, by repeatedly applying partial evaluation process.

Assume we have an application program which customizes up to the n'th meta-

level; i.e., (n+1)'th meta-level and above are default. To compile such an application,

we follow the steps shown in Figure 5.1. We �rst specialize the de�nition at the n'th

meta-level (hereafter we write pn) with respect to pn�1. The generated program,

which we write pn
pn�1, serves as the meta-level for pn�2, and runs without meta-levels.

Then further specialization yields pn
pn�1

pn�2
, and so forth. After enough repetition,

we will have a program that is a \specialized the whole meta-level with respect to

the base-level program."

Several researchers have pointed out similar ideas[51, chapter 6][109], and Asai

showed that an application with customized meta-meta-level is successfully special-

ized[7].

The e�ectiveness of the repeated specialization in our reective language ABCL/R3

depends on whether the specialization processes preserve binding-times of programs

and the restrictions that are placed for successful partial evaluation. For exam-
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ple, we have a meta-interpreter de�nition m1, whose meta-interpreter m2 is also

customized. Then we �rst specialize the meta-meta-interpreter with respect to the

meta-interpreter:

PE(m2;m1) = m2

m1:

In order to partially evaluate the resulted meta-interpreter m2

m1 with respect to a

base-level program, methods of m2

m1 must have a static expression as its argument,

otherwise it is hardly specialized.

Since preservation of those properties is a subtle problem, we have not reached

any conclusion. However, we have a prospect that our approach|separating meta-

objects' method into readers and writers, restricting methods of meta-interpreters to

only readers|would also useful to preserve such desired properties.

5.3 Coexistence with Compile-time MOP

As is introduced in Section 2.3.3, the compile-time MOP performs meta-level com-

putation before the execution of base-level programs. Since the execution stages are

separated, the meta-level computation is de�ned as a program transformer, similar

to Lisp macros.

Since the compile-time MOP indirectly modi�es semantics of base-level languages

by means of program transformation, it is considered more di�cult than the run-time

one. However, there are some advantages. It has no `residual overheads,' since it

clearly separates the compile-time and run-time computation. It also has chances to

give clearer description of global transformation; e.g., changing function names all at

once, optimizations based on global type analysis, etc.

We claim that those compile-time and run-time MOPs are not conicting, but

they should coexist and complement each other. In fact, several studies are working

on this issue[20, 118].

Simple program transformers can be integrated to our approach, in which meta-

level objects interprets base-level programs, without degrading run-time performance.

Let transformer be a function that takes an expression and returns a transformed

expression which is supposed to be performed at the compile-time. The following

simple meta-interpreter class applies the transformer to every base-level expression:
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(define-delegation-class transforming-eval ())

(define-method transforming-eval (eval-entry self exp env)

(eval-entry super (transformer exp) env))

(The class overrides the method eval-entry, so that expressions are not transformed

doubly.)

Since exp is static data, the application of exp to transformer can be taken place

at the partial evaluation time, imposing no overheads upon the run-time execution.

However, this simple implementation of transformers has drawbacks. (1) The

transformation process in this approach is slower than the one in compile-time MOP

implementations, since partial evaluators usually interpretively execute target pro-

grams (i.e., transformer, in this case). (2) Transformers can not exploit global

information, since they are requested to be pure functional for successful partial

evaluation.

5.4 Preactions

We proposed the preactions mechanism to preserve traces of I/O-type side-e�ects

in online partial evaluation. Although the preactions are originally proposed in

this study, there are similar techniques in o�ine partial evaluators, such as Sim-

ilix's let-insertion[51, chapter 5]. We believe that preaction could be a good basis

to handle side-e�ects in general. In fact, it is extended so that programs contain-

ing assignments to data structures (e.g., Scheme's set-car!) are correctly partially

evaluated[5], though it is beyond the thesis.
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Chapter 6

Conclusion

6.1 Summary of the Dissertation

The dissertation presented a reective architecture of a concurrent object-oriented

language, and its optimization frameworks using partial evaluation. The main con-

tributions are as follows:

Framework to apply partial evaluation to meta-interpreters: (Chapter 3) It

achieves orders of magnitude improvement in execution of customized meta-

interpreters. The framework also enables to the re-usable and exible meta-

interpreter design by allowing the �ne grain methods and the delegation mech-

anism.

Delegation mechanism to extend meta-interpreters: (Chapter 3) Instead of

the traditional inheritance model, it enables to de�ne compositional and scope-

controlled extensions to the meta-interpreters. The mechanism is especially

useful to modify the semantics of existing programming constructs that appear

in a speci�c form.

Reective annotations: (Chapter 3) They allow the programmer to embed vari-

ous directives to the meta-level in base-level programs, without modifying the

structure of the programs. The semantics of annotations at the meta-level can

be de�ned in reective ways.
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New meta-object design suitable for partial evaluation: (Chapter 4) Unlike

previous meta-object designs that implement state transition machines, our

new meta-objects have straight control-ow and separated description of state-

related operations, by exploiting the Schematic's reader/writer methods model,

and can be partially evaluated e�ectively.

Framework to apply partial evaluation to meta-objects: (Chapter 4) It e�ec-

tively specializes a meta-object de�nition by translating the de�nition into

Scheme functions and records, then applies a Scheme partial evaluator with

respect to each base-level method, and �nally generates a Schematic object

de�nition that combines properties of the base-level object and the meta-level

object in a single level.

As far as the author knows, it is the �rst reective concurrent object-oriented language

that achieves the performance close to non-reective languages. The exibility is

demonstrated by several programming examples, and the e�ciency is demonstrated

by benchmark programs.

In addition, there is also a contribution to partial evaluation technology:

Preactions: (Chapter 3) The extended partial evaluation rules with preactions keep

track of history of side-e�ecting operations to the symbolic values, and preserve

correct traces of I/O type side-e�ects during partial evaluation.

The technique is proved to be useful for partial evaluation of reective programs,

especially in concurrent and object-oriented environments, where inter-object com-

munication is represented as I/O operations. The preaction technique is further

extended to support assignment type operations[5].

6.2 Future Direction

Over the past decade, the notion of reection and meta-level architectures has be-

come widely accepted. For example, Java adopts the notion of reection, though

it is limited[48]. Other than programming languages, many recent systems are also

incorporating meta-models for extensibility, and allow to de�ne tailored system for
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speci�c purposes. Those systems include operating systems[128, 129], a window sys-

tem[101] modeling languages[102], documentation and data exchange format[10], and

management of evolving software[68, 82, 90].

We believe that the notions and techniques presented in the dissertation would

also be useful to those extensible systems. Especially, (1) not only ad-hoc mecha-

nisms for extension, but more generic approach like meta-interpreters could be appli-

cable to those systems, without imposing serious performance drawbacks, (2) partial

evaluation and the similar specialization techniques would be useful to optimize such

systems, and (3) experiences in designing our meta-level architecture (e.g., separation

of state-related operations, etc.) would be transfered to such systems for successful

partial evaluation.
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Appendix A

Example Compilation of

Reective Programs in

ABCL/R3

Here we give a meta-level programming example|the n-Queens problem described

in Section 3.2.3.2, and the excerpt of the actual compiled result.

A.1 Base-level Program

The base-level program is an n-Queens parallel search problem. A search node in the

search tree is represented by a concurrent object.

(define-class queen ())

(define-method queen (do-search self size col places)

(if (= size col) ; do we reach an answer?

;; yes, report the answer

(print-answer *printer* places)

;; no, check if we can place at i'th row of the next column

(let loop ((i 0))

(if (< i size)
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(begin

(if (not (checked? col i places))

;; create a new object and have it search in parallel

(future (do-search (queen) size

(+ col 1) (cons i places))))

(loop (+ i 1)))))))

A.2 Meta-interpreter for Locality Control

The meta-level programs are divided into two modules; the locality control module

and the weighted termination detection module. Firstly, locality control is achieved

by the evaluator object locality-eval, which speci�es the processor numbers of

newly created objects. A meta-level argument depth is transparently added to inter-

object message passing.

;;; Class de�nition.

(define-delegation-class locality-eval ())

;;; The method that gives the processor number for

;;; object creation is overridden.

(define-method locality-eval

(get-object-creation-node self class arg-vals env)

;; look up the meta-level variable depth

(let ((depth (lookup-meta env 'depth)))

(if (< *threshold* depth) ;; compare with the constant threshold

(this-node-id) ;; create on the local processor

(random-node-id)))) ;; create on a remote processor

;;; A hidden parameter depth is passed to a newly created object. The

;;; following method returns an association list of parameter names and values.

(define-method locality-eval (get-method-invocation-meta-arg

self class arg-vals env)
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;; look up the meta-level variable depth

(let ((depth (lookup-meta env 'depth)))

;; add a depth parameter to the other meta-level arguments

;; generated by the delegate evaluators.

(cons (cons 'depth (+ depth 1)) ;; (current depth)+1

(get-method-invocation-meta-arg super class arg-vals env))))

A.3 Meta-interpreter for Weighted Termination De-

tection

The module for the weighted termination detection modules manager objects, eval-

uator object WTD-eval, and several meta-object methods. Here, we only show the

evaluator, which (1) calls an initialization method at the beginning of the base-level

method, (2) distributes weight to child objects, and (3) calls a �nalization method

(to return weight) at the termination of the base-level method.

;;; Class de�nition.

(define-class WTD-eval ())

;;; Invoke method init-weight at the beginning of a method.

(define-method WTD-eval (eval-entry self exp env)

;; variable ID refers the meta-object

(init-weight ID)

;; body of method execution (by delegation)

(let ((result (eval-entry super exp env)))

;; Invoke the method to return weight at termination of a method.

(return-remaining-weight ID)

result))

;;; Parameter weight is passed on to child objects.

(define-method WTD-eval

(get-method-invocation-meta-arg self class arg-vals env)

140



(cons (cons 'weight (get-weight-for-child ID))

(get-method-invocation-meta-arg

super class arg-vals env)))

A.4 Specialized Program

We show the resulting compiled code below before being passed into the back-end

compiler. Our compilation framework creates a new class locality-eval*WTD-

eval**queen to hold specialized de�nitions. Some arguments have been omitted,

and some variables have been renamed for readability. Although program size has

become slightly larger, interpretation is `compiled away.' The reasons for increase in

program size are: (1) code after a conditional expression has been duplicated, (2) the

�rst iteration of the loop has been unfolded, and (3) di�erent specialized function

is constructed for each branch of conditionals, although they have the same de�ni-

tions. (Note that the compilation is performed by the older version of our system,

which based on ABCL/f 's syntax. The result of compilation was also generated in

the ABCL/f 's syntax, but manually changed for uniformity. However, this is not a

substantial change to run-time performance.)

(define (queen)

;; creates an instance of locality-eval*WTD-eval**queen with appropriate

;; initial values for its instance variables.

)

(define-class locality-eval*WTD-eval**queen ()

class methods state-vars state-values lock evaluator)

(define-method locality-eval*WTD-eval**queen

(do-search self size col places)

(init-weight self) ; from WTD-eval

(if (= size col)

(let ((result (print-answer *printer* places)))

(return-weight self) ; from WTD-eval

141



result)

(if (< 0 size)

(if (not (checked? col 0 places))

(if (< *threshold* depth) ; from locality-eval

(begin

(future (do-search

(now (queen) :on (this-node-id)); local creation

size (1+ col) (cons 0 places)

(list (cons 'depth (+ depth 1))

(cons 'weight

(meta-weight-for-child self)))))

(eval-apply818 depth col size 1 places)); next step of the loop

(begin

(future (do-search

(now (queen) :on (random-node-id)); random creation

size (1+ col) (cons 0 places)

(list (cons 'depth (+ depth 1))

(cons 'weight

(meta-weight-for-child self)))))

(eval-apply819

depth col size 1 places))) ; next step of the loop

(eval-apply820 depth col size 1 places)) ; next step of the loop

(begin (return-weight self) ; from WTD-eval

#f))))

(define-method locality-eval*WTD-eval**queen

(eval-apply818 self depth col size row places)

(if (< row size)

(if (not (checked? col row places))

(if (< *threshold* depth) ; from locality-eval

(begin

(future (do-search
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(now (queen) :on (this-node-id)); local creation

size (+ col 1) (cons row places)

(list (cons 'depth (+ depth 1))

(cons 'weight

(meta-weight-for-child self)))))

(eval-apply818

depth col size (+ row 1) places)) ; next step of the loop

(begin

(future (do-search

(now (queen) :on (random-node-id)); random creation

size (+ col 1) (cons row places)

(list (cons 'depth (+ depth 1))

(cons 'weight

(meta-weight-for-child self)))))

(eval-apply819

depth col size (+ row 1) places))) ; next step of the loop

(eval-apply820

depth col size (+ row 1) places)) ; next step of the loop

(begin (return-weight self)

0)))

;;; Methods eval-apply819, eval-apply820 have the same de�nition to

;;; eval-apply818.
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Appendix B

Programs Using Guarded

Methods

B.1 Base-level Program

A base-level object that uses the guarded method mechanism has an optional form

\(:metaclass ...)" in the class declaration, and has an expression \(:guard ...)

" in each guarded method. The following program is the de�nition of the bounded

bu�er used in Section 4.2.2.2:

(define-class bb () size elements

(:metaclass guard-meta))

(define-method! bb (put! self item)

(:guard (< (length elements) size)) ; guard expression

(become self :elements (append elements (list item))))

B.2 Meta-level Program

We de�ne the class guard-meta, as a subclass of metaobject, at the meta-level.

(define-class guard-meta (metaobject) ; a subclass of metaobject

(guard (make-guard))) ; scheduler
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In the additional instance variable guard, each instance of guard-meta has a sched-

uler, which is a user-de�ned meta-level object. We also override the following two

methods of guard-meta:

(define-method guard-meta (receive self mes &reply-to mresult)

(let* ((selector (message-selector mes))

(method (find-method methods selector))

(guard-exp (cdr (method-find-option method ':guard))))

(register guard

(lambda ()

(let* ((env (make-env self (formals method) mes))

(result (eval evaluator guard-exp env)))

(if result

(reply (accept-W self mes) mresult))

result))))) ; result of guard expression

(define-method guard-meta (accept-W self mes)

(let ((r (make-channel)))

(let ((result (accept self mes r)))

(update self (touch r))

(notify guard)

result))) ; result of method body

The method receive registers a closure to guard. The closure, when activated

by the scheduler, evaluates a guard expression and then invokes accept-W if the

guard expression returns true. The method accept-W, evaluates the method body,

as accept-W of the class metaobject does, and also noti�es guard at the end of the

evaluation.

B.3 Optimized Program

From the base-level and the meta-level programs, our optimization framework gener-

ates the following combined program. The meta-level operations for guarded meth-
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ods, which are de�ned in the methods receive and accept-W of guard-meta, are

embedded in the method put! of the optimized class.

(define-class guard-meta**bb ()

class methods state-vars state-values lock evaluator

(guard (make-guard)))

(define-method guard-meta**bb (put! self item &reply-to mresult0)

(let ((c0 (lambda ()

;; evaluation of guard expression

(let* ((values0 (read-cell state-values))

(size0 (vector-ref values0 0))

(elements0 (vector-ref values0 1))

(result0 (< (length elements0) size0)))

(if result0

;; execution of method body

(let* ((state-update-ch0 (make-channel))

(values1 (read-cell state-values))

(size1 (vector-ref values1 0))

(elements1 (vector-ref values1 1)))

(reply (vector size1

(append elements1 (list item)))

state-update-ch0)

(let ((new-state0 (touch state-update-ch0)))

(update-cell! state-values new-state0)

(notify guard)

(reply self mresult0))) ; result of method body

#f)

result0)))) ; result of guard expression

(register guard c0)))
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B.4 Nonreective Program

Instead of using customized meta-objects, we can manually rewrite programs that

have the same functionality to the ones using guarded methods. One of the simplest

approach is to split each guarded into three actual methods: an entry method, a guard

method, and a body method. The following de�nitions are a manually rewritten

bounded bu�er:

(define-class bb () ; nonreective version

size elements (guard (make-guard))

(define-method bb (put! self item &reply-to r)

(let ((c (lambda ()

(let ((guard-result (put!-guard self item)))

(if guard-result

(reply (put!-body self item) r))

guard-result))))

(register guard c)))

(define-method bb (put!-guard self item)

(< (length elements) size)) ; guard expression

(define-method! bb (put!-body self item)

(become (begin (notify guard) ; noti�cation

self)

:elements (append elements (list item))))

The class de�nition has an additional instance variable guard for the scheduler. The

method put! is an entry method that creates and registers a closure to the scheduler.

The method put!-guard is the guard method, and put!-body is the body method.

They are invoked from the closure created in put!.

147


