
A Domain-Specific Language for Customizing Visual Debugger Views
Rifqi Adlan Apriyadi Hidehiko Masuhara Youyou Cong

Tokyo Institute of Technology

Motivation

Visual debuggers use object diagrams to 
visualize the runtime state.

Issues:
x Visual Clutter from too many nodes/edges[1]
x Representation Gap in visualization from 

the difference between a concept and its 
implementation[2]

Goal

//...Other customizations...
c:Property {
if (isNull f:owner) omit nodeOf here;
else add newEdge (nodeOf f:owner)
(nodeOf here);

}

Approach
Customization
Customize the existence of nodes/edges or the contents therein of the 
visualized diagram based on runtime state via a Specification Language.

✓ Visual Clutter: Omit unnecessary information
✓ Representation Gap: Close the gap to resemble the concept on paper

writes

runs

read by

displays

User Debugger

Visualization

Specification

Usage

Concept: Location

Challenges and Future Work
• Streamlined specification

→ Complex object value retrieval
• Specification reusability

→ Location Polymorphism

References
1. Lowering Visual Clutter in Large 

Component Diagrams (IV’12)
2. Possible Improvements in UML 

Behavior Diagrams (ITOEC’17)

To empower users with customizability
→ Get a more focused view

x Problem 1: Static Customization
Cannot customize based on value
e.g.: Cannot display current rent:

// Omit houseRents node and show rent
c:StreetProperty {
setImmutable f:houseRents;
num[] houseRents = valueOf f:houseRents;
houseRents.insert(0, valueOf f:baseRent);
num houseCount = valueOf f:houseCount;
(nodeOf here).addRow
(“RENT: “ + houseRents[houseCount]); 

}

✓ Solution 1: Contextual Customization
Retrieve values of runtime variables

x Problem 2: Single-Point Entry
Specifications in respect to the main class only?

c:MonopolyGame {
for (p : f:players)
(nodeOf p).setTitle(f:name string);

for (p : f:properties)
(nodeOf p).setTitle(f:name string);

}

✓ Solution 2: Modularity
Separation of concerns in customization.

Node[] nodes = [];
c:Player {nodes.append(node);}
c:Property {nodes.append(node);}
// Do something extra with nodes

+ =

c:Property {
//...
f:owner {//...}
m:setMortgaged(boolean) {

l:status {//...}
}

}

All Property objects
All objects that is owner in Property
When halt in setMortgaged(boolean)
status local variable in method

Practicality in Debugging

Bug Localization:
Use simple high-level 
customization functions

Cause Identification:
Use detailed lower-level 
customizations

Solution Implementation:
Use very detailed 
customizations

Classes
Fields

Methods
Local


