
日本ソフトウェア科学会第 32 回大会 (2015 年度) 講演論文集

Unravel Programming Sessions with THRESHER:

Identifying Coherent and Complete Sets of

Fine-granular Source Code Changes

Stephanie Platz, Marcel Taeumel, Bastian Steinert,

Robert Hirschfeld, and Hidehiko Masuhara

Development teams bene�t from version control systems, which manage shared access to code reposito-
ries and persist entire project histories for analysis or recovery. Such systems will be e�cient if developers
commit coherent and complete change sets. These best practices, however, are di�cult to follow because
multiple activities often interleave without notice and existing tools impede unraveling changes before com-
mitting them. We propose an interactive, graphical tool, calledThresher, that employs adaptable scripts to
support developers to group and commit changes�especially for �ne-granular change tracking where numer-
ous changes are logged even in short programming sessions. We implemented our tool in Squeak/Smalltalk
and derived a foundation of scripts from �ve refactoring sessions. We evaluated those scripts' precision and
recall, which indicate a reduced manual e�ort because developers can focus on project-speci�c adjustments.
Having such an interactive approach, they can easily intervene to accurately reconstruct activities and thus
follow best practices.

1 Introduction

Software developers bene�t from version control

systems (vcss), which manage collaborative work

and persist whole project histories. In systems such

as Git†1 and Mercurial,†2 developers can commit

changed source code with descriptive messages into

distinct branches to separate features or bug �xes.

When committing, branching, or merging, new ver-

sions of the project arise and a particular devel-

opment trace emerges in the vcs. Such historical

information can then be used to ease code compre-

hension [31] or to reason about software evolution

完全かつ一貫した細粒度コード変更集合の検出によりプロ
グラミングセッションを解きほぐす THRESHER

Stephanie Platz, Marcel Taeumel, Bastian Steinert,
and Robert Hirschfeld, Hasso Plattner Institute,
University of Potsdam, Germany.

増原英彦, 東京工業大学 数理・計算科学専攻, Department
of Mathematical and Computing Sciences, Tokyo
Institute of Technology.

†1 http://git-scm.com

†2 http://mercurial.selenic.com

patterns [3].

Software evolution induces very high costs in

software development [2] and hence developers are

advised to follow best practices to maximize the

bene�ts of vcss. One important practice is con-

tinuous integration [7]: commit and test code on

a regular basis. When committing, only store

small, coherent, complete change sets with a brief

yet descriptive message to improve comprehensibil-

ity [29]. A well-organized project history can also

improve code review processes [1] and recommender

systems [4]. �Robbes et al. [22] observed that de-

velopers frequently commit once per working day

on average. Further research ([14] [16] [22]), how-

ever, shows that developers tend to commit inco-

herent change sets. Buse and Weimar [5] also found

that only two-thirds of commits get assigned with

an descriptive message.

We argue that one challenge for developers is

that multiple activities interleave [18]�often with-

out being noticed even in short sessions as illus-

trated in Figure 1. Manual refactorings, for exam-

ple, typically include changes to a�ected code that

get accidentally postponed because developers sim-

Fig. 1 Multiple activities (A to E) often

interleave without notice (top) and best

practices suggest to untangle and assemble

changes before committing them (bottom).

This is often challenging with existing tools.

ply forgot. Existing tool support typically poses

high e�ort on following best practices, especially

for �ne-granular change models that track numer-

ous changes even in short sessions [27]. Developers

tend to explain all tangled and scattered changes

from one session in a single commit message�if

any. Consequently, understanding project histories

will be impeded. Based on these observations, we

address the following research question:

How can we support developers to identify

coherent and complete sets of �ne-granular

changes when committing code to a repos-

itory?

We de�ne a change set as coherent if it contains

only changes that origin from a single activity; it is

complete if it contains all changes from that (com-

pleted) activity. We focus on �ne-granular change

models where every modi�cation to the code base

is tracked, even two consecutive changes that re-

scind each other. We think that semi-automatic

tool support should favor coherent sets over com-

plete ones, that is, avoid false-positives but accept

false-negatives. Then, developers do only have to

merge change sets to make them complete. In fact,

we believe that there cannot be one fully automatic

approach but the developer has to be part of the

process to bene�t from tacit project knowledge.

We propose a scriptable, interactive, graphical

tool that supports developers to (1) identify conse-

cutive changes that indicate continuity of an activ-

ity and (2) collect scattered runs of changes that be-

long to the same activity. Based on a lab study [27]

including 5 programming sessions with up to 250

�ne-granular changes each, we derived a foundation

of scripts that can be combined to automatically re-

veal activity-speci�c change sets. When evaluated,

a script assigns changes into groups and adds rec-

ommendations†3 if changes are already part of dis-
tinct groups. After this scriptable analysis, devel-

opers can explore all proposed groups, adjust them

manually, or resolve recommendations. We imple-

mented the graphical tool Thresher in Squeak/S-

malltalk,†4 which visualizes intermediate results

concisely and reduces the e�ort for manual adjust-

ments. The underlying rules of identifying coherent

and complete sets of changes can easily be accessed

and modi�ed.

In this paper, we make the following contribu-

tions:

• A design for an interactive, scriptable tool we

call Thresher, which supports developers to

assemble coherent and complete change sets for

�ne-granular source code changes

• A description of an exemplary scripting in-

terface, which supports the Squeak/Smalltalk

change model, to emphasize the simplicity of

extending Thresher for domain-speci�c needs

• A brief description of scripts we extracted from

a lab study to support Smalltalk-based refacto-

ring sessions�including an evaluation in terms

of precision (almost 100%) and recall (33% to

57%) of the proposed groups, which illustrates

coherence over completeness

The next Section 2 summarizes related work.

Section 3 describes existing challenges in state-of-

the-art commit tool support. In Section 4, we

present our tool Thresher and give an introduc-

tion to its scripting capabilities; we also present a

foundation of scripts for developers to get started.

We evaluate those scripts in Section 5 and discuss

limitations and applicability to other environments.

Section 6 sketches hypotheses and next steps for

this kind of commit tool support. Finally, we con-

clude our thoughts in Section 7.

†3 Note that we use the term �recommendation� un-
related to recommendation systems in software
engineering.

†4 The Squeak/Smalltalk programming environ-
ment: www.squeak.org

2 Related Work

We are not aware of projects that try to pro-

actively involve developers in the process of com-

mitting changes. There are, however, many

projects that investigate how to automate the iden-

ti�cation of coherent change sets�only after com-

mits have been taken place. Some projects derive

rules by mining project histories, other projects

create rules for changes that have detailed con-

text information. Most of them deal with domain-

speci�c characteristics, which emphasizes the need

of adaptability and manual intervention when using

in such tools.

When mining repositories, existing changes are

often modeled and analyzed at a �xed level of

detail. Herzig and Zeller ([13] [14]) applied ma-

chine learning to adjust project-speci�c weights or

thresholds for data dependencies, lexical distance

measures, or test impact couplings. They analyzed

coherent change sets that were already assigned to

particular bug �xes. Kawrykow and Robillard [16]

looked for behavior-preserving thus non-essential

changes, which include rename-refactorings. They

claim that such changes a�ect coherence nega-

tively. Kim and Notkin [17] derived logical rules

from change sets, which also identify anomalies

and hence tangling changes such as �All meth-

ods X in classes that implement interface Y got

deleted, except class Z.� This should also help de-

scribe commit messages. � We derived a foun-

dation of scripts from 5 programming sessions,

which arguably re�ect many important character-

istics of object-oriented projects in Smalltalk. One

can easily extend this approach with mining some

Squeak/Smalltalk repositories to identify more cor-

ner cases. As scripts represent concise and acces-

sible descriptions of a particular change model, we

argue that developers can easily adapt those scripts

to accommodate domain or project-speci�c needs.

When approaches are open to extensions in

the change model, identi�cation and classi�cation

methods can bene�t from any kind of context in-

formation such as developer activity tracking. For

example, Coman and Sillitti [6] tracked tool inter-

actions and created the notion of time intervals of

intensive access to help detect activity switches;

Zou and Godfrey [35] veri�ed this approach in an

industrial setting. Robbes et al. ([23] [24]) also track

timestamps and use time-coupling to improve re-

call. Besides that, they track tool window usage,

code authors, and annotations to indicate auto-

mated refactorings. If actually noticed, the devel-

oper can express the beginning of a new activity

explicitly. Yoon et al. [33] log all low-level events

of the Eclipse code editor in an XML format to be

processed by other tools. � Thresher promotes

�ne-granular change tracking without making as-

sumptions about the level of detail that is tracked.

For example in our Squeak/Smalltalk environment,

there were logs for tool-controlled refactoring ac-

tivities, which later simpli�ed script code. Having

this, other extensions to the change model could

further improve both scripts, results, and hence the

overall utility.

Working with numerous �ne-granular changes

raises challenges for graphical tools from an infor-

mation visualization perspective. Many approaches

apply a timeline metaphor to provide overview

and details on demand as pluggable visualizations

in programming environments. Examples include

Azurite [34] and CodeTimeline [20]. � We argue

that common list, table, or tree views are capable

of presenting huge amounts of data in a support-

ive way. Problems will arise primarily if developers

have no simple means to con�gure the views' level

of detail. Thresher employs those means by giv-

ing developers that required con�guration support

in terms of adaptable scripts with direct feedback

after script modi�cations.

3 Challenges in Existing Tools

In this section, we highlight important factors

that substantiate the need for better tool sup-

port when committing source code to a vcs. We

cover the nature of interleaving programming ac-

tivities, state-of-the-art tool support, and speci�cs

of the Squeak/Smalltalk change model�as we built

Thresher in that programming environment.

3. 1 Interleaving Programming Activities

The more programming activities interleave dur-

ing a session, the more important it is to untan-

gle them to commit only coherent and complete

change sets. The number of actually traceable ac-

tivities will be in�uenced by the developer's task

Fig. 2 Usually, commit tools show changes in long, scrollable lists, which developers have to

untangle by tedious manual selection for each single commit. LTR: Monticello for Squeak

(http://www.squeak.org), TortoiseSVN (http://tortoisesvn.net), SourceTree

(http://www.sourcetreeapp.com)

and the level of change tracking editing tools pro-

vide. As for the task, a simple bug�x may spawn

only one activity but �drive-by corrections� and

other activities interleave quite often ([18] [21])�

those should be documented in separate commits.

As for the change tracking, the more editing events

get tracked, the higher the chance that a devel-

oper's activity drifts get documented for the long

term�all the more if there are many modi�cations

that rescind each other during a session.

File-based environments (such as Java + Eclipse

+ Git) compare the local working copy with the

latest version in the vcs to determine changes at

the level of text lines, which typically match pro-

gram statements. We consider such an approach

as coarse-grained because overwritten changes are

not tracked as coherent program entities but only

at the level of character ranges. Object-based

environments (such as Smalltalk + Squeak +

CoExist [26]) log any modi�cation to the code

base by means of method and class changes. This

allows for rewinding or replaying single decisions

and whole programming sessions. Such a change

model is more �ne-grained and persists more de-

tails of a project's history.

There is a programming approach called explo-

rative programming [8], where developers are en-

couraged to make any change as they go without

having a speci�c task in mind. They do not know

upfront whether they will �x some bugs or add

some neat features or clean-up some code. Such

a working mode frees them from being too speci�c

too early in highly uncertain scenarios like many re-

search projects face. At the end of such a session,

developers have numerous changes to untangle. We

argue that there is a need for better commit tool

support to even promote explorative programming

and still ease comprehension of and learning from

project histories.

3. 2 Interactive Commit Tool Support

Figure 2 gives an impression of how existing com-

mit tools make use of graphics and interaction.

First and foremost, those tools present changes in

scrollable lists with support for manual selection

only. �Advanced� �ltering covers presets such as

all, none, and invert selection. It doesn't matter

whether changes are �le, method, or line-based:

Such interfaces do not support untangling many

changes very well. Furthermore, multiple activities

have to be considered one after another.

However, we do consider lists or tables as ap-

propriate views because they can visualize chrono-

logical order in a compact fashion. What existing

tools miss is a way to �lter and group changes ac-

cording to some rules, which may not be expressed

with a single button-click but rather simple scripts.

Additionally when seeing a complete and coherent

change set, developers may be better suited to pro-

vide a descriptive commit message.

3. 3 The Squeak Change Model

Squeak has a direct notion of changes, change

�les, and change sets†5�but all in a local sense and

not shared like common vcss such as Git. Tracked

changes include any source code modi�cation af-

fecting classes, methods, and their categories. In

Squeak, change sets represent means to manually

organize changes to easily �le-out and share them,

for example, via mailing lists. There is a tool called

Change Sorter, which supports moving changes be-

tween sets in case the developer forgot to switch

before starting her activity. Having this, Squeak

provides a local history of everything that happens

in the programming environment. However, not all

changes are reversible per se but, at the least, they

can be replayed.

The Smalltalk community has a vcs called

SqueakSource†6 and an in-image tool called Monti-

cello as counterpart (left in Figure 2). When com-

mitting changes, Monticello only sees the latest ver-

sions of classes and methods. Cherry-picking is sup-

ported at the level of methods�not lines or ranges

of text.

We make use of a recent research project called

CoExist [26], which extends Squeak's change

model by storing data to revert changes. It also

adds the capability to Monticello to store �ne-

granular changes in SqueakSource such as two con-

secutive modi�cations of the same method. In that

sense, CoExist elevates the �ne-granular but local

change tracking of Squeak to the level of Monticel-

lo/SqueakSource, which is now comparable to other

vcss.

Having this, we created Thresher for Squeak/S-

malltalk but are arguably able to transfer our �nd-

ings to other programming languages, tools, and

environments.

3. 4 The Vivide Tool Building Frame-

work

We implemented our tool Thresher with the

Vivide
†7 tool building framework [28]. Vivide pro-

vides a direct mapping between all graphical parts

†5 Except for this section, we do not use the term
change set in a Squeak-speci�c way but in a
broader sense throughout this paper.

†6 http://www.squeaksource.com

†7 https://github.com/hpi-swa/vivide

of the user interface and the internal tool logic. It

is implemented in Squeak/Smalltalk and builds on

top of the Morphic framework, which supports di-

rect manipulation of all graphical objects. Hav-

ing this, the developer can easily �nd responsible

data transformation scripts starting from a visual

impression and express modi�cations in the script

source code. Due to this simple yet powerful ab-

straction, the framework can update all running

tools consistently. Thus, Vivide is both a program-

ming environment and a tool building framework.

Building tools means composing widgets and writ-

ing script code.

The underlying concept of Vivide, that is de-

scribing tools as data processing pipelines, �ts to

our idea of con�gurable and combinable analysis

stages for grouping changes. Developers open it af-

ter �nishing a programming session to assemble re-

cent changes into groups, add descriptive messages,

and eventually commit them to the vcs with only

a few clicks.

4 Thresher

In this section, we explain structure and use of

our tool as well as details about how changes are

processed with scripts. The name �thresher� de-

rives from the fact that we want to identify all

changes that belong to a certain activity and ig-

nore the rest (for now)�just like the agricultural

machine does with winnowing.

4. 1 Changes, Groups, and Recommenda-

tions

The overall goal is to make developers commit co-

herent and complete change sets with a descriptive

message. We classify a change set as coherent if it

contains only changes that origin from a single ac-

tivity; it is complete if it contains all changes from

that (completed) activity. In Thresher, scripts

support to detect activity continuations and thus

grouping changes coherently. Completeness might

often not be achieved on a scripting level because

some developer knowledge might be hard to express

or even ambiguous. Then, manual grouping via

Thresher's graphical interface will take place.

There are multiple scripts that modularize the

change analysis process in a sequence of stages. At

the �rst stage, each change has its own group as-

suming that each change belongs to its own pro-

Fig. 3 Thresher works bottom-up: groups of

changes will be merged (1-3) according to

scriptable rules. There are no partial merges

(4) but recommendations (5a) to be resolved

manually by the developer.

gramming activity. Intermediate stages either ex-

pand those groups by merging them or propose rec-

ommendations to be resolved manually. In the last

stage, each resulting group is meant to be com-

mitted to the vcs. The concept is illustrated in

Figure 3.

In script code, programmers can iterate over all

changes, check for speci�c properties, and assign

matches to new groups. Those checks depend on

the information available; a stage may also add new

information to changes by integrating external data

sources. For example, results of static or dynamic

code analysis can be embedded this way.

4. 2 The Graphical Interface

Thresher's graphical user interface is shown in

Figure 4. It consists of four main views:

À Sources View shows a chronologically or-

dered list with all recent changes. The order

can be adapted.

Á Result View shows resulting groups and rec-

ommendations. Developers can resolve recom-

mendations with button clicks, change groups

via drag-and-drop, and add descriptive mes-

sages.

Â Di� View shows details about all selected

groups to support developers to revise their de-

cisions in detail.

Ã Stages View reveals intermediate results of

the involved scripts, supports adapting (ad-

d/remove/reorder) them as well as reviewing

(or debugging) their e�ects.

There are several tasks that the developer accom-

plishes when working with Thresher. Those de-

scribe a seamless work�ow and should encourage to

follow best practices by committing only coherent,

complete change sets as well as adding descriptive

messages.

At �rst, the freshly opened Thresher window

analyzes recent changes with the existing scripts

to form groups and add recommendations. The

source view À lists all changes chronologically with

a distinct label. The result view Á shows all result-

ing groups, which contain these changes and maybe

several ungrouped†8 ones. At the top of that view,

discarded changes are listed such as recognized de-

bugging code. All groups get monogram labels for

easier recognition. At this point, the di� view Â is

not used because no group is selected.

After that, the developer reviews all group's con-

tents to verify coherence and completeness. Select-

ing a group in the result view Á will reveal more

details in the di� view and highlight the contents,

which are automatically selected in the source view.

Any group can be marked as ready-to-commit by

clicking the checkbox near the group name. This

will separate that group visually by moving it to

the top as shown in Figure 4 for the group �bug �x:

less than key.�

Group C contains 6 changes and 4 recommen-

dations, which are highlighted in blue and orange.

To see the content of single changes, the developer

can hover over one of them in the source view.

To discard the changes, the developer selects them

and drag-drops them onto the �Discarded Changes�

group.

Recommendations can either be single changes

or whole groups as proposed by previous stages.

When hovering over a recommendation, the reason

is shown in a tooltip (Figure 4, bottom right). The

developer can accept recommendations by clicking

the tick-icon next to it; the cross-icon rejects it.

After resolving all recommendations, the devel-

oper can merge groups if she discovers a more ap-

propriate intent. This happens by simply drag-and-

drop groups on top of each other. It is also possi-

†8 With �ungrouped� or �single changes� we mean
single-change groups.

Fig. 4 The main views of Thresher: À local, uncommitted changes, Á computed change sets

with recommendations, and Â detailed source code di�s.

ble to move selected changes (or groups) between

groups.

Finally after reviewing a group, the developer

can propose a descriptive name, which is displayed

as the group's name to help identify complete

ones. When she decides to commit, name and

description are used as commit message. Besides

manual naming, a short description of structural

changes is appended automatically such as �added

class SWA18World� and �modi�ed method Player >>

render:.�

4. 3 Scripting and Stages View

Developers can accommodate domain or project-

speci�c needs by adding, removing, or reordering

stages. Each stage has a current script, which

developers can access, modify, and re-execute to

update the results. Once visible, the stages view

(Figure 5 resp. Ã in Figure 4) shows intermediate

grouping results. Scripts access the change model

and create groups with the help of a grouper like

this:

[:grouper | |newGroup|

newGroup := CustomGroup new.

grouper allChanges do: [:change | "See below."].

grouper addGroup: newGroup.

].

In our implementation, the scripting language is

Smalltalk and scripts are just blocks evaluated with

the grouper instance automatically. Each script

is like an anonymous function that will be called

with a grouper as argument. That function has

no return value but can trigger side e�ects via the

grouper's interface, that is, creating and adding

groups of changes.

If there are already existing groups, developers

can inspect their contents and consider them. At

the beginning, there are as many groups as there

are changes. For each match in a script, that

change's current group is fetched and the nested

structure of groups (Figure 3) is extended. The

following snippet extends the example above:

"..." [:change |

change property = 'SomeFilter' ifTrue: [

group add: (

(grouper groupOf: change) -> 'Reason for

addition.'

)]]. "..."

To write e�ective scripts, developers need to

know about possible change properties and the

scripting language to write scripts. Here, �lters

have the conciseness and expressiveness of the

Smalltalk language and are only limited by the en-

vironment's loaded libraries. In particular, external

data sources may also be queried and their answers

used in such expressions. For example, one might

think of a library that supports connecting email

accounts with source code and hence reveal fur-

ther information about the original author of the

changed piece of code.

Thresher's scripting capabilities can be summa-

rized like this: Scripts are high-level descriptions

of change characteristics and create or merge appro-

priate groups while using a grouper for navigation.

Di�erent group classes represent distinct change

characteristics with an optional pivot change for

identi�cation. Initially, each change is in a single-

change group. Arbitrary changes can be put into a

custom group. Groups are unit of reuse in scripts.

A grouper supports navigating changes in the cur-

rent group hierarchy and manages top-level groups

across all scripts. It is not meant to be extended.

Recommendations are created automatically if

changes are associated with two distinct groups.

To present a more elaborate example, the fol-

lowing script analyzes changes for method addi-

tions/removals and combines them with all other

method changes that update corresponding mes-

sage sends:

[:grouper |

grouper allChanges

select: [:change | change

isMethodAddOrRemove]

thenDo: [:pivot | | group |

group := MethodAddOrRemoveGroup new.

group add: (

(grouper groupOf: pivot) -> pivot name).

grouper methodChanges do: [:change |

"1) Check for removed methods."

pivot isRemoval &

(change isSendRemoved: pivot) ifTrue: [

group add: (

(grouper groupOf: change)

-> ('Send removed:', pivot

selector)].

"2) Check for added methods."

pivot isAddition &

(change isSendAdded: pivot) ifTrue: [

group add: (

(grouper groupOf: change)

-> ('Send added:', pivot

selector)]].

"Add new group to hierarchy."

grouper addGroup: group]].

Here, associations, which attach a textual de-

scription as reason to each change, are used to �ll

groups with changes. Developers do not have to

provide reasons but debugging unexpected results

can bene�t from such contextual explanations.

With only 19 lines of Smalltalk code, the devel-

oper can automate such an untangling of changes.

If existing changes are ungrouped, the grouper will

just create new groups. If they were already as-

signed to groups in preceding stages, Thresher

will handle con�ict resolution and may add recom-

mendations because changes can only have a single

group. Developers do not have to deal with con�ict

handling when writing scripts.

Scripts can also modify existing groups that were

created by previous stages. By default, scripts

do not modify previous decisions but add, merge,

or recommend new changes from emerging groups.

For example, two groups of the same kind such

as MethodAddOrRemoveGroup are usually merged and

not added as sub-groups. Eventually, top-level

groups are important for the developer because

those groups are meant to be committed.

4. 4 A Foundation of Scripts

We implemented a set of complementary scripts

that aim for detecting most characteristics as ex-

tracted from several programming sessions [27]. In

most cases, they use structural/code change infor-

mation but they may also consider chronological

a�nity. Having this, they encode the Smalltalk

language characteristics besides Squeak's change

model and hence serve as a valid baseline for

other projects in the Squeak/Smalltalk environ-

ment. Due to space constraints we cannot print all

scripts' details here but will only summarize their

intents:

1. Consecutive grouping All consecutive

changes on the same source code artifact†9 are
grouped.

2. Refactoring grouping All changes that

were triggered by tool-driven refactorings are

grouped. Depends in respective hints being

present in the change data.

3. Renaming grouping Detects a manual or

tool-driven renaming of a source code artifact

and groups it with all consecutive changes of

the same kind. A�ects also renamed variables.

4. Organizing grouping All consecutive changes

that reorganize software artifacts are grouped.

This includes class categories and method pro-

tocols.

5. Added/removed-method grouping The

addition or removal of a method is grouped

with all changes that update the respective

†9 Source code artifacts can be packages, classes, or
methods.

message sends in the source code. Applies

static analysis to locate all sends.

6. Added/removed-variable grouping The

addition or removal of an instance/class vari-

able is grouped with all changes that update

the respective references in the source code.

7. Added/removed-class grouping The ad-

dition or removal of a class is grouped with all

changes that concern this class' methods, vari-

ables, and references.

The last three stages add recommendations:

8. Close-to-artifact recommendation Single

changes are recommended to groups whose

changes a�ect the same artifact. Considers

chronological a�nity.

9. Close-to-polymorphism recommendation

Single changes are recommended to groups that

concern method additions/removals but are

ambiguous due to polymorphism. Considers

chronological a�nity.

10. Pretty-print recommendation Single

changes of cosmetic nature are recommended

to groups whose changes a�ect the same arti-

fact if chronological a�nity is high. If there is

no such group, those changes are merged into a

new group. Such changes include modi�cation

of whitespace or comments, renaming of tem-

poral variables, or cascading message sends.

Having this, the scripts do not detect activity

switches but rather describe continuations. From

one stage to another, scripts merge existing groups

of changes into bigger ones. Therefore, the or-

der of scripts can in�uence the results. For now,

Thresher should stop processing if further merg-

ing might decrease coherence of groups. Splitting

up groups in scripts and hence describe activity

switches would be a valuable addition to our con-

cept and is considered future work.

5 Evaluation of Scripts

In this section, we evaluate the accuracy of the

basic scripts in Thresher, which we derived from

a programming study [27]. We then estimate the

manual e�ort that remains to complete the map-

ping of all changes to their activities�by interact-

ing with the tool's graphical interface.

We have not yet evaluated to overall utility of

Thresher. To some extent, we rely on the pos-

itive e�ects of the Vivide programming environ-

ment, in which Thresher runs. This, however,

remains subject to further research.

5. 1 Analyzing Programming Sessions

Our proposed scripts are based on sample

data, which Steinert et al. collected during a lab

study [27] with 22 developers that had the task to

improve source code of a game in 2-hour sessions.

The number of changes range from 40 to 250 per

session. We manually mapped those changes to

activities, which included debugging, refactoring,

and code clean-up. Having this, we derived several

scripts that should automate this mapping process

in terms of coherent groups of consecutive changes

and which can be combined to assemble scattered

change runs. Reconsider Figure 1 for the distinc-

tion of tangled and scattered changes.

In particular, we chose 5 out of the 22 sessions

as representatives because their changes contained

many refactorings or frequently interrupted activi-

ties with much tangling and many revisions; some

of them contained at least one larger refactoring.

We reviewed each �ne-grained change manually

and added it to coherent, complete sets to get kind

of a gold standard for our analysis. Some developers

created their own commits with Monticello, which

we only partially took into account because at that

time, it forced them to commit all changes at once.

We did not interview the developers but were fa-

miliar with the domain of the game and its source

code. Eventually, we identi�ed recurring character-

istics that indicate strong relationships or obvious

activity switches as summarized in Table 1. We

used the 6th data set to �simulate� a programming

session whose contents were not explicitly used to

derive those scripts.

5. 2 Method

We quantify the accuracy of Thresher's basic

scripts as well as the manual e�ort that is neces-

sary to get an ideal result.

For the accuracy, we compare the expected set of

related changes with the calculated one. Let the ex-

pected groups be AE = {3, 5, 6} and BE = {1, 2, 4}
where digits indicate a change's running number.

Let the calculated groups be AC = {3, 5}, BC =

{6}, and CC = {1, 2, 4}. The expected set of rela-

Fig. 5 The stages view in Thresher supports exploring intermediate results and adapting the

scripts.

Characteristics Data sets

Programming breaks between di�erent refactorings (activity switch) I II IV

Changed statements for debugging output or breakpoints (to be ignored) I V

Consecutive changes in the same artifact I II III IV V

Consecutive renamings of artifacts including updates of their uses in the code IV

Consecutive reorganization of methods' protocols I V VI

Changes of methods in di�erent classes with shared protocol I III V VI

Similar patterns in identi�ers of artifacts II III IV VI

Added/removed a method and update their uses I II III IV V VI

Added/removed an instance/class variable and update their uses I IV V VI

Added a class and initial methods/variables as well as initial uses I VI

Removed a class and update their uses I II III V VI

Table 1 Characteristics that rendered data sets interesting for deriving a foundation of scripts in

Thresher.

tions would be

E = {{1, 2}, {1, 4}, {2, 4}, {3, 5}, {3, 6}, {5, 6}}
and the calculated one would be

C = {{1, 2}, {1, 4}, {2, 4}, {3, 5}}
by expanding the groups into pair sets. The preci-

sion is now de�ned as P = |E ∩ C| / |C| and recall

as R = |E ∩ C| / |E|. Both describe the accuracy of

our scripts' results, respectively quality and quan-

tity, as known from the domain of information re-

trieval [30]. In this example, precision is 1.0 (100%)

and recall is 0.67 (67%), which indicates that all

calculated groups are coherent but manual review-

ing and merging is required for completion.

For the manual e�ort, we think of two extremes:

developers either are directly able to assign changes

to activities after reviewing them once (min =

2·nchanges), or they have to look through all changes

for each activity again (max = nactivities · nchanges).

When using Thresher, this e�ort is reduced be-

cause it depends on the number of proposed groups

instead of single changes. The developer clicks

to accept/reject single recommendations or all at

once. Drag-and-drop interactions can merge groups

or single changes.

5. 3 Results

We got a precision of 96% to 100% for our �ve

data sets as summarized in Table 2. Having this, we

met our goal of avoiding false-positives in groups by

favoring coherence over completeness in the scripts.

The upper part in the table shows information

about the session size by means of number of

changes and number of expected groups. The mid-

dle part shows the accuracy as described above. It

includes the number of calculated groups that ex-

actly match the expected commits and the number

of recommendations that should help reduce man-

ual e�ort. The lower part approximates the manual

e�ort including the minimal amount of click/drag-

and-drop actions in the user interface.

The recall indicates that 33% to 57% of the re-

lations, which express activity continuation, were

detected by our scripts. For the data set V, we sim-

ply adapted the script to increase recall; we expect

developers to do the same when facing many small

groups. Regarding the number of groups compared

to the expected commits, an expected commit is

roughly spread over two to three groups. Since

some commits were completely detected (see �#

Exact Matches�), other commits are spread over

more than three groups.

We explicitly counted the number of manual ac-

tions; this number can be approximated as two

times the number of expected commits because this

corresponds to the distribution of commits over

proposed groups. For some data sets this is even

less, which means that the given recommendations

help reduce manual e�ort. Notice that the devel-

oper could also accept or reject all recommenda-

tions for a particular group with a single click.

Programming session VI was analyzed to give a

�rst impression of the quality and reusability of

Thresher's base scripts. We extracted patterns

from sessions I to V, which had to be adapted to

consider several corner cases in session V. A pre-

cision of 100% and a recall of 25% for session VI,

however, indicate a satisfying result without fur-

ther adaptation needed. The developer does only

have to assemble the proposed groups with the help

of recommendations and manual drag-and-drop in-

teractions.

5. 4 Discussion and Threats to Validity

After the manual analysis of all changes, we con-

�rmed that Thresher's scripts cannot run fully

automated but developers have to intervene. On

the one hand, several decisions rely on the de-

veloper's insights in the particular domain and

project, which were not materialized in the change

data. On the other hand, our scripts may not cor-

rectly re�ect the characteristics found. Although

we cross-checked several characteristics among us,

there was not always consensus. For example,

there were several method extractions across the

code base and one of us argued to combine them

into a refactoring group but another one would

rather consider more domain-speci�c information

and split them apart. We found similar conclusions

in [6] [10] [25]. Thresher is well suited to interac-

tively help developers to decide which particular

characteristics to pursue and when to merge pro-

posed groups.

We derived the scripts and tool requirements

from only 5 programming sessions. Although

we found an arguably representative spectrum of

change characteristics for the Squeak/Smalltalk

programming environment, other sessions may con-

tain more special cases. As di�erent kinds of activi-

ties in�uence the number and structure of changes,

we should analyze more sessions that do not mainly

deal with refactorings and bug �xing but also with

feature implementations like classi�ed by Hattori

et al. [11]. Those could reveal further characteris-

tics [23] [32] such as more additions and less modi-

�cations of methods.

The concept of recommendations accounts for

scripts' interdependence; it helps developers ad-

just the proposed groups before committing them.

However, misleading recommendations may neg-

atively a�ect the coherence of a change set.

Thresher can miss to recommend the actually cor-

rect group; we have no means to prevent that.

Our scripts detect activity continuations rather

than switches and thus related changes rather than

Data set I II III IV V V* VI

Number of Changes 121 57 39 74 157 157 211

Number of Expected Groups 8 5 6 7 4 4 4

Accuracy

Number of Calculated Groups 20 10 7 12 58 34 40

Number of Exact Matches 1 3 4 1 1 1 0

Number of Recommendations 20 4 2 21 32 31 22

Precision (%) 96 100 100 100 100 100 100

Recall (%) 35 43 57 35 1 33 25

E�ort

Minimum Interactions 242 114 78 148 314 422

with Thresher 40 20 14 24 116 48 80

Maximum Interactions 968 285 234 518 628 - 844

with Thresher 160 50 42 84 232 96 160

Ratio (%) 17 18 18 16 37 15 19

Number of Manual Merge Actions 16 6 4 14 - 16 31

Table 2 Evaluation results comparing manual analysis (expected groups) with the scripts of

Thresher (calculated groups). [* Scripts adapted for V due to low recall]

checking for �unrelatedness�; which is undecid-

able [13]. This may be contrary to how developers

would manually select coherent change sets from a

chronologically ordered list of recent changes. Ad-

ditionally, our scripts do not cope with successive

activities but would merge them into a single one.

For example, the developer may rename methods as

a refactoring (A) and then use those to implement

a new feature (B succeeding A).

We reduced the implementation and computa-

tion e�ort of the scripts by prepending a static anal-

ysis of the methods' source code to add useful infor-

mation such as changed references, variables, and

message sends. When implementing such a tool in a

di�erent environment, the bene�ts of such caching

depends on the existing change model.

Our scripts only detect low-level relations be-

tween changes. Future work should include more

abstract characteristics such as design patterns [9]

as previously investigated by [15] [19]. Dynamic

analysis could also reveal interesting relations by,

for example, collecting concrete type informa-

tion [12] to be used in scripts.

Applicability to other object-oriented languages

is straightforward because the concept of classes

and methods is re�ected in many of our scripts.

Languages with fundamentally di�erent concepts,

such as logic programming, may reveal quite dif-

ferent characteristics. The scripting language may

also di�er from the one used in the programming

environment, which was not the case in Squeak/S-

malltalk.

6 Hypotheses and Future Work

Based on our experience with implementing

Thresher in Squeak/Smalltalk and providing a

foundation of scripts based on the lab study [27],

we derive the following hypotheses:

• Given a foundation of scripts that consid-

ers a particular programming language and its

change model, developers will rarely have to

adapt those scripts except for project-speci�c

needs.

• If developers are knowledgeable about the

scripting capabilities in such a commit tool,

they are more likely to improve their personal

work�ow by taking advantage of that.

• If developers adapt such scripts for project-

speci�c needs, they will make fewer mistakes

and save time during the commit process.

Besides running experiments to test those hy-

potheses, we are eager to improve the general idea

of how �ne-granular changes might be combined

into coherent and complete groups. In addition to

describing on the continuity of activities between

changes, we think that it is important to also split

up bigger groups to indicate activity switches and

thus separate commits. Finally, expressing rules of

dependency relationships in scripts is valuable so

that the correct commit order of change sets can

be ensured, too.

Furthermore, we want to try out visualizations

based on structures other than lists, tables, or

trees. For example, recommendations across group

boundaries might be better displayed with a graph

similar to Figure 3. Finally, we have to general-

ize our scripting approach to other programming

systems and their change models. File-based mod-

els, for example, may reveal di�erent traits than

object-based ones.

For all these improvements, we see a need for data

from programming sessions that go beyond simple

refactoring tasks such as adding features or �xing

bugs. Only then, we can establish a useful scripting

interface to support programmers to accommodate

project-speci�c requirements.

7 Conclusion

We presented Thresher, a scriptable, interac-

tive, graphical tool that developers can use af-

ter programming sessions to identify coherent and

complete sets of �ne-granular changes to be com-

mitted to a vcs. A foundation of scripts automat-

ically detects related changes that indicate activ-

ity continuations; developers then manually assem-

ble those scattered groups into complete activity

descriptions. We argue that it is very important

to involve the actual developer into this process

because there is much tacit knowledge about the

project and its domain that cannot be manifested

in code or change structures.

We showed that our foundation of scripts propose

groups with a precision of almost 100% indicating

that developers can rely on their coherence and fo-

cus on adjusting their completeness with respect to

an activity. We argue that such tool support pro-

motes the usage of �ne-granular changes, which is

bene�cial for explorative programming strategies�

omitting explicit checkpoints�and detailed track-

ing of project histories.

Acknowledgments

We wish to thank Jens Lincke, Lena Herscheid,

Lysann Schlegel, Mark Rooney, Marko Röder, and

Philipp Tessenow for fruitful discussions and valu-

able feedback. We gratefully acknowledge the �-

nancial support of HPI's Research School†10 and

the Hasso Plattner Design Thinking Research Pro-

gram.†11

References

[1] M. Barnett, C. Bird, J. Brunet, and S. K. Lahiri.
Helping developers help themselves: Automatic de-
composition of code review changesets. Proceeding

of the 37rd International Conference on Software

Engineering (ICSE), ACM/IEEE, 2015.
[2] B. W. Boehm. The high cost of software. Prac-
tical Strategies for Developing Large Software Sys-

tems, pages 3�15, 1975.
[3] S. A. Bohner and R. S. Arnold. Software Change
Impact Analysis. John Wiley & Sons, 1996.

[4] M. Borg and P. Runeson. Changes, evolution,
and bugs: Recommendation systems for issue man-
agement. In Recommendation systems in software

engineering, pages 477�509. Springer, 2014.
[5] R. P. L. Buse and W. R. Weimer. Automat-
ically documenting program changes. In Proceed-

ings of the 25th International Conference on Au-

tomated Software Engineering (ASE), pages 33�42.
IEEE/ACM, 2010.

[6] I. D. Coman and A. Sillitti. Automated identi�-
cation of tasks in development sessions. In Proceed-

ings of the 16th IEEE International Conference on

Program Comprehension (ICPC), pages 212�217.
IEEE, 2008.

[7] P. M. Duvall, S. Matyas, and A. Glover. Con-

tinuous integration: Improving software quality and

reducing risk. Pearson Education, 2007.
[8] R. P. Gabriel. I Throw Itching Powder at Tulips.
In Proceedings of Onward! Essays. ACM, 2014 (to
be published).

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design patterns: Elements of reusable object-

oriented software. Pearson Education, 1994.
[10] N. Gold and A. Mohan. A framework for un-
derstanding conceptual changes in evolving source
code. In Proceedings of the 19th International Con-

ference on Software Maintenance (ICSM), pages
431�439. IEEE, 2003.

[11] L. P. Hattori and M. Lanza. On the na-
ture of commits. Proceedings of the 23rd Inter-

national Conference on Automated Software Engi-

neering Workshops, pages 63�71, 2008.
[12] M. Haupt, M. Perscheid, and R. Hirschfeld.
Type harvesting: A practical approach to obtaining
typing information in dynamic programming lan-
guages. In Proceedings of the 2011 Symposium on

Applied Computing (SAC), pages 1282�1289. ACM,
2011.

†10 www.hpi.uni-potsdam.de/research_school

†11 www.hpi.de/en/research/design-thinking-

research-program

[13] K. Herzig and A. Zeller. Untangling changes.
Unpublished manuscript, September, 2011. http://
www.st.cs.uni-saarland.de/publications/files/

herzig-tmp-2011.pdf, accessed: July 1, 2014.
[14] K. Herzig and A. Zeller. The impact of tangled
code changes. In Proceedings of the 10th Interna-

tional Workshop on Mining Software Repositories

(MSR), pages 121�130. IEEE, 2013.
[15] D. Heuzeroth, T. Holl, G. Hogstrom, and
W. Lowe. Automatic design pattern detection. In
Proceedings of the 11th International Workshop on

Program Comprehension (IWPC), pages 94�103.
IEEE, 2003.

[16] D. Kawrykow and M. P. Robillard. Non-essential
changes in version histories. In Proceedings of the

33rd International Conference on Software Engi-

neering (ICSE), page 351, ACM/IEEE, 2011.
[17] M. Kim and D. Notkin. Discovering and repre-
senting systematic code changes. In Proceedings of

the 31st International Conference on Software En-

gineering (ICSE), pages 309�319. IEEE, 2009.
[18] A. J. Ko, R. DeLine, and G. Venolia. Infor-
mation Needs in Collocated Software Development
Teams. In Proceedings of the 29th International

Conference on Software Engineering (ICSE), pages
344�353. ACM/IEEE, 2007.

[19] C. Kramer and L. Prechelt. Design recovery
by automated search for structural design patterns
in object-oriented software. In Proceedings of the

3rd Working Conference on Reverse Engineering

(WCRE), pages 208�215. IEEE, 1996.
[20] A. Kuhn and M. Stocker. CodeTimeline: Sto-
rytelling with Versioning Data. In International

Conference on Software Engineering (ICSE), pages
1333�1336. IEEE/ACM, 2012.

[21] A. Meyer, T. Fritz, G. C. Murphy, and T. Zim-
mermann. Software Developersâ�� Perceptions of
Productivity. SIGSOFT FSE, ACM, 2014.

[22] R. Robbes and M. Lanza. A change-based ap-
proach to software evolution. Electronic Notes in

Theoretical Computer Science, 166:93�109, 2007.
[23] R. Robbes and M. Lanza. Characterizing and
understanding development sessions. In Proceedings
of the 15th International Conference on Program

Comprehension (ICPC). IEEE, 2007.
[24] R. Robbes, D. Pollet, and M. Lanza. Logical
coupling based on �ne-grained change information.
In Proceedings of the 15th Working Conference on

Reverse Engineering (WCRE), pages 42�46. IEEE,
2008.

[25] M. P. Robillard, W. Coelho, and G. C. Mur-

phy. How e�ective developers investigate source
code: An exploratory study. IEEE Transactions

on Software Engineering, 30(12):889�903, 2004.
[26] B. Steinert, D. Cassou, and R. Hirschfeld.
CoExist: Overcoming aversion to change - Preserv-
ing immediate access to source code and run-time
information of previous development states. In Pro-
ceedings of the 8th Symposium on Dynamic lan-

guages (DLS), pages 107�118. ACM, 2012.
[27] B. Steinert and R. Hirschfeld. How to com-
pare performance in program design activities: To-
wards an empirical evaluation of CoExist. In De-

sign Thinking Research: Understanding Innova-

tion, pages 219�238. Springer, 2014.
[28] M. Taeumel, M. Perscheid, B. Steinert,
J. Lincke, and R. Hirschfeld. Interleaving of Modi�-
cation and Use in Data-driven Tool Development.
In Proceedings of the ACM Symposium for New

Ideas, New Paradigms, and Re�ections on Every-

thing to do with Programming and Software (On-

ward!), pages 185�200. ACM, 2014.
[29] Y. Tao, Y. Dang, T. Xie, D. Zhang, and
S. Kim. How do software engineers understand code
changes?: An exploratory study in industry. In Pro-
ceedings of the ACM SIGSOFT 20th International

Symposium on the Foundations of Software Engi-

neering, page 51. ACM, 2012.
[30] C. J. van Rijsbergen. Information retrieval (sec-

ond edition). Butterworths, 1979.
[31] A. von Mayrhauser and A. M. Vans. Program
comprehension during software maintenance and
evolution. Computer (IEEE), 28(8):44�55, 1995.

[32] B. J. Williams and J. C. Carver. Characterizing
software architecture changes: A systematic review.
Information and Software Technology, 52(1):31�51,
2010.

[33] Y. S. Yoon and B. A. Myers. Capturing and
Analyzing Low-Level Events from the Code Ed-
itor. In International Workshop on Evaluation

and Usability of Programming Languages and Tools

(PLATEAU), pages 25�30, 2011.
[34] Y. S. Yoon, B. A. Myers, and S. Koo. Vi-
sualization of Fine-grained Code Change History.
In Proceedings of the 2013 IEEE Symposium on

Visual Languages and Human-centric Computing

(VL/HCC), pages 119�126. IEEE, 2013.
[35] L. Zou and M. W. Godfrey. An industrial case
study of Coman's automated task detection algo-
rithm: What worked, what didn't, and why. In
Proceedings of the 28th International Conference on

Software Maintenance (ICSM), pages 6�14. IEEE,
2012.

