
OBJECT ORIENTED VERSION PROGRMAMING
Luthfan Anshar Lubis, Yudai Tanabe,
Tomoyuki Aotani, Hidehiko Masuhara

Tokyo Institute of Technology
Motivation

Proposal

De
pe

nd
en

cy
 C

on
fli

ct
’s

Ex
am

pl
e

Version Programming Contextual Objects

Limitations

• BatakJava, Java language extended with versions.
• FBJ, a core calculus ensuring the existence of necessary

versions of classes.

Related Work [1] Yudai Tanabe, Tomoyuki Aotani, Hidehiko
Masuhara.A Context-Oriented Programming
Approach to Dependency Hell. COP 2018
[2] Atsushi Igarashi, et. al. Featherweight
Java: a minimal core calculus for Java and
GJ. 2001.
[3] Jesper Öqvist. ExtendJ: extensible Java
compiler. 2018.

VERSION
UPDATE

• Update deprecates method
getFrag() in ver.28.
• Fragment Rigger uses ver.26,

while My Application is
updated with ver.28.

• The compiler is built by using an extensible
compiler called ExtendJ[3].
• The core calculus is built on Featherweight

Java[2], a minimal Java language.

• Can’t change constructor in newer versions
• Can’t change its superclass in new versions

To allow working with multiple
versions simultaneously.

Relaxing these is left as future work

• Class declarations are annotated
with contexts, e.g. {A26}
• Contexts consist of version tags,

e.g. A26 in {A26}

class Act#{A26}
class Fragment#{A26}

= programming using versions explicitly in typing

Contextual Class

Overview Class

class Act#{A28}
class Fragment#{A28}

Ver. 26

Ver. 28

• Interface for each class where
signature info are collected.
• Contains constructor and

method signature and their
available contexts.

overview of Act {
Act(…) in {A26},{A28}

}
overview of Fragment {
Fragment(…) in {A26},{A28}
}

Inheritance
• extends is declared in

overview.
• Context keeps track of

necessary versions.

overview of MyAct extends Act{
MyAct(…) in {A26,M1},{A28,M2}

}

MyAct#{M1,A26}<:Act{A26}

MyAct ver.1 <: Act ver.26

=

Contextually Specific Objects
• Refer to a specific contextual class.

Similar to Java.

Contextually Polymorphic Objects

MyAct#{A26,M1} act =
new MyAct#{A26,M1}(...);

• Refer to signature information
obtained from overview class.

MyAct act = new MyAct(...)

• Method invocation infers callable
methods by checking overview and
context of the object.
• Users can manually restrict context.

act.{A26}.getFrag() METHOD NOT FOUND
act.{A28}.getSupFrag() METHOD FOUND

Applicationclass MyActivity#{M2,A28} {
void main(String[] args) {
Rigger@ rig = new Rigger@();

}
}

rig.getRigger(this).startFragment(frag1);

this.getSupportFrag().replace(frag2);

uses ver.26
method

uses ver.28
method

•Dependency relation between programs
is convoluted: conflicts among
dependencies upon updates
•Version is a common identifier used in
distinguishing programs: use in a type-
safe system to increase flexibility.
•LambdaVL[1], functional programming
language with versioned type:
apply to OOPL.

Android Platform
API

Fragment
Rigger

My Application

Ver. 26

Act{getFrag()}
Fragment{…}

Rigger

MyAct Ver. 1

Android Platform
API
Fragment
Rigger

My Application

UP
DA
TE

Rigger

UPDATEMyAct
Ver. 2

MyAct
Ver. 1

Ver. 28
Act{getSupFrag()}
Fragment{…}

Ver. 26

Act{getFrag()}
Fragment{…}

X
Y

X depends on Y

• Rigger depends on old API
• MyAct ver.2 depends on new API

UNRESOLVED CONFLICT

