
Preventing Metadata Leakage in Communication over Public Channels
Jacob Lindahl, Masuhara Hidehiko, Youyou Cong (Tokyo Institute of Technology)

Background
With trustless technologies becoming ever-more prevalent on the modern Internet, the need arises for a new type of private messaging
protocol: one that preserves the privacy of its users to the fullest extent possible without the need to trust any third party. Current
implementations of privacy-focused messaging protocols su�er from a number of problems, ranging frommetadata leakage to usability
issues. We describe a newmessage transmission protocol that addresses metadata leakage and broadcast e�ciency.

A portion of this protocol involves proxy servers sending anonymized messages on behalf of users. To prevent messages from being altered
by rogue proxies without compromising the identities of those users, we use a zero-knowledge proving system.

We explore the implications of implementing zero-knowledge proofs in two di�erent programming languages: Circom, a ZKP-speci�c
DSL, and Rust, a general-purpose programming language.

Findings
Abstractions
Circuits are compiled to a rank-1 constraint system (R1CS), which is a
branchless arithmetic circuit. This severely limits the kinds of
abstractions available to the higher-level language.

Rust – Circuit generation must be independent of input; all
abstractions are available.

Circom – Templates are the
only abstraction.

template Sha256_2() {
�� ���

}

-and-
component hasher = Sha256_2();

Constraint Generation
Constraints take the form of .(𝑠

→
· 𝑎) × (𝑠

→
· 𝑏) − (𝑠

→
· 𝑐) = 0

Rust – Graph generated by
procedurally linking targets.

builder.connect(var1, var2);

Circom – Graph generated by
declaratively expressing
relationships.

hasher.a ��� sequenceNumber;
hasher.b ��� secretIdentif�er;

Public Inputs
Veri�er-visible parts of the witness generation.

Rust – Stream-based. let sequence_number =
builder.read��<Variable>()

Circom – Functional
composition, marked
at top level.

signal input hash;

-and-
component main { public [hash] } =

Circuit();

Private Inputs
Witness-hiding, inputs are not visible to the veri�er.

Rust –Hinting:
new I/O at proof
generation.

let output_stream =
builder.hint(VariableStream��new(),

HashHint��new());

Circom – All inputs (signals) are private by default.

Proposal
We use theRust implementation of the Plonky2 zero-knowledge proof system to implement a circuit for the proxy server. The circuit
proves that a sequence hash is generated with a sequence number and secret, and that that secret is used to encrypt the message payload,
but without revealing either the sequence number or secret. This will require the use of a hash gadget and an encryption gadget. Proof
veri�cation on the message repository will then prevent an adversarial proxy (or frontrunner) from posting a di�erent message under a
sequence hash received from a user.

Future Work
- Extend this functionality to group (n-to-n) messaging.
- Support rotating secrets à la Signal Double-Ratchet.

References
- Buterin, Vitalik. “Quadratic Arithmetic Programs: From Zero to Hero.”Medium (blog), December 13, 2016.

https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649.
- Gabizon, Ariel, Zachary J. Williamson, and Oana Ciobotaru. “PLONK: Permutations over Lagrange-Bases for Oecumenical Noninteractive Arguments of

Knowledge,” 2019. Cryptology ePrint Archive. https://eprint.iacr.org/2019/953.
- Goldwasser, S, S Micali, and C Racko�. “The Knowledge Complexity of Interactive Proof-Systems.” In Proceedings of the Seventeenth Annual ACM Symposium on

Theory of Computing, 291–304. STOC ’85. New York, NY, USA: Association for ComputingMachinery, 1985. https://doi.org/10.1145/22145.22178.

https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649
https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649
https://eprint.iacr.org/2019/953
https://doi.org/10.1145/22145.22178

