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ABSTRACT
Algebraic effect handlers and delimited control operators are lan-

guage facilities for expressing computational effects. Their labeled

variations can express multiple kinds of exceptions, multiple states,

and so on. We prove that labeled effect handlers and labeled control

operators have equal expressive power. To show this, we develop a

type-sound calculus for each facility and define macro translations

between the typed calculi. The established equivalence can be used

to understand and implement one facility in terms of the other.
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1 INTRODUCTION
Algebraic effect handlers [20, 21] and delimited control opera-

tors [4, 6] are being introduced into programming languages as a

facility for expressing various computational effects. For example,

the OCaml team released a new version that provides effect han-

dlers as a primitive construct
1
. The Haskell steering committee has

recently accepted a GHC proposal to add delimited control primi-

tives
2
. The Scala community is also developing similar facilities for

implementing suspensions
3
.

1
https://v2.ocaml.org/releases/5.0/manual/effects.html

2
https://downloads.haskell.org/ghc/9.6.2/docs/users_guide/9.6.1-notes.html

3
https://github.com/lampepfl/async

Author copy; to appear in Proceedings of PPDP 2023.

Effect handlers and control operators in the above-mentioned

languages are labeled, allowing the programmer to specify the

intended association between effect-yielding constructs and effect-

delimiting constructs. These labels are called effect instances [1, 2]

in the context of the effect handlers, and prompt tags in the context

of control operators [9, 22]. Labels are useful for mixing different

kinds of effects, such as exceptions and state, and for distinguishing

between different instances of the same effect, like multiple states.

While labeled effect handlers and labeled control operators have

the same basic functionality, namely capturing a continuation be-

tween two specific points, their precise relationship has not yet been

established. This makes it unclear, for instance, whether one can

correctly implement one facility in terms of the other. Fortunately,

in the unlabeled setting, it has already been proved that effect han-

dlers and control operators have equal expressive power [10, 19].

The result is witnessed by a pair of macro translations [6] between a

calculus with effect handlers and a calculus with control operators.

Thus, we would naturally expect that the equivalence holds in the

labeled setting as well, and that it can be established following a

similar approach to previous work.

Establishing the equivalence between labeled facilities requires

solving a challenge called the name escaping problem [25]. That

is, labels may escape their scope during evaluation if not handled

carefully by the type system. For labeled effect handlers, there

are several sound type systems that address the issue of name

escaping [1, 25], but for labeled control operators, there is currently

no satisfactory type system.

The aim of this paper is to show the equivalence of expressive

power between labeled effect handlers and labeled control operators.

The equivalence can be used for both theoretical and implementa-

tion purposes. As an example, one can derive the CPS translation of

labeled effect handlers from the CPS translation of labeled control

operators, as Cong and Asai [3] do in the unlabeled setting. As a

different example, one can implement labeled effect handlers us-

ing labeled control operators, along the same lines as Kammar et

al.’s [12] implementation of unlabeled effect handlers by unlabeled

control operators.

To establish the equivalence, we first formalize typed calculi that

have labeled effect facilities. We consider two flavors of labels: static

ones, which are chosen from a globally defined set, and generative

ones, which are generated during evaluation. For each combination

of effect facilities and labels, we design a type system that prevents

escaping of labels. Then, for each pair of calculi with the same

flavor of labels, we define macro translations [6] between them.

In this paper, we make the following contributions. A pictorial

summary can be found in Figure 1.

https://orcid.org/0000-0003-4452-6592
https://orcid.org/0000-0003-2315-6182
https://orcid.org/0000-0002-8837-5303
https://doi.org/10.1145/3610612.3610616
https://v2.ocaml.org/releases/5.0/manual/effects.html
https://downloads.haskell.org/ghc/9.6.2/docs/users_guide/9.6.1-notes.html
https://github.com/lampepfl/async
https://doi.org/10.1145/3610612.3610616
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Figure 1: Summary of Contributions

• We formalize four calculi (_𝑙
eff

, _𝑙del, _
𝑙+[
eff

, and _
𝑙+[
del) covering

all combinations of effect handlers/control operators and

static/generative labels, and prove their soundness.

• We define four macro translations (V·W𝑙 , T·U𝑙 , V·W𝑙+[ and

T·U𝑙+[ ) between effect handlers and control operators with

the same flavor of labels, and prove their meaning and type

preservation.

The rest of the paper is structured as follows. In Section 2, we

give a gentle introduction to effect handlers, control operators, and

macro expressibility. In Section 3, we formalize _core, a calculus

that serve as the common basis for the extended calculi. Then

in Sections 4 and 5, we extend _core with different labeled effect

facilities and investigate the relationship between the extended

calculi. We discuss related work in Section 6 and conclude the

paper in Section 7.

For space reasons, we do not include the proofs of theorems in the

paper, as a technical appendix, which is available at: https://prg.is.

titech.ac.jp/en/projects/typesystem/translations-between-effectful-

calculi/.

2 BACKGROUND
2.1 Algebraic Effect Handlers
Algebraic effect handlers [20, 21] are a generalization of exception

handlers. The facility consists of operations that cause effects and

handlers that determine the interpretation of operations. When an

operation performs an effect, it is handled by the innermost handler

surrounding it. Then, the handler executes the corresponding oper-

ation clause. For simplicity, we consider a setting where we have

only one operation do. This does not lead to loss of expressiveness

when effect handlers are labeled, as discussed in [2].

As an example, let us consider a reader effect that represents a

read-only state.

handle do () with {𝑥, 𝑟 .𝑟 1;𝑥 .𝑥 + 1}
→∗ 𝑟 1 (𝑟 = _𝑧.handle 𝑧 with {𝑥, 𝑟 ′ .𝑟 ′ 1;𝑥 .𝑥 + 1})
→ handle 1 with {𝑥, 𝑟 ′ .𝑟 ′ 1;𝑥 .𝑥 + 1}
→ 𝑥 + 1 (𝑥 = 1)
→ 2

The reduction goes as follows. First, the operation call do () is

handled by the surrounding handler. The handler executes the

operation clause 𝑥, 𝑟 .𝑟 1, which says it resumes evaluation with the

value 1 using the continuation 𝑟 . The continuation 𝑟 represents the

rest of the computation from the operation call to the innermost

handler. The value 1 is the current value of the read-only state. Next,
the application 𝑟 1 reduces to handle 1 with {𝑥, 𝑟 ′ .𝑟 ′ 1;𝑥 .𝑥 + 1}.
Then, the handler executes the return clause 𝑥 .𝑥 +1, which specifies
the post-processing of the value that the handled expression reduces

to. Therefore, the whole program reduces to 2.

2.2 Delimited Control Operators
Delimited control operators [6, 8, 11] are a traditional tool for ma-

nipulating control flow. The facility consists of a control operator

that captures the current continuation and a delimiter that specifies

the extent of the continuation to be captured. Among different

variations of control operators, we consider shift0 and dollar [18],
where the former is a control operator and the latter is a delimiter.

Note that we use ⟨· | ·⟩ for the notation of the dollar operator.

As an example, let us consider the following expression, which

again encodes a reader effect.

⟨shift0 𝑘. 𝑘 | 𝑥 . 𝑥 + 1⟩ 1
→∗ 𝑘 1 (𝑘 = _𝑧.⟨𝑧 | 𝑥 . 𝑥 + 1⟩)
→ ⟨1 | 𝑥 . 𝑥 + 1⟩
→ 𝑥 + 1 (𝑥 = 1)
→ 2

The reduction goes as follows. First, the shift0 operator captures
the continuation 𝑘 up to the innermost dollar operator, and executes

the body 𝑘 . Second, the application 𝑘 1 reduces to ⟨1 | 𝑥 . 𝑥 + 1⟩.
Then, the dollar operator executes the return clause 𝑥 .𝑥 + 1, which
specifies the post-processing of the value that the handled expres-

sion reduces to. Thus, the whole program reduces to 2.

2.3 Algebraic Effect Handlers with Effect
Instances

Plain effect handlers are inconvenient for dealing with multiple

instances of the same effect because any operation is handled by

the innermost corresponding handler. In other words, we do not

have an intuitive means to express our intention of which operation

is handled by which handler. Consider the following expression,

which has two operations and two different handlers for the same

reader effect. Let 𝑓1 = 𝑥, 𝑟 .𝑟 1, 𝑓2 = 𝑥, 𝑟 .𝑟 2, and 𝑟𝑖𝑑 = 𝑥 .𝑥 .

handle handle do () + do () with {𝑓1;𝑥} with {𝑓2;𝑥}
→∗ handle 𝑟 1 with {𝑓2; 𝑟𝑖𝑑 }

(𝑟 = _𝑧.handle 𝑧 + do () with {𝑓1; 𝑟𝑖𝑑 })
→ handle handle 1 + do () with {𝑓1; 𝑟𝑖𝑑 } with {𝑓2; 𝑟𝑖𝑑 }
→∗ handle 𝑟 1 with {𝑓2; 𝑟𝑖𝑑 }

(𝑟 = _𝑧.handle 1 + 𝑧 with {𝑓1; 𝑟𝑖𝑑 })
→∗ handle handle 1 + 1 with {𝑓1; 𝑟𝑖𝑑 } with {𝑓2; 𝑟𝑖𝑑 }
→∗ 2

https://prg.is.titech.ac.jp/en/projects/typesystem/translations-between-effectful-calculi/
https://prg.is.titech.ac.jp/en/projects/typesystem/translations-between-effectful-calculi/
https://prg.is.titech.ac.jp/en/projects/typesystem/translations-between-effectful-calculi/
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In the above reduction steps, both operation calls do () are handled
by the innermost handler, whose operation clause is 𝑥, 𝑟 .𝑟 1 (= 𝑓1).
Hence, the expression is reduced to 2 (= 1+1) instead of 3 (= 1+2).
If we wish the second operation to be handled by the outer handler,

this is not the result we want.

There are several ways of allowing more flexible association be-

tween operations and handlers. One way is to use a special operator

(called “mask” in [16] and “lift” in [2, 19]) for skipping intervening

handlers. This is however unsatisfactory, as it requires the program-

mer to know the exact number and order of handlers surrounding

each operation. A different and more convenient way is to use effect

instances [1, 2, 25]. This feature allows the programmer to specify

the intended handler using a label, without requiring them to know

what other handlers are surrounding an operation.

Let us rewrite our previous example using two effect instances 𝑙

and 𝑙 ′.

handle⟨𝑙 ′⟩ handle⟨𝑙⟩
do⟨𝑙⟩ () + do⟨𝑙 ′⟩ () with{𝑓1; 𝑟𝑖𝑑 } with{𝑓2; 𝑟𝑖𝑑 }

→∗ handle⟨𝑙 ′⟩ 𝑟 1 with{𝑓2; 𝑟𝑖𝑑 }
(𝑟 = _𝑧.handle⟨𝑙⟩ 𝑧 + do⟨𝑙 ′⟩ () with{𝑓1; 𝑟𝑖𝑑 })

→ handle⟨𝑙 ′⟩ handle⟨𝑙⟩ 1 + do⟨𝑙 ′⟩ () with{𝑓1; 𝑟𝑖𝑑 } with{𝑓2; 𝑟𝑖𝑑 }
→∗ 𝑟 2

(𝑟 = _𝑧.handle⟨𝑙 ′⟩ handle⟨𝑙⟩ 1 + 𝑧 with{𝑓1; 𝑟𝑖𝑑 } with{𝑓2; 𝑟𝑖𝑑 })
→ handle⟨𝑙 ′⟩ handle⟨𝑙⟩ 1 + 2 with{𝑓1; 𝑟𝑖𝑑 } with{𝑓2; 𝑟𝑖𝑑 }
→∗ 3

In the above reduction steps, the operation do⟨𝑙⟩ () is handled by

the inner handler, and the operation do⟨𝑙 ′⟩ () is handled by the

outer handler. Hence, the whole expression reduces to 3 (= 1 + 2).

2.4 Delimited Control Operators with Prompt
Tags

Similar to plain effect handlers, plain delimited control operators

are inconvenient for expressing advanced control flow. The reason

is that any shift0 operator captures the continuation up to the

innermost dollar operator. In other words, we do not have an in-

tuitive means to express our intention of which shift0 operator
captures the continuation up to which dollar operator. Consider

the following expression, which has two shift0 operators and two
dollar operators.

⟨⟨shift0 𝑘. 𝑘 + shift0 𝑘. 𝑘 | 𝑥 . 𝑥⟩ 1 | 𝑥 . _𝑦.𝑥⟩ 2
→∗ ⟨𝑘 1 | 𝑥 . _𝑦.𝑥⟩ 2 (𝑘 = _𝑧.⟨𝑧 + shift0 𝑘. 𝑘 | 𝑥 . 𝑥⟩)
→ ⟨⟨1 + shift0 𝑘. 𝑘 | 𝑥 . 𝑥⟩ | 𝑥 . _𝑦.𝑥⟩ 2
→∗ ⟨𝑘 1 | 𝑥 . _𝑦.𝑥⟩ 2 (𝑘 = _𝑧.⟨1 + 𝑧 | 𝑥 . 𝑥⟩)
→ ⟨⟨1 + 1 | 𝑥 . 𝑥⟩ | 𝑥 . _𝑦.𝑥⟩ 2
→∗ 2

In the above reduction steps, both shift0 operators capture the
continuation up to the innermost dollar operator. Hence, the ex-

pression reduces to 2 (= 1 + 1) instead of 3 (= 1 + 2). If we wish
the second operator to capture the continuation up to the outer

delimiter, this is not the result we want.

To allow more flexible association between operators and delim-

iters, several programming languages provide prompt tags [11, 14],

just like how we extended effect handlers with effect instances.

Below is a modification of our running example, which uses two

prompt tags 𝑙 and 𝑙 ′.

⟨⟨shift0⟨𝑙⟩ 𝑘. 𝑘 + shift0⟨𝑙 ′⟩ 𝑘. 𝑘 | 𝑥 . 𝑥⟩𝑙 1 | 𝑥 . 𝑥⟩𝑙 ′ 2
→∗ ⟨𝑘 1 | 𝑥 . 𝑥⟩𝑙 ′ 2 (𝑘 = _𝑧.⟨𝑧 + shift0⟨𝑙 ′⟩ 𝑘. 𝑘 | 𝑥 . 𝑥⟩𝑙 )
→ ⟨⟨1 + shift0⟨𝑙 ′⟩ 𝑘. 𝑘 | 𝑥 . 𝑥⟩𝑙 | 𝑥 . 𝑥⟩𝑙 ′ 2
→∗ 𝑘 2 (𝑘 = _𝑧.⟨⟨1 + 𝑧 | 𝑥 . 𝑥⟩𝑙 | 𝑥 . 𝑥⟩𝑙 ′ )
→ ⟨⟨1 + 2 | 𝑥 . 𝑥⟩ | 𝑥 . 𝑥⟩
→∗ 3

In the above reduction steps, the first shift0⟨𝑙⟩ 𝑘. 𝑘 operator captures
the continuation up to the inner dollar operator, and the second

shift0⟨𝑙 ′⟩ 𝑘. 𝑘 operator captures the continuation up to the outer

dollar operator. Hence, the whole expression reduces to 3 (= 1 + 2).

2.5 Macro Translations between Algebraic
Effect Handlers and Delimited Control
Operators

By comparing effect handlers and control operators, we can easily

see that they have similar functionalities. This makes us wonder

whether the two facilities can express each other. The question has

been answered affirmatively by previous work [10, 19], in terms of

Felleisen’s macro expressibility [7].

The concept of macro expressibility allows us to compare the

expressive power between different languages. Intuitively, macro

expressibility is defined as follows. Suppose we have two languages,

𝐿 and 𝐿+. Here, 𝐿+ is an extension of 𝐿 with some additional fea-

tures. Now, if there exists a syntax-directed, meaning-preserving

translation from 𝐿+ to 𝐿, we say that 𝐿+ is macro expressible by 𝐿.

We call the translation a macro translation, and we view its exis-

tence as a witness that the two languages have equal expressive

power. Thus, we can show the equivalence between two calculi by

defining a pair of macro translations between them.

In this paper, we extend the macro translations of Piróg et al. [19]

with effect instances and prompt tags. In the following sections,

we formalize individual calculi and macro translations between

different calculi.

3 _core: CORE CALCULUS
In this section, we present _core, which serves as the basis of the

effectful calculi discussed in later sections. The calculus is based on

the core calculus of Piróg et al. [19] and features subtyping, polymor-

phism, and effect rows. In the definition of the syntax and typing, we

highlight the changes from Piróg et al. with a gray background .

3.1 Syntax
Kinds, Types and Effect Rows. Figure 2 top defines the syntax of

kinds, types, and effect rows of _core. Kinds include the value type

kind T, the effect type kind E, and the effect row kind R. Types
include type variables 𝛼 , function types 𝜎1 →𝜌 𝜎2, and quantified

types ∀𝛼 :: ^.𝜎 . Among the three components of function types,

𝜎1 represents the input type, 𝜎2 represents the output type, and 𝜌
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Kind ^ ::= T (value type)
| E (effect type)
| R (effect row type)

Type 𝜎, 𝜏 ::= 𝛼 (type variable)
| 𝜎 →𝜌 𝜎 (function type)
| ∀𝛼 :: ^.𝜎 (quantified type)

Effect row 𝜌 ::= ] (empty row)
| 𝛼 (row variable)
| 𝜖 · 𝜌 (extended row)

Expression 𝑒 ::= 𝑣 (value)
| 𝑒 𝑒 (application)

Value 𝑣 ::= 𝑥 (variable)
| _𝑥.𝑒 (function)

Type variable env Δ ::= ∅ | Δ, 𝛼 :: ^

Variable env Γ ::= ∅ | Γ, 𝑥 : 𝜎

Label env Σ ::= ∅ | Σ, 𝑙

Type Var ∋ 𝛼, 𝛽, . . . Expression Var ∋ 𝑥,𝑦, . . . Label ∋ 𝑙, 𝑙1, . . .

Evaluation Context
𝐸 ::= □ | 𝑣 𝐸 | 𝐸 𝑒

Reduction Rules
[Beta](_𝑥 .𝑒) 𝑣 ↦→ 𝑒{𝑣/𝑥}

𝑒 ↦→ 𝑒′
[Step]

𝐸 [𝑒] → 𝐸 [𝑒′]

Figure 2: Syntax and Semantics of _core

represents the effects of the function body. Following Leijen [16, 17]

and Xie et al. [24], we define an effect row as either an empty row ],

a type variable 𝛼 with an effect row kind R, or an extension 𝜖 ·𝜌 of an

effect row 𝜌 with an effect 𝜖 . Effects take different forms in different

calculi, but they all consist of several types and a label, which is a

uniform representation of effect instances and prompt tags. Note

that an effect row cannot be extended with a type variable of kind

E. We will discuss the reason in Section 4.1.4.

Expressions and Values. We define the syntax of expressions and

values of _core in Figure 2. The definition is exactly that of the

standard call-by-value lambda calculus.

3.2 Kinding Rules
Figure 3 top defines the kinding rules of _core. We use a kinding

judgment of the form Δ | Σ ⊢ 𝜏 :: ^. The judgment states that

a type 𝜏 has kind ^ under type variable environment Δ and label

environment Σ. We explicitly write Σ because it is necessary to

state the preservation property (Theorems 9 and 11 in Sections 5.1.4

and 5.2.4, respectively), where the label environments before and

after evaluation may be different. The kinding rules are standard.

3.3 Equivalence Rules
Figure 3 upper middle defines the equivalence rules of _core. We

use an equivalence judgment of the form Δ | Σ ⊢ 𝜎 ≡ 𝜎′. The
judgment states that types 𝜎 and 𝜎′ are equivalent under type

variable environmentΔ and label environment Σ. Roughly speaking,
these rules allow us to swap effects with distinct labels. Note that

these rules do not exist in the calculus of Piróg et al. [19]

The equivalence rules aremostly standard, except the ESwap rule.

It allows swapping of effects 𝜖1 and 𝜖2 only if they have different

labels. Here, ⌈·⌉ is a meta-level function that extracts the label of

an effect. We will elaborate more on this rule in Section 4.1.4.

3.4 Subtyping Rules
Figure 3 lower middle defines the subtyping rules of _core. We

use a subtyping judgment of the form Δ | Σ ⊢ 𝜎 <: 𝜎′. The
judgment states that types 𝜎 and 𝜎′ have a subtype relation under

type variable environment Δ and label environment Σ.
The subtyping rules consist of reflexivity, transitivity, and struc-

tural subtyping rules. The rules are all standard. One thing to note

here is that the SRefl rule has an extra premise Δ | Σ ⊢ 𝜎1 ≡ 𝜎2
compared to the corresponding rule of Piróg et al. This allow us

to derive, for instance, Δ | Σ ⊢ 𝜖2 · 𝜖1 · 𝜌 <: 𝜖1 · 𝜖2 · 𝜌 using

Δ | Σ ⊢ 𝜖2 · 𝜖1 · 𝜌 ≡ 𝜖1 · 𝜖2 · 𝜌 , which intuitively holds. Without the

additional premise, we cannot derive the above subtyping relation

as the original rules of Piróg et al. do not allow swapping of effects.

3.5 Typing Rules
We define the typing rules of _core in Figure 3 bottom. We use a

typing judgment of the form Δ | Γ | Σ ⊢ 𝑒 : 𝜏/𝜌 . The judgment

states that expression 𝑒 has type 𝜏 under type variable environ-

ment Δ, variable environment Γ, and label environment Σ, and may

perform effects 𝜌 .

The typing rules are mostly standard. The only difference from

Piŕog et al. is that our rules restrict polymorphism to value types

and effect rows: observe that the kind ^ in Gen and Inst must be

either T or R. We will detail the design rationale in Section 4.1.4.

3.6 Operational Semantics
Figure 2 bottom defines the operational semantics of _core. The

semantics is based on the call-by-value evaluation strategy, and is

associated with an inductive definition of evaluation contexts. The

definition is completely standard and identical to Piróg et al.

4 STATIC EFFECT INSTANCES AND PROMPT
TAGS

In this section, we present two extensions of the core calculus and

a pair of macro translations between the two extended calculi. One

of the extended calculi is called _𝑙
eff

, which features effect handlers

and static effect instances. The other calculus is called _𝑙del, which

features control operators and static prompt tags.

4.1 _𝑙eff : Algebraic Effect Handlers with Static
Effect Instances

4.1.1 Syntax. We define the syntax of _𝑙
eff

in Figure 4. For brevity,

we only show the changes to the _core syntax. Kinds are extended
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Δ | Σ ⊢ 𝜏 :: ^

𝛼 :: ^ ∈ Δ
[KVar]

Δ | Σ ⊢ 𝛼 :: ^

Δ, 𝛼 :: ^ | Σ ⊢ 𝜏 :: T
[KGen]

Δ | Σ ⊢ ∀𝛼 :: ^.𝜏 :: T
[KEmpty]

Δ | Σ ⊢ ] :: R

Δ | Σ ⊢ 𝜏1 :: T Δ | Σ ⊢ 𝜌 :: R Δ | Σ ⊢ 𝜏2 :: T
[KArrow]

Δ | Σ ⊢ 𝜏1 →𝜌 𝜏2 :: T
Δ | Σ ⊢ 𝜖 :: E Δ | Σ ⊢ 𝜌 :: R

[KRow]

Δ | Σ ⊢ 𝜖 · 𝜌 :: R

Δ | Σ ⊢ 𝜎 ≡ 𝜎′

Δ | Σ ⊢ 𝜎 :: ^
[ERefl]

Δ | Σ ⊢ 𝜎 ≡ 𝜎

Δ, 𝛼 :: ^ | Σ ⊢ 𝜏1 ≡ 𝜏2
[EGen]

Δ | Σ ⊢ ∀𝛼 :: ^.𝜏1 ≡ ∀𝛼 :: ^.𝜏2

Δ | Σ ⊢ 𝜌1 ≡ 𝜌2 Δ | Σ ⊢ 𝜖 :: E
[ERow]

Δ | Σ ⊢ 𝜖 · 𝜌1 ≡ 𝜖 · 𝜌2
Δ | Σ ⊢ 𝜏1

2
≡ 𝜏1

1
Δ | Σ ⊢ 𝜌1 ≡ 𝜌2 Δ | Σ ⊢ 𝜏2

1
≡ 𝜏2

2

[EArrow]

Δ | Σ ⊢ 𝜏1
1
→𝜌1 𝜏

1

2
≡ 𝜏2

1
→𝜌2 𝜏

2

2

Δ | Σ ⊢ 𝜌1 ≡ 𝜌2 Δ | Σ ⊢ 𝜌2 ≡ 𝜌3
[ETrans]

Δ | Σ ⊢ 𝜌1 ≡ 𝜌3

Δ | Σ ⊢ 𝜌1 ≡ 𝜌2 Δ | Σ ⊢ 𝜖1 :: E Δ | Σ ⊢ 𝜖2 :: E ⌈𝜖1⌉ ≠ ⌈𝜖2⌉
[ESwap]

Δ | Σ ⊢ 𝜖1 · 𝜖2 · 𝜌1 ≡ 𝜖2 · 𝜖1 · 𝜌2

Δ | Σ ⊢ 𝜎 <: 𝜎′

Δ | Σ ⊢ 𝜎1 ≡ 𝜎2
[SRefl]

Δ | Σ ⊢ 𝜎1 <: 𝜎2

Δ, 𝛼 :: ^ | Σ ⊢ 𝜏1 <: 𝜏2
[SGen]

Δ | Σ ⊢ ∀𝛼 :: ^.𝜏1 <: ∀𝛼 :: ^.𝜏2

Δ | Σ ⊢ 𝜌 :: R
[SEmpty]

Δ | Σ ⊢ ] <: 𝜌

Δ | Σ ⊢ 𝜏2
1
<: 𝜏1

1
Δ | Σ ⊢ 𝜌1 <: 𝜌2 Δ | Σ ⊢ 𝜏1

2
<: 𝜏2

2

[SArrow]

Δ | Σ ⊢ 𝜏1
1
→𝜌1 𝜏

1

2
<: 𝜏2

1
→𝜌2 𝜏

2

2

Δ | Σ ⊢ 𝜌1 <: 𝜌2 Δ | Σ ⊢ 𝜖 :: E
[SRow]

Δ | Σ ⊢ 𝜖 · 𝜌1 <: 𝜖 · 𝜌2
Δ | Σ ⊢ 𝜌1 <: 𝜌2 Δ | Σ ⊢ 𝜌2 <: 𝜌3

[STrans]

Δ | Σ ⊢ 𝜌1 <: 𝜌3

Δ | Γ | Σ ⊢ 𝑒 : 𝜏/𝜌

𝑥 : 𝜏 ∈ Γ
[Var]

Δ | Γ | Σ ⊢ 𝑥 : 𝜏/]
Δ | Σ ⊢ 𝜏1 <: 𝜏2 Δ | Σ ⊢ 𝜌1 <: 𝜌2 Δ | Γ | Σ ⊢ 𝑒 : 𝜏1/𝜌1

[Sub]

Δ | Γ | Σ ⊢ 𝑒 : 𝜏2/𝜌2
Δ, 𝛼 :: ^ | Γ | Σ ⊢ 𝑒 : 𝜏/] ^ ∈ {T,R}

[Gen]

Δ | Γ | Σ ⊢ 𝑒 : ∀𝛼 :: ^.𝜏/]
Δ | Σ ⊢ 𝜎 :: ^ Δ | Γ | Σ ⊢ 𝑒 : ∀𝛼 :: ^.𝜏/𝜌 ^ ∈ {T,R}

[Inst]

Δ | Γ | Σ ⊢ 𝑒 : 𝜏{𝜎/𝛼}/𝜌
Δ | Γ | Σ ⊢ 𝑒1 : 𝜏1 →𝜌 𝜏2/𝜌 Δ | Γ | Σ ⊢ 𝑒2 : 𝜏1/𝜌

[App]

Δ | Γ | Σ ⊢ 𝑒1 𝑒2 : 𝜏2/𝜌
Δ | Σ ⊢ 𝜏1 :: T Δ | Γ, 𝑥 : 𝜏1 | Σ ⊢ 𝑒 : 𝜏2/𝜌

[Abs]

Δ | Γ | Σ ⊢ _𝑥 .𝑒 : 𝜏1 →𝜌 𝜏2/]

Figure 3: Kinding, Equivalence, Subtyping and Typing Rules of _core

with L for label types. Types are extended with label types 𝑙 . Effects

take the form (Δ′ .𝜏1 ⇒ 𝜏2)𝑙 , which reads: the operation has input

and output types 𝜏1 and 𝜏2 (which may refer to type variables

in Δ′
), and it must be handled by a handler with label 𝑙 . Labels

are chosen from a set Σ of statically defined labels. Expressions

are extended with operations and handlers. An operation do⟨𝑙⟩ 𝑣
performs an effect when given an input 𝑣 and a label 𝑙 specifying

the matching handler. A handler handle⟨𝑙⟩ 𝑒 with {𝑥, 𝑟 .𝑒ℎ ;𝑥 .𝑒𝑟 }
handles the computation 𝑒 with either the operation clause 𝑥, 𝑟 .𝑒ℎ
(if 𝑒 performs an operation with label 𝑙) or the return clause (if 𝑒

does not perform an operation).

4.1.2 Kinding, Equivalence, and Typing Rules. We define the kind-

ing, equivalence, and typing rules of _𝑙
eff

in Figure 5. The KLabel

rule assigns kind L to static labels, whereas the KIEff rule assigns

kind E to effects. The EIEff rule determines whether two effects are

equivalent or not. The Do rule introduces an effect (Δ′ .𝜏1 ⇒ 𝜏2)𝑙
indexed by label 𝑙 , while instantiating the input and output types

𝜏1 and 𝜏2 of an operation via type variable substitution 𝛿 . Follow-

ing Piróg et al., we define the well-formedness of type variable

substitution as follows.

Definition 1 (Well-formedness of type variable substitutions).
Δ | Σ ⊢ 𝛿 :: Δ′
𝑑𝑒𝑓
⇐⇒ dom(𝛿 ′) = dom(Δ′) ∧ ∀𝛼 ∈ dom(𝛿),Δ | Σ ⊢ 𝛿 (𝛼) :: Δ′ (𝛼)

TheHandle rule discharges an effect indexed by the label 𝑙 , leaving

the residual effects 𝜌 to be handled by outer handlers.

4.1.3 Operational Semantics. We define the operational semantics

of _𝑙
eff

in Figure 4. The EReturn rule states that a handler construct

reduces to the return clause 𝑒𝑟 {𝑣/𝑥} if the handled expression is a
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Kind ^ ::= . . .

| L (label type)
Type 𝜎, 𝜏 ::= · · ·

| ℓ (label)
Effect 𝜖 ::= (Δ′ .𝜏1 ⇒ 𝜏2)ℓ
Label ℓ ::= 𝑙 (static label)
Expression 𝑒 ::= . . .

| do⟨ℓ⟩ 𝑣 (do)
| handle⟨𝑙⟩ 𝑒 (handle)

with {𝑥, 𝑟 .𝑒ℎ ;𝑥 .𝑒𝑟 }
Evaluation Context

𝐸 ::= · · · | handle⟨𝑙⟩ 𝐸 with {𝑥, 𝑟 .𝑒ℎ ;𝑥 .𝑒𝑟 }
Reduction Rules

[EReturn]

handle⟨𝑙⟩ 𝑣 with {𝑥, 𝑟 .𝑒ℎ ;𝑥 .𝑒𝑟 } ↦→ 𝑒𝑟 {𝑣/𝑥}

𝑙 ∉ ⌈𝐸⌉ 𝑣𝑐 = _𝑧.handle⟨𝑙⟩ 𝐸 [𝑧] with {𝑥, 𝑟 .𝑒ℎ ;𝑥 .𝑒𝑟 }
[EHandle]

handle⟨𝑙⟩ 𝐸 [do⟨𝑙⟩ 𝑣] with {𝑥, 𝑟 .𝑒ℎ ;𝑥 .𝑒𝑟 }
↦→ 𝑒ℎ{𝑣/𝑥}{𝑣𝑐/𝑟 }

Figure 4: Syntax and Semantics of _𝑙eff(extensions)

value. The EHandle rule states that an operation do⟨𝑙⟩ 𝑣 is handled
by the innermost handler indexed by the same label 𝑙 . The premise

𝑙 ∉ ⌈𝐸⌉ states that there is no handler indexed by the label 𝑙 in

the evaluation context 𝐸. Here, ⌈·⌉ is a meta-level function for

extracting labels from evaluation context, and is defined as follows.

Definition 2 (Label extraction).

⌈□⌉ ::= ∅ ⌈𝐸 𝑒⌉ ::= ⌈𝐸⌉ ⌈𝑣 𝐸⌉ ::= ⌈𝐸⌉
⌈handle⟨𝑙⟩ 𝐸 with {𝑥, 𝑟 .𝑒ℎ ;𝑥 .𝑒𝑟 }⌉ ::= 𝑙, ⌈𝐸⌉
⌈]⌉ ::= •, ⌈𝜖 · 𝜌⌉ ::= ⌈𝜖⌉, ⌈𝜌⌉ ⌈(Δ′ .𝜏1 ⇒ 𝜏2)ℓ ⌉ ::= ℓ

4.1.4 Reasons Behind Design Decisions.

Restriction on ESwap. As we mentioned in Section 3.3, we do

not allow swapping of effects with the same label. The reason is

that, without this restriction, the type system would be unsound.

More specifically, it would accept expressions that get stuck during

evaluation. Below is an example of such an expression.

handle⟨𝑙⟩
handle⟨𝑙⟩ do⟨𝑙⟩ () with {𝑥, 𝑟 .𝑟 (𝑥 + 1);𝑥 .𝑥}

with {𝑥, 𝑟 .𝑟 1;𝑥 .𝑥}
→ handle⟨𝑙⟩ 𝑟 (() + 1) with {𝑥, 𝑟 .𝑟 1;𝑥 .𝑥}

(𝑟 = _𝑧.handle⟨𝑙⟩ 𝑧 with {𝑥, 𝑟 .𝑟 (𝑥 + 1);𝑥 .𝑥})
↛

Observe that the evaluation of the above expression gets stuck,

since we cannot add a unit value and an integer value. This stuck

state is caused by the fact that the unit-taking operation do⟨𝑙⟩ ()
is surrounded by a handler with an int-taking operation clause

𝑥, 𝑟 .𝑟 (𝑥 + 1).

The above expression would be wrongly judged well-typed if

we replaced ESWap with BadESwap.

Δ | Σ ⊢ 𝜌1 ≡ 𝜌2 Δ | Σ ⊢ 𝜖1 :: E Δ | Σ ⊢ 𝜖2 :: E
[BadESwap]

Δ | Σ ⊢ 𝜖1 · 𝜖2 · 𝜌1 ≡ 𝜖2 · 𝜖1 · 𝜌2
Let us explain how we type the expression step by step. First, we

use the Do and Sub rules to type the operation call. Note that the

top-most effect has input type (), meaning that the operation must

be surrounded by a handler that has a unit-taking operation clause.

∅ | ∅ | 𝑙 ⊢ do⟨𝑙⟩ () : int/(∅.() ⇒ int)𝑙 · (∅.int ⇒ int)𝑙
Next, we use the BadESwap and Sub rules to swap the effects.

Observe that the top-most effect now has input type int, meaning

that the operation can be surrounded by a handler that has an

int-taking operation clause.

∅ | ∅ | 𝑙 ⊢ do⟨𝑙⟩ () : int/(∅.int ⇒ int)𝑙 · (∅.() ⇒ int)𝑙
Then, we use the Handle rule to obtain the following judgment,

where 𝐸0 = handle⟨𝑙⟩ □ with {𝑥, 𝑟 .𝑟 1;𝑥 .𝑥}.
∅ | ∅ | 𝑙 ⊢ 𝐸0 [handle⟨𝑙⟩ do⟨𝑙⟩ () with {𝑥, 𝑟 .𝑟 (𝑥 + 1);𝑥 .𝑥}] : int/]
Thus, we arrive at the conclusion that the expression is well-typed.

On the other hand, using the ESwap rule from Figure 3, we can

correctly reject the above expression. The reason is that we cannot

wrap a handler that has an int-talking operation clause around a

unit-taking operation by swapping the effects.

Restriction on Syntax of Effect Rows. As we mentioned in Section

3.1, we do not allow extension of an effect row with a type variable

that has kind E. The restriction is necessary for maintaining type

soundness. We have already seen that swapping effects with the

same label is problematic. To see whether two labels are the same

or not, we need to extract labels from effects. However, if the effect

is a type variable, we cannot extract labels from it.

Restriction on Gen and Inst Rules. As we mentioned in Section

3.5, we do not allow polymorphism on types of kind E in rules Gen

and Inst. The reason for this restriction is the same as the reason

behind the restriction on row extension. That is, if we allowed

generalization and instantiation of type variables of kind E, we
would not always be able to extract labels from effects.

4.1.5 Type Soundness. We prove the type soundness of _𝑙
eff

by

showing the progress and preservation theorems [23]. Both theo-

rems can be proved by induction on the typing derivation.

Theorem 1 (Preservation of _𝑙
eff

).
If Δ | Γ | Σ ⊢ 𝑒 : 𝜏/] and 𝑒 → 𝑒′ then Δ | Γ | Σ ⊢ 𝑒′ : 𝜏/].

Theorem 2 (Progress of _𝑙
eff

).
If ∅ | ∅ | Σ ⊢ 𝑒 : 𝜏/] then 𝑒 is a value or there exists 𝑒′ such that

𝑒 → 𝑒′.

4.2 _𝑙del : Delimited Control Operators with
Static Prompt Tags

4.2.1 Syntax. We define the syntax of _𝑙del in Figure 6. Similar

to _𝑙
eff

, kinds and types are extended with kind L for label types

and label types 𝑙 , respectively. Effects take the form (Δ′ . 𝜏/𝜌)𝑙
which reads: a continuation has an output type 𝜏 and an effect
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Δ | Σ ⊢ 𝜏 :: ^

𝑙 ∈ Σ
[KLabel]

Δ | Σ ⊢ 𝑙 :: L
Δ,Δ′ | Σ ⊢ 𝜏1 :: T Δ,Δ′ | Σ ⊢ 𝜏2 :: T Δ | Σ ⊢ 𝑙 :: L

[KIEff]

Δ | Σ ⊢ (Δ′ .𝜏1 ⇒ 𝜏2)𝑙 :: E
Δ | Σ ⊢ 𝜌 ≡ 𝜌′

Δ,Δ′ | Σ ⊢ 𝜏1 ≡ 𝜏 ′
1

Δ,Δ′ | Σ ⊢ 𝜏2 ≡ 𝜏 ′
2

Δ | Σ ⊢ 𝑙 :: L
[EIEff]

Δ | Σ ⊢ (Δ′ .𝜏1 ⇒ 𝜏2)𝑙 ≡ (Δ′ .𝜏 ′
1
⇒ 𝜏 ′

2
)𝑙

Δ | Γ | Σ ⊢ 𝑒 : 𝜏/𝜌
Δ | Σ ⊢ (Δ′ .𝜏1 ⇒ 𝜏2)𝑙 :: E

Δ | Σ ⊢ 𝛿 :: Δ′ Δ | Γ | Σ ⊢ 𝑣 : 𝛿 (𝜏1)/]
[Do]

Δ | Γ | Σ ⊢ do⟨𝑙⟩ 𝑣 : 𝛿 (𝜏2)/(Δ′ .𝜏1 ⇒ 𝜏2)𝑙 · ]

Δ,Δ′ | Γ, 𝑥 : 𝜏1, 𝑟 : 𝜏2 →𝜌 𝜏𝑟 | Σ ⊢ 𝑒ℎ : 𝜏𝑟 /𝜌 Δ | Σ ⊢ 𝑙 :: L
Δ | Γ | Σ ⊢ 𝑒 : 𝜏/(Δ′ .𝜏1 ⇒ 𝜏2)𝑙 · 𝜌 Δ | Γ, 𝑥 : 𝜏 | Σ ⊢ 𝑒𝑟 : 𝜏𝑟 /𝜌

[Handle]

Δ | Γ | Σ ⊢ handle⟨𝑙⟩ 𝑒 with {𝑥, 𝑟 .𝑒ℎ ;𝑥 .𝑒𝑟 } : 𝜏𝑟 /𝜌

Figure 5: Kinding, Equivalence, and Typing Rules of _𝑙eff(extensions)

Kind ^ ::= . . .

| L (label type)
Type 𝜎, 𝜏 ::= · · ·

| ℓ (label)
Effect 𝜖 ::= (Δ′ . 𝜏/𝜌)𝑙
Label ℓ ::= 𝑙 (static label)
Expression 𝑒 ::= . . .

| shift0⟨𝑙⟩ 𝑘. 𝑒 (shift0)
| ⟨𝑒 | 𝑥 . 𝑒⟩𝑙 (dollar)

Evaluation Context
𝐸 ::= · · · | ⟨𝐸 | 𝑥 . 𝑒⟩𝑙

Reduction Rules
[EReturn]⟨𝑣 | 𝑥 . 𝑒𝑟 ⟩𝑙 ↦→ 𝑒𝑟 {𝑣/𝑥}

𝑙 ∉ ⌈𝐸⌉ 𝑣𝑐 = _𝑧.⟨𝐸 [𝑧] | 𝑥 . 𝑒𝑟 ⟩𝑙
[EDollar]⟨𝐸 [shift0⟨𝑙⟩ 𝑘. 𝑒] | 𝑥 . 𝑒𝑟 ⟩𝑙 ↦→ 𝑒{𝑣𝑐/𝑥}

Figure 6: Syntax and Semantics of _𝑙del(extensions)

row 𝜌 (which may refer to type variables in Δ′
), and it must be

captured by a shift operator indexed by 𝑙 . As in _𝑙
eff

, labels are

chosen from a set Σ of statically defined labels. Expressions are

extended with shift operators and dollar operators. A shift operator

shift0⟨𝑙⟩ 𝑘. 𝑒 captures the continuation 𝑘 up to the closest dollar

operator with prompt tag 𝑙 and executes the expression 𝑒 . A dollar

operator ⟨𝑒 | 𝑥 . 𝑒𝑟 ⟩𝑙 delimits the continuation to be captured in 𝑒

and executes the return clause 𝑥 .𝑒𝑟 when 𝑒 has reduced to a value.

4.2.2 Kinding, Equivalence, and Typing Rules. We define the kind-

ing, equivalence, and typing rules of _𝑙del in Figure 7. The KLabel

rule is identical to the _𝑙
eff

. The KMEff assigns kind E to effects.

The EMEff rule determines whether two effects are equivalent or

not. The Shift0 rule introduces an effect (Δ′ . 𝜏/𝜌)𝑙 indexed by the

label 𝑙 . The effect row 𝜌′ represents the effects of the body of a shift

operator and has to be subsumed by the effect row of the continu-

ation 𝑘 because a shift operator reduces to the body of itself. The

Dollar rule discharges an effect indexed by the label 𝑙 . It requires

that the body of a dollar operator introduces the effect (Δ′ . 𝜏/𝜌)𝑙
and that the tail of an effect row 𝜌 is instantiated by type variable

substitution 𝛿 . The substitution 𝛿 is used to instantiate the type of

the continuation of a surrounded shift operator as the type of the

continuation of a shift operator is generalized by type context Δ.

4.2.3 Operational Semantics. We define the operational semantics

of _𝑙del in Figure 6. The EReturn rule states that a dollar opera-

tor reduces to the return clause 𝑒𝑟 {𝑣/𝑥} if the body of the dollar

operator is a value. The EDollar rule states that the body of the

shift operator shift0⟨𝑙⟩ 𝑘. 𝑒 is executed and passed the continuation
delimited up to the innermost dollar operator with the same label.

As in the EHandler rule in _𝑙
eff

, the premise 𝑙 ∉ ⌈𝐸⌉ states that
there is no dollar operator indexed by the label 𝑙 in the evaluation

context 𝐸. Here, ⌈·⌉ is again a meta-level function for extracting

labels, which is defined as follows.

Definition 3 (Label extraction).

⌈□⌉ ::= ∅ ⌈𝐸 𝑒⌉ ::= ⌈𝐸⌉ ⌈𝑣 𝐸⌉ ::= ⌈𝐸⌉ ⌈⟨𝐸 | 𝑥 . 𝑒⟩𝑙 ⌉ ::= 𝑙, ⌈𝐸⌉
⌈]⌉ ::= •, ⌈𝜖 · 𝜌⌉ ::= ⌈𝜖⌉, ⌈𝜌⌉ ⌈(Δ′ . 𝜏/𝜌)ℓ ⌉ ::= ℓ

4.2.4 Type Soundness. We prove the type soundness of _𝑙del in a

similar way to that of _𝑙
eff

. As in _𝑙
eff

, the theorems can be proved

by induction on the typing derivation.

Theorem 3 (Preservation of _𝑙del).
If Δ | Γ | Σ ⊢ 𝑒 : 𝜏/] and 𝑒 → 𝑒′ then Δ | Γ | Σ ⊢ 𝑒′ : 𝜏/].

Theorem 4 (Progress of _𝑙del).
If ∅ | ∅ | Σ ⊢ 𝑒 : 𝜏/] then 𝑒 is a value or there exists 𝑒′ such that

𝑒 → 𝑒′.

4.3 Translation Between Static Effect Instances
and Prompt Tags

4.3.1 Translation from Static Prompt Tags to Effect Instances. In
Figure 8, we define V·W𝑙 , a macro translation from _𝑙del to _𝑙

eff
.

The translation is a straightforward extension of the corresponding

translation by Piróg et al. [19].
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Δ | Σ ⊢ 𝜏 :: ^

𝑙 ∈ Σ
[KLabel]

Δ | Σ ⊢ 𝑙 :: L
Δ,Δ′ | Σ ⊢ 𝜏 :: T Δ,Δ′ | Σ ⊢ 𝜌 :: R Δ | Σ ⊢ 𝑙 :: L

[KMEff]

Δ | Σ ⊢ (Δ′ . 𝜏/𝜌)𝑙 :: E
Δ | Σ ⊢ 𝜌 ≡ 𝜌′

Δ,Δ′ | Σ ⊢ 𝜏 ≡ 𝜏 ′ Δ,Δ′ | Σ ⊢ 𝜌 ≡ 𝜌′ Δ | Σ ⊢ 𝑙 :: L
[EMEff]

Δ | Σ ⊢ (Δ′ . 𝜏/𝜌)𝑙 ≡ (Δ′ . 𝜏 ′/𝜌′)𝑙
Δ | Γ | Σ ⊢ 𝑒 : 𝜎/𝜌

Δ | Σ ⊢ 𝜏 ′ :: T Δ | Σ ⊢ 𝑙 :: L Δ,Δ′ | Σ ⊢ 𝜌′ <: 𝜌
Δ,Δ′ | Γ, 𝑘 : 𝜏 ′ →𝜌 𝜏 | Σ ⊢ 𝑒 : 𝜏/𝜌′ Δ | Σ ⊢ ((Δ′ . 𝜏/𝜌)𝑙 ) · 𝜌′ :: R

[Shift0]

Δ | Γ | Σ ⊢ shift0⟨𝑙⟩ 𝑘. 𝑒 : 𝜏 ′/(Δ′ . 𝜏/𝜌)𝑙 · 𝜌′

Δ | Σ ⊢ 𝛿 :: Δ′

Δ | Γ, 𝑥 : 𝜏 ′ | Σ ⊢ 𝑒𝑟 : 𝛿 (𝜏)/𝛿 (𝜌)
Δ | Γ | Σ ⊢ 𝑒 : 𝜏 ′/(Δ′ . 𝜏/𝜌)𝑙 · 𝛿 (𝜌)

[Dollar]

Δ | Γ | Σ ⊢ ⟨𝑒 | 𝑥 . 𝑒𝑟 ⟩𝑙 : 𝛿 (𝜏)/𝛿 (𝜌)

Figure 7: Kinding, Equivalence, Typing Rules of _𝑙del(extensions)

Vshift0⟨𝑙⟩ 𝑘. 𝑒W𝑙 = do⟨𝑙⟩ _𝑘.V𝑒W𝑙 Tdo⟨𝑙⟩ 𝑣U𝑙 = shift0⟨𝑙⟩ 𝑘. _ℎ.ℎ T𝑣U𝑙 (_𝑥 .𝑘 𝑥 ℎ)

V⟨𝑒 | 𝑥 . 𝑒𝑟 ⟩𝑙W𝑙 = handle⟨𝑙⟩ V𝑒W𝑙 with {𝑥, 𝑟 .𝑥 𝑟 ;𝑥 .V𝑒𝑟W𝑙 } Thandle⟨𝑙⟩ 𝑒 with {𝑥, 𝑟 .𝑒ℎ ;𝑥 .𝑒𝑟 }U𝑙 = ⟨T𝑒U𝑙 | 𝑥 . _ℎ.T𝑒𝑟U𝑙 ⟩𝑙 _𝑥._𝑟 .T𝑒ℎU𝑙

V(Δ′ . 𝜏/𝜌)𝑙W𝑙 T(Δ′ .𝜏1 ⇒ 𝜏2)𝑙U𝑙

= (𝛼 :: T.(∀Δ′ .(𝛼 →V𝜌W𝑙 V𝜏W𝑙 ) →V𝜌W𝑙 V𝜏W𝑙 ) ⇒ 𝛼)𝑙 = (𝛼 :: T, 𝛽 :: R. ((∀Δ′ .T𝜏1U𝑙 →] (T𝜏2U𝑙 →𝛽 𝛼) →𝛽 𝛼) →𝛽 𝛼)/𝛽)𝑙

Figure 8: Macro Translations Between _𝑙effand _𝑙del

Let us first look at the translation of expressions. A shift operator

indexed by the label 𝑙 is translated to an operation indexed by 𝑙 .

This should intuitively make sense, as the shift operator and an

operation call play a similar role, namely to introduce an effect.

Observe that the resulting operation receives a function that takes a

continuation, which is translated from the body of the shift operator.

A dollar operator indexed by the label 𝑙 is translated to a handler

expression indexed by 𝑙 . Notice that the operation clause 𝑥, 𝑟 .𝑥 𝑟

passes the continuation 𝑟 to the operation’s argument 𝑥 . And then,

the body of a shift operator receives the continuation through the

operation clause of the handler. The return clause of a dollar simply

becomes the return clause of a handler. Other expressions are simply

translated recursively.

We next look at the translation for effect types. An effect type

indexed by the label 𝑙 of _𝑙del is translated to an effect type indexed

by the same label 𝑙 of _𝑙
eff

. Here, the type (𝛼 →V𝜌W𝑙 V𝜏W𝑙 ) repre-
sents the type of the continuation 𝑘 , where 𝛼 is the type of the shift

expression. Other types are translated recursively.

The translation enjoys two desired properties: type preservation

and meaning preservation. The former states that a well-typed ex-

pression is translated into a well-typed expression. The latter states

that two expressions related by one-step reduction are translated

to two expressions related by multi-step reduction.

Theorem 5 (Translation preserves types).
If Δ | Γ | Σ ⊢ 𝑒 : 𝜏/𝜌 then Δ | VΓW𝑙 | Σ ⊢ V𝑒W𝑙 : V𝜏W𝑙/V𝜌W𝑙 .

Theorem 6 (Translation preserves meanings).
If 𝑒 → 𝑒′ then V𝑒W𝑙 →+ V𝑒′W𝑙 .

4.3.2 Translation from Static Effect Instances to Prompt Tags. In
Figure 8, we define T·U𝑙 , a macro translation from _𝑙

eff
to _𝑙del. The

translation is again an extension of the corresponding translation

by Piróg et al.

We begin with the translation of expressions. An operation in-

dexed by the label 𝑙 is translated to a shift operator indexed by

𝑙 . Here, the body of the shift operator is a function that takes in

a handler, reflecting the fact that the meaning of an operation is

determined externally by a handler. The expression _𝑥 .𝑘 𝑥 ℎ repre-

sents the delimited continuation of the operation call, including the

surrounding handler ℎ. A handler expression indexed by the label 𝑙

is translated to the application of a dollar operator and an operation

clause. The application supplies the handler required by the body

of the shift operator. The handled expression and return clause of

a handler simply become the body and return clause of a dollar

operator, respectively. Other expressions are translated recursively.

We next move on to the translation for effect types. An effect

type indexed by the label 𝑙 of _𝑙
eff

is translated to an effect type

indexed by 𝑙 of _𝑙del. The types T𝜏1U𝑙 and T𝜏2U𝑙 →𝛽 𝛼 correspond

to the types of T𝑣U𝑙 and _𝑥 .𝑘 𝑥 ℎ, respectively. While the effect row

of a continuation in _𝑙
eff

is determined by the surrounding handler,

the effect row of a continuation in _𝑙del is determined by a shift

operator. Thus, we generalize the effect row of the effect type by

the type variable 𝛽 in order to preserve typability.

The translation enjoys two desired properties: type preservation

and meaning preservation.

Theorem 7 (Translation preserves types).
If Δ | Γ | Σ ⊢ 𝑒 : 𝜏/𝜌 then Δ | TΓU𝑙 | Σ ⊢ T𝑒U𝑙 : T𝜏U𝑙/T𝜌U𝑙 .
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Theorem 8 (Translation preserves meaning).
If 𝑒 → 𝑒′ then T𝑒U𝑙 →+

𝑖
T𝑒′U𝑙 .

The first theorem is almost identical to the corresponding theo-

rem for the opposite translation (Theorem 5), but the second theo-

rem uses a more generous notion of reduction (GStep) that allows

us to reduce expressions in any context. The definition of theGStep

relation is as follows.

General Context 𝐶 ::= □ | 𝐶 𝑒 | 𝑒 𝐶 | _𝑥 .𝐶
| ⟨𝐶 | 𝑥 . 𝑒𝑟 ⟩𝑙 | ⟨𝑒 | 𝑥 . 𝐶⟩𝑙
| shift0⟨ℓ⟩ 𝑘. 𝐶

𝑒1 ↦→ 𝑒2
[GStep]

𝐶 [𝑒1] →𝑖 𝐶 [𝑒2]

Figure 9: General Context and General Step

Note that the difficulty with meaning preservation of the transla-

tion from effect handlers to control operators arises in the unlabeled

setting as well [19].

5 GENERATIVE EFFECT INSTANCES AND
PROMPT TAGS

In this section, we present two extensions of _𝑙
eff

and _𝑙del, and a

pair of macro translations between the two extended calculi. One of

the extended calculi is called _
𝑙+[
eff

, which features algebraic effect

handlers and generative effect instances. The other calculus is called

_
𝑙+[
del, which features delimited control operators and generative

prompt tags. Here, we use the term “generative labels” to mean

labels that are generated during evaluation by effect handlers or

control delimiters, similar to effect instances in the calculus of

Biernacki et al. [2].

5.1 _
𝑙+[
eff: Algebraic Effect Handlers with
Generative Effect Instances

5.1.1 Syntax. We define the syntax of _
𝑙+[
eff

in Figure 10. For brevity,

we only show the changes to _𝑙
eff

. Effect labels are extended with

type variables that have kind L. Expressions are extended with

label abstractions Λ[.𝑒 , label applications 𝑒 [ℓ] and labeled han-

dlers handle⟨[⟩ 𝑒 with {𝑥, 𝑟 .𝑒ℎ ;𝑥 .𝑒𝑟 }. A label application 𝑒 [ℓ] ap-
plies the expression 𝑒 to the label ℓ . A labeled handler handle⟨[⟩ 𝑒
with {𝑥, 𝑟 .𝑒ℎ ;𝑥 .𝑒𝑟 } introduces a label [ that can be used in the han-

dled computation 𝑒 . Values are extended with label abstractions

Λ[.𝑒 . A label abstraction generalizes the expression 𝑒 over the type

variable [ of kind L.

5.1.2 Kinding, Equivalence, and Typing Rules. We define the kind-

ing, equivalence, and typing rules of _
𝑙+[
eff

in Figure 11. The KLIEff,

ELIEff, LDo rules are almost the same as the KIEff, EIEff, and

Do rules, respectively, but derive a conclusion that includes an

effect indexed by type variable [. The LAbs rule generalizes the

expression 𝑒 over the type variable [. The LApp rule applies the

expression 𝑒 to the label ℓ . The LHandle rule introduces the label

Label ℓ ::= . . .

| [ (generative label)
Expression 𝑒 ::= . . .

| 𝑒 [ℓ] (label application)
| handle⟨[⟩ 𝑒

with {𝑥, 𝑟 .𝑒ℎ ;𝑥 .𝑒𝑟 } (labeled handler)
Value 𝑣 ::= . . .

| Λ[.𝑒 (label abstraction)

Evaluation Context
𝐸 ::= · · · | 𝐸 [ℓ]

Reduction Rules
[ELApp]

Σ ⊢ (Λ[.𝑒) [ℓ] ↦→ 𝑒{ℓ/[} ⊣ Σ

𝑙 is fresh Σ′ = Σ, 𝑙 𝛿 = {𝑙/[}
[EGenLabel]

Σ ⊢ handle⟨[⟩ 𝑒 with {𝑥, 𝑟 .𝑒ℎ ;𝑥 .𝑒𝑟 }
↦→ handle⟨𝑙⟩ 𝛿 (𝑒) with {𝑥, 𝑟 .𝑒ℎ ;𝑥 .𝑒𝑟 } ⊣ Σ′

Figure 10: Syntax and Semantics of _𝑙+[eff(extensions)

[ into the handled expression 𝑒 and discharges an effect indexed

by the label [. The label [ is lexically scoped, hence the operation

clause and return clause are typed under the type variable envi-

ronment Δ that does not have the label [ :: L. This is necessary
for preventing names from escaping their scope. For instance, the

expression handle⟨[⟩ do⟨[⟩ () with {𝑥, 𝑟 .𝑟 𝑥 ;𝑥 ._𝑥 .do⟨[⟩ 𝑥} must

be judged ill-typed because the operation call of the return clause

does not have a corresponding handler that has the label [.

5.1.3 Operational Semantics. We define the operational semantics

of _
𝑙+[
eff

in Figure 10. We use a reduction judgment of the form Σ ⊢
𝑒 ↦→ 𝑒′ ⊣ Σ′. The judgment states that under the label environment

Σ, expression 𝑒 reduces to 𝑒′ while yielding a new label environment

Σ′. The semantics is based on Biernacki et al. [2], but it is extended

with a label environment that is needed to state the preservation

theorem.

The most interesting rule is EGenLabel. The rule states that

the type variable [ is replaced by the label 𝑙 that is dynamically

generated at runtime and the label environment is extended with

the label 𝑙 . Note that the substitution for [ does not apply to the

operation clause and return clause as they do not involve [.

5.1.4 Type Soundness. We prove type soundness of _
𝑙+[
eff

by show-

ing the progress and preservation theorems. Both theorems can be

proved by induction on the typing derivation.

Theorem 9 (Preservation of _
𝑙+[
eff

).
If Δ | Γ | Σ ⊢ 𝑒 : 𝜏/] and Σ ⊢ 𝑒 → 𝑒′ ⊣ Σ′ then Δ | Γ | Σ′ ⊢ 𝑒′ : 𝜏/].

Theorem 10 (Progress of _
𝑙+[
eff

).
If ∅ | ∅ | Σ ⊢ 𝑒 : 𝜏/] then 𝑒 is a value or there exists 𝑒′ such that

Σ ⊢ 𝑒 → 𝑒′ ⊣ Σ′.
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Δ | Σ ⊢ 𝜏 :: ^ Δ | Σ ⊢ 𝜌 ≡ 𝜌′

Δ,Δ′ | Σ ⊢ 𝜏1 :: T Δ,Δ′ | Σ ⊢ 𝜏2 :: T Δ | Σ ⊢ [ :: L
[KLIEff]

Δ | Σ ⊢ (Δ′ .𝜏1 ⇒ 𝜏2)[ :: E
Δ,Δ′ | Σ ⊢ 𝜏1 ≡ 𝜏 ′

1
Δ,Δ′ | Σ ⊢ 𝜏2 ≡ 𝜏 ′

2
Δ | Σ ⊢ [ :: L

[ELIEff]

Δ | Σ ⊢ (Δ′ .𝜏1 ⇒ 𝜏2)[ ≡ (Δ′ .𝜏 ′
1
⇒ 𝜏 ′

2
)[

Δ | Γ | Σ ⊢ 𝑒 : 𝜏/𝜌
Δ, [ :: L | Γ | Σ ⊢ 𝑒 : 𝜏/]

[LAbs]

Δ | Γ | Σ ⊢ Λ[.𝑒 : ∀[ :: L.𝜏/]
Δ | Γ | Σ ⊢ 𝑒 : ∀[ :: L.𝜏/] Δ | Σ ⊢ ℓ :: L

[LApp]

Δ | Γ | Σ ⊢ 𝑒 [ℓ] : 𝜏{ℓ/[}/]

Δ | Σ ⊢ (Δ′ .𝜏1 ⇒ 𝜏2)[ :: E
Δ | Σ ⊢ 𝛿 :: Δ′ Δ | Γ | Σ ⊢ 𝑣 : 𝛿 (𝜏1)/]

[LDo]

Δ | Γ | Σ ⊢ do⟨[⟩ 𝑣 : 𝛿 (𝜏2)/(Δ′ .𝜏1 ⇒ 𝜏2)[ · ]

Δ | Γ, 𝑥 : 𝜏 | Σ ⊢ 𝑒𝑟 : 𝜏𝑟 /𝜌
Δ,Δ′ | Γ, 𝑥 : 𝜏1, 𝑟 : 𝜏2 →𝜌 𝜏𝑟 | Σ ⊢ 𝑒ℎ : 𝜏𝑟 /𝜌
Δ, [ :: L | Γ | Σ ⊢ 𝑒 : 𝜏/(Δ′ .𝜏1 ⇒ 𝜏2)[ · 𝜌

[LHandle]

Δ | Γ | Σ ⊢ handle⟨[⟩ 𝑒 with {𝑥, 𝑟 .𝑒ℎ ;𝑥 .𝑒𝑟 } : 𝜏𝑟 /𝜌

Figure 11: Typing Rules of _𝑙+[eff(extensions)

5.2 _
𝑙+[
del: Delimited Control Operators with
Generative Prompt Tags

Label ℓ ::= · · ·
| [ (generative label)

Expression 𝑒 ::= . . .

| 𝑒 [ℓ] (label application)
| ⟨𝑒 | 𝑥 . 𝑒𝑟 ⟩[ (labeled dollar)

Value 𝑣 ::= . . .

| Λ[.𝑒 (label abstraction)

Evaluation Context
𝐸 ::= · · · | 𝐸 [ℓ]

General Context
𝐶 ::= · · · | 𝐶 [ℓ] | Λ[.𝐶 | ⟨𝐶 | 𝑥 . 𝑒𝑟 ⟩[ | ⟨𝑒 | 𝑥 . 𝐶⟩[

Reduction Rules
[ELApp]

Σ ⊢ (Λ[.𝑒) [ℓ] ↦→ 𝑒{ℓ/[} ⊣ Σ

𝑙 is fresh Σ′ = Σ, 𝑙 𝛿 = {𝑙/[}
[EGenLabel]

Σ ⊢ ⟨𝑒 | 𝑥 . 𝑒𝑟 ⟩[ ↦→ ⟨𝛿 (𝑒) | 𝑥 . 𝑒𝑟 ⟩𝑙 ⊣ Σ′

Figure 12: Syntax and Semantics of _𝑙+[del(extensions)

5.2.1 Syntax. We define the syntax of _
𝑙+[
del in Figure 12. For brevity,

we only show the changes to _𝑙del. Effect labels, label abstractions,

and label applications are completely identical to _𝑙del. A labeled

dollar operator ⟨𝑒 | 𝑥 . 𝑒𝑟 ⟩[ delimits the continuation to be captured

in 𝑒 and executes the return clause 𝑥 . 𝑒𝑟 when 𝑒 has reduced to a

value.

5.2.2 Kinding, Equivalence, Typing Rules. We define the kinding,

equivalence, and typing rules of _
𝑙+[
del in Figure 13. The KLMEff,

ELMEff, LShift0 rules are almost the same as the KMEff, EMEff,

Shift0 rules, respectively, but derive a conclusion that includes

an effect indexed by type variable [. The LAbs and LApp rules are

completely identical to _
𝑙+[
eff

. The LDollar rule introduces the label

[ into the expression 𝑒 and discharges an effect indexed by the label

[. As in _
𝑙+[
eff

, the label [ is lexically scoped, hence the return clause

of a dollar operator is typed under the type variable environment

Δ (without [), which is necessary for preventing name escaping.

5.2.3 Operational Semantics. We define the operational semantics

of _
𝑙+[
eff

in Figure 12. We use a reduction judgment of the form

Σ ⊢ 𝑒 ↦→ 𝑒′ ⊣ Σ′ as in _
𝑙+[
eff

.

The most interesting rule is EGenLabel. The rule states that

the type variable [ is replaced by the label 𝑙 that is dynamically

generated at runtime and the label environment is extended with

the label 𝑙 . Note that the substitution for [ does not apply to the

return clause as it does not involve [.

5.2.4 Type Soundness. We prove type soundness of _
𝑙+[
del in a simi-

lar way to that of _
𝑙+[
eff

. As in _
𝑙+[
eff

, the theorems can be proved by

induction on the typing derivation.

Theorem 11 (Preservation of _
𝑙+[
del).

If Δ | Γ | Σ ⊢ 𝑒 : 𝜏/] and Σ ⊢ 𝑒 → 𝑒′ ⊣ Σ′ then Δ | Γ | Σ′ ⊢ 𝑒′ : 𝜏/].

Theorem 12 (Progress of _
𝑙+[
del).

If ∅ | ∅ | Σ ⊢ 𝑒 : 𝜏/] then 𝑒 is a value or there exists 𝑒′ such that

Σ ⊢ 𝑒 → 𝑒′ ⊣ Σ′.

5.3 Translation Between Generative Effect
Instances and Prompt Tags

5.3.1 Translation from Generative Prompt Tags to Effect Instances.

In Figure 14, we define V·W𝑙+[ , a macro translation from _
𝑙+[
del to _

𝑙+[
eff

.

The macro translations of label abstractions and applications are

identity. The macro translation of a dollar operator with generative

labels is almost the same as that of a dollar operator with static

labels. The only difference from the macro translation V·W𝑙 for static
labels is that a labeled dollar operator is translated to a handler

expression that is labeled with a type variable [ instead of a label 𝑙 .

The translation of effects indexed by [ is almost the same as effects

indexed by 𝑙 .
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Δ | Σ ⊢ 𝜏 :: ^ Δ | Σ ⊢ 𝜌 ≡ 𝜌′

Δ,Δ′ | Σ ⊢ 𝜏 :: T Δ,Δ′ | Σ ⊢ 𝜌 :: R Δ | Σ ⊢ [ :: L
[KLMEff]

Δ | Σ ⊢ (Δ′ . 𝜏/𝜌)[ :: E
Δ,Δ′ | Σ ⊢ 𝜏 ≡ 𝜏 ′ Δ,Δ′ | Σ ⊢ 𝜌 ≡ 𝜌′ Δ | Σ ⊢ [ :: L

[ELMEff]

Δ | Σ ⊢ (Δ′ . 𝜏/𝜌)[ ≡ (Δ′ . 𝜏 ′/𝜌′)[
Δ | Γ | Σ ⊢ 𝑒 : 𝜎/𝜌

Δ, [ :: L | Γ | Σ ⊢ 𝑒 : 𝜏/]
[LAbs]

Δ | Γ | Σ ⊢ Λ[.𝑒 : ∀[ :: L.𝜏/]
Δ | Γ | Σ ⊢ 𝑒 : ∀[ :: L.𝜏/] Δ | Σ ⊢ ℓ :: L

[LApp]

Δ | Γ | Σ ⊢ 𝑒 [ℓ] : 𝜏{ℓ/[}/]

Δ | Σ ⊢ 𝜏 ′ :: T Δ | Σ ⊢ [ :: L Δ,Δ′ | Σ ⊢ 𝜌′ <: 𝜌
Δ,Δ′ | Γ, 𝑘 : 𝜏 ′ →𝜌 𝜏 | Σ ⊢ 𝑒 : 𝜏/𝜌′ Δ | Σ ⊢ ((Δ′ . 𝜏/𝜌)[ ) · 𝜌′ :: R

[LShift0]

Δ | Γ | Σ ⊢ shift0⟨[⟩ 𝑘. 𝑒 : 𝜏 ′/(Δ′ . 𝜏/𝜌)[ · 𝜌′

Δ | Σ ⊢ 𝛿 :: Δ′

Δ | Γ, 𝑥 : 𝜏 ′ | Σ ⊢ 𝑒𝑟 : 𝛿 (𝜏)/𝛿 (𝜌)
Δ, [ :: L | Γ | Σ ⊢ 𝑒 : 𝜏 ′/(Δ′ . 𝜏/𝜌)[ · 𝛿 (𝜌)

[LDollar]

Δ | Γ | Σ ⊢ ⟨𝑒 | 𝑥 . 𝑒𝑟 ⟩[ : 𝛿 (𝜏)/𝛿 (𝜌)

Figure 13: Typing Rules of _𝑙+[del(extensions)

VΛ[.𝑒W𝑙+[ = Λ[.V𝑒W𝑙+[ TΛ[.𝑒U𝑙+[ = Λ[.T𝑒U𝑙+[

V𝑒 [ℓ]W𝑙+[ = V𝑒W𝑙+[ [ℓ] T𝑒 [ℓ]U𝑙+[ = T𝑒U𝑙+[ [ℓ]

V⟨𝑒 | 𝑥 . 𝑒𝑟 ⟩[W𝑙+[ = handle⟨[⟩ V𝑒W𝑙+[ with {𝑥, 𝑟 .𝑥 𝑟 ;𝑥 .V𝑒𝑟W𝑙+[ } Thandle⟨[⟩ 𝑒 with {𝑥, 𝑟 .𝑒ℎ ;𝑥 .𝑒𝑟 }U𝑙+[

= ⟨T𝑒U𝑙+[ | 𝑥 . _ℎ.T𝑒𝑟U𝑙+[⟩[ _𝑥 ._𝑟 .T𝑒ℎU𝑙+[

V(Δ′ . 𝜏/𝜌)[W𝑙+[ T(Δ′ .𝜏1 ⇒ 𝜏2)[U𝑙+[

= (𝛼 :: T.(∀Δ′ .(𝛼 →V𝜌W𝑙+[ V𝜏W𝑙+[ ) →V𝜌W𝑙+[ V𝜏W𝑙+[ ) ⇒ 𝛼)[ = (𝛼 :: T, 𝛽 :: R.

((∀Δ′ .T𝜏1U𝑙+[ →] (T𝜏2U𝑙+[ →𝛽 𝛼) →𝛽 𝛼) →𝛽 𝛼)/𝛽)[

Figure 14: Macro Translations Between _
𝑙+[
effand _

𝑙+[
del

The translation preserves types and meanings. The first theorem

is essentially the same as Theorem 5. The reduction judgment of

the second theorem is extended with label environment Σ.

Theorem 13 (Translation preserves types).
If Δ | Γ | Σ ⊢ 𝑒 : 𝜏/𝜌
then Δ | VΓW𝑙+[ | Σ ⊢ V𝑒W𝑙+[ : V𝜏W𝑙+[/V𝜌W𝑙+[ .

Theorem 14 (Translation preserves meanings).
If Σ ⊢ 𝑒 → 𝑒′ ⊣ Σ′ then Σ ⊢ V𝑒W𝑙+[ →+ V𝑒′W𝑙+[ ⊣ Σ′.

5.3.2 Translation from Generative Effect Instances to Prompt Tags.

In Figure 14, we define T·U𝑙+[ , a macro translation from _
𝑙+[
eff

to

_
𝑙+[
del. The macro translations of label abstractions and applications

are completely identical to the V·W𝑙+[ . The macro translation of han-

dlers with generative labels is almost the same as that of handlers

with static labels. The only difference from the macro translation

T·U𝑙 for static labels is that a labeled handler is translated to a dollar
operator that is labeled with a type variable [ instead of a label 𝑙 .

The translation of effects indexed by [ is almost the same as effects

indexed by 𝑙 .

The translation preserves types and meanings. The first theorem

is almost identical to Theorem 7. The reduction judgment of the

second theorem is extended with effect label environment Σ.

Theorem 15 (Translation preserves types).
If Δ | Γ | Σ ⊢ 𝑒 : 𝜏/𝜌
then Δ | TΓU𝑙+[ | Σ ⊢ T𝑒U𝑙+[ : T𝜏U𝑙+[/T𝜌U𝑙+[ .

Theorem 16 (Translation preserves meaning).
If Σ ⊢ 𝑒 → 𝑒′ ⊣ Σ′ then Σ ⊢ T𝑒U𝑙+[ →+

𝑖
T𝑒′U𝑙+[ ⊣ Σ′.

6 RELATEDWORK
In this section, we discuss related work on labeled variations of

effect facilities and macro translations between effect facilities. For

the former, we make a comparison to our calculi from three perspec-

tives: (i) whether labels are first class or second class, (ii) whether

labels are static or generative, and (iii) whether the type system is

sound or unsound. The results are summarized in Table 1.

6.1 Effect Handlers with Effect Instances
Bauer et al. [1] formalize the core Eff language, which models an old

version of the Eff language. They treat effect instances as first-class,

static values. To obtain soundness of the type system, they define

effect instances globally and thus make it impossible for instances

to escape.

Biernacki et al. [2] develop a calculus with effect handlers and

effect instances, which we build our work on. They treat effect

instances as second-class, generative values, as we do in our calculi.

To prevent escaping of effect instances, they enforce lexical scoping

of instances, also like we do.
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Label
First or Static or Type

second class generative System

Effect handlers

_𝑙
eff

(This work) Second class Static Sound

_
𝑙+[
eff

(This work) Second class Generative Sound

Bauer et al. [1] First class Static Sound

Biernacki et al. [2] Second class Generative Sound

Xie et al. [25] First class Generative Sound

Control operators

_𝑙del (This work) Second class Static Sound

_
𝑙+[
del (This work) Second class Generative Sound

Gunter et al. [11] First class Generative Unsound

Kiselyov et al. [14] Second class Static Unsound

Table 1: Comparison Among Labeled Effect Calculi

Xie et al. [25] design a calculus of named handlers, which are

equivalent to labeled handlers. They treat handler names as first-

class values, and allow them to be statically chosen or dynamically

generated. A key novelty is that they prevent escaping of names via

rank-2 polymorphism, which is a well-known technique available

in, e.g., Haskell. We plan to incorporate their ideas to extend our

work to first-class labels.

6.2 Delimited Control Operators with Prompt
Tags

Gunter et al. [11] present a calculus with multi-prompt delimited

control operators. In their calculus, prompt tags are first-class, gen-

erative values, but they are not tracked by the type system. Hence,

a program may get stuck by executing a control operator that has

no corresponding delimiter.

Kiselyov et al. [14] show a translation from dynamic binding to

multi-prompt shift and reset operators. They treat prompt tags as

second-class, static values, but do not track them in the type system.

In the soundness statement of their calculus, they impose a strong

assumption that the program does not have a shift operator with

no corresponding reset operator.

6.3 Translations Between Delimited Control
Operators and Algebraic Effect Handlers

Forster et al. [10] study the relationship between three calculi with

different effect facilities: effect handlers, monads, and control op-

erators. They show the equivalence of expressive power among

these calculi by defining macro translations but unlike us, they do

this in an untyped setting. They then conjecture that extending

their translations to a typed setting would require certain forms of

polymorphism.

Piróg et al. [19] partially prove Forster et al.’s conjecture by

defining typed macro translations between two calculi with effect

handlers and delimited control operators (shift0/dollar). They
equip the calculi of effect handlers and shift0/dollar with effect

polymorphism, which is the key to type preservation.

6.4 Implementation of Effect Instances Using
Prompt Tags

Kislyov et al. [15] embed the Eff language with effect instances into

OCaml using the delimcc delimited control operators library [13].

The library has first-class prompt tags that can be generated dy-

namically. However, prompt tags (and hence effect instances) can

escape their scope, because OCaml does not have an effect system

that tracks prompt tags.

7 CONCLUSION AND FUTUREWORK
In this paper, we studied the relationship between two facilities

for expressing computational effects, namely effect handlers with

effect instances and delimited control operators with prompt tags.

We first formalized two calculi _𝑙
eff

and _𝑙del, featuring static effect

instances and prompt tags, and proved the equivalence of their

expressibility via a pair of macro translations. We next did the same

for calculi _
𝑙+[
eff

and _
𝑙+[
del, which feature effect instances and prompt

tags that are dynamically generated at runtime.

Using the established relationship, we can understand and im-

plement one of the two facilities via the other facility. For example,

we can derive the CPS translation for effect instances by composing

our macro translation and the existing CPS translation for multi-

prompt control operators [5], just like Cong and Asai do [3]. As a

different example, we can implement labeled handlers using labeled

control operators, analogously to what Kammar et al. [12] do.

As future work, we intend to extend our calculi with first-class

effect instances and prompt tags. The extension allows us to use

effect instances and prompt tags in a more flexible way. Following

Xie et al. [25], we avoid escaping of labels using rank-2 polymor-

phism, which we believe can be integrated into our calculi with no

major challenges.
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