
2013-2-(2): Manuscript for presentation at IPSJ-SIGPRO, 2 August 2013.

Layer and Object Refinement
for Context-oriented Programming in L

Robert Hirschfeld1,a) Hidehiko Masuhara2,b) Atsushi Igarashi3,c)

Abstract: Context-oriented programming (COP) languages provide layers as an abstraction mechanism for
modularizing context-dependent behavioral variations. While existing COP languages offer layers in addition
to other constructs like classes asymetrically, we propose an experimental language called L that removes
such asymmetry. The design of L started from ContextFJ, our minimalistic COP language, with extensions
for state and refinement. This proposal presents one such refinement mechanism as a first step towards a
small yet practical COP kernel.

1. Introduction

This proposal builds on our previous efforts to design a

COP language called L that tries to avoid asymmetry be-

tween modularity constructs such as classes and layers COP-

based object-oriented systems [2].

When allowing layers to refine one another similarly and

in addition to regular inheritance in common object-oriented

programming systems, the resulting languages offer at least

three different ways to compose object behavior: layer com-

position via the family of with constructs, inheritance be-

tween objects or classes, and inheritance between layers.

Examined in isolation, each of these features seems

straightforward to both explain and apply. In combination,

however, they show interactions that make their semantics

quite complicated and lead to difficult problems that resem-

ble those of multiple inheritance.

In several attempts to resolve those issues, we were left

with systems that had a few reasonable properties with re-

spect to object composition but that also displayed puzzling

behavior in many rather common situations. And instead of

following up on such complicated semantics, we decided to

simplify our design by reducing the number of composition

mechanisms.

Therefore the current version of L (also referred to as

Lthree since this is our third version of L) provides (i) only

a single means to activate another partial method definition

provided by another layer composed via with, (ii) object

and layer refinement, both confined to the refining layer, and

(iii) flattening of both refinements including explicit conflict

resolution if necessary [3].

1 Hasso-Plattner-Institute, University of Potsdam, Germany
2 Tokyo Institute of Technology, Japan
3 Kyoto University, Japan
a) hirschfeld@hpi.uni-potsdam.de
b) masuhara@acm.org
c) igarashi@kuis.kyoto-u.ac.jp

In the following we will present a short but illustrative ex-

ample to introduce object and layer refinement. After that,

we will use a more abstract example to lay out some of the

cases of interacting refinements.

From version to version we also experiment with L’s syn-

tax. In this paper we make our language resemble some of

the more dynamically typed ones – mainly for reasons of

compactness. Since we assume the few language features to

be self-explanatory, we only briefly describe them if needed.

2. Refinements

Refinements in L can be established both between layers

and between objects. They allow for reusing existing partial

definitions by importing them into the layer or object under

consideration. Refinements in L are influenced by Traits [3]

in that they flatten all imported definition and that they

require explicit conflict resolution.

The flattening property asserts that all partial definitions

imported from other layers or objects are treated as if they

were implemented directly in the refining layers or objects.

Since there can be more than one source for importing

such definitions, there is the possiblility of importing simi-

lar definitions and with that a chance for conflicts that need

to be resolved. L requires such conflicts to be resolved ex-

plicitly. For that, it provides means to alias or hide involved

definitions.

In Listing 1 we adapted some code from our work on Con-

textFJ [1] to show the application of our newly introduced

language constructs refine, alias, and hide.

Object Person is defined in layer LPerson and has one

variable name, a corresponding setter method, and an im-

plementation of method toString(), which simply returns

the name of the person. Note that any object that does not

refine another object explicitly refines object Object by de-

fault. With that the runtime can provide default behavior

via a bootstrapping layer on start-up.

1

2013-2-(2): Manuscript for presentation at IPSJ-SIGPRO, 2 August 2013.

layer LPerson {

object Person {

var name;

setName(_name) {

name = _name;

}

toString () {

↑ ’Name: ’ + name;

}

}

}

layer LResidence refines LPerson {

alias {

Person: toString () -> LPerson_toString ();

}

object Person {

var address;

setAddress(_address) {

address = _address;

}

toString () {

↑ LPerson_toString ()

+ ’ Address: ’ + address;

}

}

}

Listing 1

We decided to refine layer LPerson into layer LResidence

using refine to extend its entities (here only object Person)

with behavior related to residential information (Fig. 1). In

the new layer, Person receives a new variable address with

setter method and its own implementation of toString().

This version of toString() would like to make use of the

imported code from Person in LPerson, which is however

shadowed by the new implementation and with that unfor-

tunately not available.

To resolve that situation, we provide an alias for

toString() from LPerson named LPerson_toString().

Calling our aliased method allows the new toString() to

activate LPerson’s definition from within LResidence.

Note that because of flattening there are no super calls.

In Listing 2 we provide two more layers named LStudent

and LEmployment that we will use for dynamic sideways

composition via the with (...) construct.

Layers LStudent and LEmployment provide two more

properties (university and employer respectively) to our

Person object. Both layers are intended to be used via with

(...) and to activate other implementations of toString()

from their own implementation using next() (similar to

CLOS’ call-next-method or ContextFJ’s proceed().

Calling next() from within an aliased method will pro-

ceed to the next method with the original name, that is the

name of the method prior to its aliasing.

In Listing 3 we now create an instance of Person and send

messages to it in the context of different layer compositions

(Fig. 1).

Creating a new Person without any layers applied to com-

putations in which it is involved will leave such instance with

only the basic behaviors provided to all objects by the run-

layer LStudent {

object Person {

var university;

setUniversity(_university) {

university = _university;

}

toString () {

↑ next()

+ ’ University: ’ + university;

}

}

}

layer LEmployment {

object Person {

var employer;

setEmployer(_employer) {

employer = _employer;

}

toString () {

↑ next()

+ ’ Employer: ’ + employer;

}

}

}

Listing 2

var atsushi = new Person ();

with (LResidence) {

atsushi.setName(’Atsushi ’);

atsushi.setAddress(’Kyoto ’);

atsushi.toString ();

// ==> ’Name: Atsushi \\

// Address: Kyoto ’

with (LEmployment) {

atsushi.setEmployer(’Kyodai ’);

atsushi.toString ();

// ==> ’Name: Atsushi \\

// Address: Kyoto \\

// Employer: Kyodai ’

}

}

Listing 3

time.

After applying layer LResidence, both name and address

are available to our instance atsushi. Invoking toString()

calls the version directly implemented in LResidence which

in turn calls the aliased varsion imported from LPerson by

using its newly assigned name.

Adding LEmployent to the previous configuration will ex-

tend the set of properties of atsushi with employer.

Another means to resolve conflicts, namely the ones which

arise if there are more than one sources for a defintion, is to

hide all unwanted implementations. The hide construct is

used in the next section.

3. More Refinements

We now show on a rather synthetic example how refine

between layers and classes on with (...) interact when all

used in the same code base. For that we successively en-

hance our example with new partial definitions and conflict

2

2013-2-(2): Manuscript for presentation at IPSJ-SIGPRO, 2 August 2013.

layer LEmployment layer LResidence

layer LPerson

object Person

var name

toString():
 ^ ‘Name: ' + name;

object Person

var employer

toString():
^ next()
+ ' Employer: ' + employer;

object Person

var address

toString():
^ LPerson_toString()
+ ' Address: ' + address;

toString():
^ super.toString()
+ ' Address: ' + address;

LPerson_toString():
 ^ ‘Name: ' + name;

alias

call next

Fig. 1

resolutions. While we do not address all possible interac-

tions, we hope to cover some of the interesting ones.

In Listing 4 we create two instances of O1 and O2 that we

will use in our running example.

var o1 = O1.new();

var o2 = O2.new();

Listing 4

Layer L1 in Listing 5 contains definitions for objects

O1 and O2 with methods m1() to m4() implemented self-

sufficiently. Activating any of the methods on any of the

objects will yield a string describing in which layer and which

object the particular method is located. Because there are

no refinements in Listing 5, o1.m1() with L1 activated re-

turns ’L1-O1-m1’ (<1>).

Layer L2 in Listing 6 is a refinement of layer L1 from

Listing 5. Since there are no new implementations for m4()

and m5(), the ones received from L1 are available. Because

of that, evaluating with (L2) { o1.m4(); } calls the m4()

defined in O1 of L1 and so returns ’L1-O1-m4’ (<2>). How-

ever, the new implementations for m1(), m2(), and m3()

shadow the ones imported from L1. Evaluating with (L2)

{ o2.m1(); } executes m1() defined in O2 of L2 and returns

’L2-O2-m1’ (<3>).

Layer and object refinements in Listing 7 are similar to

those in Listing 6. In addition to that, L3 hides m4() orig-

inating from O1 in L1. If m4() is now called on o1 with

L2, there will be an error since there is no m4() avail-

able – neither imported via refinements nor implemented di-

rectly (<4>). However, to make the implementation of m4()

from O1 available via another name (here L1_m4()), we pro-

vide an alias. With that, evaluating with (L3) {o2.m4();

layer L1 {

object O1 {

m1() { ↑ ’L1-O1 -m1’ };

m2() { ↑ ’L1-O1 -m2’ };

m3() { ↑ ’L1-O1 -m3’ };

m4() { ↑ ’L1-O1 -m4’ };

}

object O2 {

m1() { ↑ ’L1-O2 -m1’ };

m2() { ↑ ’L1-O2 -m2’ };

m3() { ↑ ’L1-O2 -m3’ };

m4() { ↑ ’L1-O2 -m4’ };

m5() { ↑ ’L1-O2 -m5’ };

}

}

with (L1) {

o1.m1(); // ==> ’L1-O1-m1 ’ // <1>

}

Listing 5

} leads to the execution of L1_m4(), the relabelled behavior

originally defined on O2 in L1 (<5>).

Evaluating with (L4) { o2.m6(); } in Listing 8 yields

’L1-O1-m4’ (<6>) because O1’s implementation of m4() in

L4 is that imported from L1, which in turn is imported from

O2 in L4 via its refinement of O1.

In Listing 9 we compose a sequence of layers into the

system with L1 being the first layer activated and L4 the

last. This illustrates with (L1, L2, L3, L4) { o1.m3();

} (<7>) will call L4’s m3(), which immediately proceeds via

next() to L3’s m3(), which in turn proceeds via next() to

L2’s m3(), which also proceeds via next() to the implemen-

tation of m3() in L1 where there is eventually an implemen-

tation that returns a result (’L1-O1-m3’).

4. Related Work

Lthree ’s refinements are based ideas from Traits [3] such

3

2013-2-(2): Manuscript for presentation at IPSJ-SIGPRO, 2 August 2013.

layer L2 refines L1 {

object O1 {

m1() { ↑ ’L2-O1 -m1’ };

m2() { ↑ m1(); };

m3() { ↑ next (); };

// *** NO m4() { ... }; ***

}

object O2 refines O1 {

m1() { ↑ ’L2-O2 -m1’ };

m2() { ↑ m1(); };

m3() { ↑ next (); };

// *** NO m4() { ... }; ***

// *** NO m5() { ... }; ***

}

}

with (L2) {

o1.m4(); // ==> ’L1-O1-m4 ’ // <2> from other

o2.m1(); // ==> ’L2-O2-m1 ’ // <3> replacement

}

Listing 6

layer L3 refines L1 {

alias {

O2: m4() -> L1_m4 ();

}

hide {

O1: m4();

}

object O1 {

m1() { ↑ ’L3-O1 -m1’ };

m2() { ↑ m1(); };

m3() { ↑ next (); };

// *** NO m4() { ... }; ***

}

object O2 refines O1 {

m1() { ↑ ’L3-O2 -m1’ };

m2() { ↑ m1(); };

m3() { ↑ next (); };

m4() { ↑ L1_m4 (); };

// *** NO m5() { ... }; ***

}

}

with (L3) {

o1.m4(); // ==> *ERROR* // <4> hidden

o2.m4(); // ==> ’L1-O2-m4 ’ // <5> via alias

}

Listing 7

as flattening and explicit conflict resolution. Internal to

the implementation of a particular layer, these properties

allowed us to keep method lookup in our COP language

simple and managable.

5. Outlook

In COP layers are a set of partial behavioral definitions

that are often composed at run-time. Each such partial be-

havioral definition can be implemented by several different

means.

For Lthree we decided to allow for refinement relation-

ships between both layers and objects to help to avoid code

duplication.

With the three composition mechanisms available with

Lthree– layer refinement, object refinement, and layer com-

layer L4 refines L1 {

object O1 {

m1() { ↑ ’L4-O1 -m1’ };

m2() { ↑ m1(); };

m3() { ↑ next (); };

// *** NO m4() { ... }; ***

}

object O2 refines O1 {

alias {

L1: m4() -> O1_m4 ();

}

hide {

L1: m4();

}

m1() { ↑ ’L4-O2 -m1’ };

m2() { ↑ m1(); };

m3() { ↑ next (); };

// *** NO m4() { ... }; ***

// *** NO m5() { ... }; ***

m6() { ↑ O1_m4 (); };

}

}

with (L4) {

o2.m6(); // ==> ’L1-O1-m4 ’ // <6> imported alias

}

Listing 8

with (L1, L2, L3, L4) {

o1.m3(); // ==> ’L1-O1-m3 ’ // <7> next()

}

Listing 9

position – one of our design goals was to simplify method

lookup and to avoid complicated interaction between these

mechanisms. Flattening and manual conflict resolution via

aliasing and hiding allowed us to gain confidence in achiev-

ing that goal.

However, Lthree is only one intermediate step and more

of a concept design prototype than a practical artifact or

theoretically sound model. We therefore will continue our

work by both designing more interesting systems using L

and clarifying the theoretical foundations.

Acknowledgements

This paper is based upon work supported in part by the

Japan Society for the Promotion of Science (JSPS) Invita-

tion Fellowship Program for Research in Japan.

References

[1] Hirschfeld, R., Igarashi, A. and Masuhara, H.: ContextFJ:
A Minimal Core Calculus for Context-oriented Programming,
Proceedings of FOAL’11, ACM (2011).

[2] Hirschfeld, R., Masuhara, H. and Igarashi, A.: L - Context-
oriented Programming With Only Layers, Proceedings of
COP’13, ACM (2013).

[3] Schaerli, N., Ducasse, S., Nierstrasz, O. and Black, A. P.:
Traits: Composable Units of Behaviour, Proceedings of
ECOOP’03, Lecture Notes in Computer Science, Vol. 2743,
Springer, pp. 248–274 (2003).

4

