
2018-4-(5): Manuscript for presentation at IPSJ-SIGPRO, 17 Jan 2019.

A Shell-like Model for General Purpose Programming

JeanineMiller Adkisson1,a) JohannesWestlund1,2,b) HidehikoMasuhara1,c)

Abstract: Shell scripting languages such as bash are designed to integrate with an OS, which mainly involves man-

aging processes with implicit input and output streams. They also attempt to do this in a compact way that could be

reasonably typed on a command-line interface.

However, existing shell languages are not sufficient to serve as general-purpose languages—values are not observ-

able except in raw streams of bytes, and they lack modern language features such as lexical scope and higher-order

functions.

By way of a new programming language, Magritte, we propose a general-purpose programming language with se-

mantics similar to bash. In this paper, we discuss the early design of such a system, in which the primary unit of

composition, like bash, is processes with input and output channels, which can be read from or written to at any time,

and which can be chained together via a pipe operator. We also explore concurrency semantics for such a language.

1. Motivation

The UNIX shell programming model has played an important

role in integrating applications and operating systems by com-

posing programs—spawning independent programs in parallel to

communicate over operating-system pipes. Beyond the most sim-

ple tasks, however, bash and similar tools break down, due to

various language deficiencies.

In this paper, we use the term pipe-based language to mean a

programming language intended to be used on a command line,

with the ability to spawn many processes which communicate

through synchronous channels or pipes in an ad-hoc manner—

and in which this facility is the primary method of composing

different functions or units.

Our overarching goal is to create a language and a program-

ming system that retains the pipe-based programming and inter-

action model of bash, but allows for large programs in a way that

existing shell languages do not.

Outline

In this work, we present a new pipe-based language Magritte.

Section 2 describes design requirements for a language in this

space. Section 3 and 4 describe Magritte’s design and implemen-

tation. Section 5 describes our future goals with this project, and

in Section 6 we review various related work and alternative ap-

proaches.

2. Design Considerations

In this section we discuss several feature requirements and design

considerations for a pipe-based language to be viable for large

1 Department of Mathematical and Computing Science, Tokyo Institute of

Technology, Meguro, Tokyo 152-8552
2 Kungliga Tekniska Högskolan

KTH Royal Institute of Technology, Stockholm, Sweden, 10044
a) jneen@jneen.net
b) jwestlun@kth.se
c) masuhara@acm.org

programs.

2.1 Programming With Values

2.1.1 Value Pipes

It is desirable in a general purpose language to be able to create

and use complex data structures, and to use them freely through-

out the language. In particular, if we are to allow for pipe-based

composition to be the core composition method for large pro-

grams, we must allow rich values to be passed through pipes.

Several projects[2], [5], including bash itself, have attempted

to add arrays and associative arrays as standard objects, but not

as first class values: they do not allow these data structures to

be passed into or returned from functions, or importantly, passed

through pipes.

Furthermore, serialization through pipes is generally not pos-

sible except in a single-threaded case, since complex data can be

corrupted through interleaving.

For example, consider the fairly common architecture of pro-

ducer/consumer: A producer process produces values that are

processed in parallel by multiple consumer processes, and the

values are collected in a single output. This might be expressed

in bash as:

consume the stream, labeling every line

label() { while read x; do echo "1x"; done ;}

process the stream with two threads

split() { label a & label b & ;}

produce and process the numbers 1-100,

limiting output to the first 3 lines

seq 100 | split | head -3

With this code, a user might expect the output to be three lines,

each consisting of a letter a or b, and a number, for example:

1

2018-4-(5): Manuscript for presentation at IPSJ-SIGPRO, 17 Jan 2019.

a1

a2

a3

b1

a3

b2

a2

b1

a3

Unfortunately, when we run this process, the outputs from the

label function become interleaved*1, resulting in outputs such

as:

a2

b1

b

b12

a

a4

a

b12

a34

This behavior is in accordance with the Linux User’s Manual [7]:

The communication channel provided by a pipe is

a byte stream: there is no concept of message

boundaries.

In order to provide a channel implementation that is usable for

large programs, we must ensure that it is consistent—that is, that

every read corresponds to exactly one write. Value pipes accom-

plish this by making a value the smallest atomic unit of commu-

nication.

2.1.2 Capture and Substitution

For processes that output values, we need to support a mechanism

to capture those values for use in variables, data structures, and

function arguments, similar to backticks or $(...) in bash. This

enables processes to be used like functions, which return data to

their caller.

But since in most shells, rich values are not writable to out-

put streams, the output cannot effectively be used as a return path

for values. Es Shell[5] accounts for this by introducing a return

value which is separate from stream output and can be accessed

via special-purpose call syntax.

If we allow values to be written to output streams, however, we

can directly capture values written to the output.

2.1.3 Modern Language Features

Users will expect a modern programming language to have:

• Lambda functions with closure. This requires the introduc-

tion of lexically scoped variables.

• Dynamic variables. Most shell languages already include

these, as OS Environment variables are dynamic by nature.

• Product structures with support for open recursion. a

prototype-based object system is sufficient for this.

• Sum structures. In an untyped language, a method for pat-

tern matching over nestable heterogenous lists is sufficient.

2.2 Automatic Process Cleanup

2.2.1 Interruption

*2 In shell programming, we tend to compose infinitely running

processes together as pipeline elements. Thus we require a well-

*1 We have observed some behavior in the output that cannot be explained

simply by interleaving, suggesting there may be some other race condi-

tions in play.
*2 We use the term interruption in the generic sense—to mean the halting

of normal flow in a process, due to some external event. It is unrelated

to hardware or OS signalling.

defined semantics of process interruption: automatic clean-up of

processes that will no longer be used. Consider the following

Magritte code:

read-lines tmp/large-file (1)

| take 10 (2)

| each (?line => do-expensive-work $line) (3)

In this example, three processes are spawned concurrently: (1) a

process with an open file that writes one line at a time to its out-

put, (2) a process that reads 10 times from its input, writes each

entry to the output, and then exits, and (3) a process that reads

every input and calls a function to perform an expensive task. A

user’s intent when typing such code may be to read 10 lines from

a file and synchronously perform an action on each line.

A user will also expect that, after the first 10 lines are pro-

cessed and the take function returns, the file will be closed, and

all three processes exit. This expectation is despite the fact that

process (1) is specified to read the entire file, and process (3) is

an infinite loop.

In a naive implementation using synchronous channels, pro-

cess (1) will never be able to write more than 10 lines, and will

remain blocked on its output with the file open forever. Similarly,

the call to the each function will never be notified that its input

has finished, and will block forever on its input stream.

2.2.2 Compensation

In interacting with an operating system, it is necessary to mange

side effects, and gracefully recover or restore state in the case of

an interruption. Such an error-handling system would also be a

way for user code to directly observe interruption.

Without compensation of errors, the only way of observing

forever-blocked processes would be to inspect the process table,

or to observe the memory footprint of the program. Thus, we can

define the primary task of the interruption system as running a

process’s compensation actions at the appropriate time.

2.2.3 Lazy Interruption vs. Eager Interruption

In a system such as this, there is a language design choice that

must be made—whether interruption is eager, in which processes

are interrupted immediately upon closing a channel, or lazy, in

which processes are only interrupted upon interaction with a

closed channel. In making this choice, we desire that the behavior

of interruption be predictable—however, there are two competing

viewpoints for predictability.

Consider the following example, with the assumption that

do-other-operation does not write to the standard output:

(put 1 2 3; do-other-operation) | take 3

The left-hand side of the pipe will write three times, and then

continue to do other processing in-thread that does not write to

the standard output. The final take 3 operation will return af-

ter 3 inputs are read. It is important to decide, then, whether

the process on the left should be interrupted in the middle of

do-other-operation (eager interruption), or whether it should

be left alone until it attempts to write a value (lazy interruption).

From the perspective of someone spawning a process, eager

interruption can seem more predictable, as they can guarantee a

2

2018-4-(5): Manuscript for presentation at IPSJ-SIGPRO, 17 Jan 2019.

point at which the process has stopped doing work.

However, from the perspective of a function author, lazy in-

terruption is more predictable, because the author can iden-

tify precisely which points in the code have the potential to be

interrupted—those points which run a put or a get. Contrast this

with eager-interruption semantics, where any point in the code

may be interrupted, introducing the need for users to either mark

critical sections and be very careful with implementing stateful

algorithms.

On the other hand, lazy interruption has the disadvantage that

a producing process must do enough work to produce one more

value than will be consumed. If each value is relatively cheap

to produce, this is not a problem, but in the case that the values

are expensive to produce, this would result in a large amount of

unnecessary work.

In an effort to create a predictable system, therefore, as lan-

guage designers we must choose between these two viewpoints.

2.2.4 Closing of Channels

Given that multiple processes may be reading from and writing

to a channel, it is often the case that a communicating process

will end when there are other processes still communicating over

the channel. It would not be appropriate in this case to interrupt

other processes attached to the channel, as they are still able to

communicate.

We define our guiding principle for the appropriate time to in-

terrupt a process as: A process is interrupted exactly when it can

no longer be woken up. When a process is blocked on a syn-

chronous channel, it will be woken up as soon as another process

communicates on the other end. Therefore the appropriate time

for it to be interrupted is when it is blocked on a channel that will

never receive any more operations.

This can be difficult to detect when a reference to a channel can

be passed anywhere in the program as a standard value. Luck-

ily, the arrangement of pipes and channels are usually specified

at process spawn time. We can therefore relax our constraint

to guarantee that channels will be closed at appropriate times in

common architectures, and that they never close if there are active

readers or writers.

2.2.5 Reopening Channels

Some systems, like UNIX named pipes, allow a channel to be re-

used by new processes after it has been closed[7]. However, this

can lead to some unexpected races between a channel closing and

a new process spawning. Consider the example:

c = (make-channel) # create a new channel

& count-forever > $c # write infinitely

& take 10 < $c # read 10 elements and exit

put 10 > $c # write once from a new process

This example represents an unavoidable race with first-class

channels: between take 10 closing the channel and put 10

opening the channel for writing. If we allow channel reopen-

ing, we will either block forever, or insert the number 10 into the

stream, depending on which happens first. However if we do not

allow channel reopening, we can say that, if a process initiates a

read or write on a closed channel, it is immediately interrupted. In

this case, both sides of the former race have the same termination

behavior—the process is closed when take 10 returns.

2.2.6 Masking Interruptions

A user will often wish to perform final calculations after a par-

ticular output channel has closed, and interruption semantics can

make this difficult. Consider the following example, which sums

all numbers from the standard input:

(sum) = (

total = 0

each (?x => %total = (add %total %x))

put %total

)

In this example, the function each will consume the entire input

stream and mutate a lexical variable (marked with %). After the

entire input stream is consumed, we wish to output the resulting

%total value.

However, with the semantics described above, the each func-

tion will loop until it receives an interrupt signal from the input

channel closing, which will interrupt the entire process and not

continue to the following line. In order to avoid this situation, we

must include a facility to control the extent of interruptions.

3. Description of Magritte

We propose a language that meets the above requirements.

3.1 Values and Variables

3.1.1 Lexical vs. Dynamic Variables

In order to support both lexical and dynamic variables, we intro-

duce a separate syntax for lexically scoped variables at variable

reference and mutation points, using a % instead of $ (for exam-

ple, %x). Let-binding is left unadorned (x = 1), and will bind a

variable both lexically and dynamically.

Let-binding uses this plain syntax to maintain compatibility

with standard environment files. Variable binders in lambda ar-

guments are similarly both lexical and dynamic, and use ? (e.g.

?x) to allow for unambiguous pattern matching.

For mutation, we use assignment syntax, but with the location

(dynamic or lexical) specified on the left-hand side, e.g. %x = 1

or $x = 1. In this way we avoid the need to declare variables,

and allow ourselves to throw an exception when trying to mutate

a non-existent variable, rather than silently creating a new local

binding.

3.1.2 Lambda Functions

Lambda functions are specified with parenthesized expressions

containing the arrow symbol =>, which separates the bindings

from the body. Multiple matching clauses are possible, and can

match simple patterns. Clauses are separated at the beginning of

lines that contain => (where ”lines” are also terminated by ;, and

do not consider nested newlines), which avoids the need for any

indentation-based parsing. For example:

my-function = (

?x =>

put one-argument %x

3

2018-4-(5): Manuscript for presentation at IPSJ-SIGPRO, 17 Jan 2019.

?y ?z =>

put two-arguments

put %y %z

... => ...

)

Named functions can also be defined using a parenthesized ex-

pression as the left hand side of an assignment:

(my-function ?x ?y) = ...

equivalent to

my-function = (?x ?y => ...)

Functions maintain the scope of any free lexical variables in the

body, including for mutation.

3.1.3 Nestable Vectors

We extend the concept of an argv vector such that it is nestable,

using the compact syntax []. Combined with bareword strings

(string literals without quotation), we can represent trees in a

straightforward manner:

a-tree = [node [node [leaf 1] [leaf 2]] [leaf 3]]

These can be matched in lambda arguments by patterns such as

[node ?x]. A typical strategy for traversing this kind of struc-

ture might be a function that puts all leaf node values to its output

in a predefined order, to be consumed by another process.

The builtin function for takes a vector as an argument and out-

puts each element in order, so that a vector can be traversed with:

for [1 2 3 4 5] | each (?el => ...)

3.1.4 Environments as Objects

Variable environments can be captured directly as key-value maps

with a parent pointer. Environment capture uses the straightfor-

ward { } syntax to run a block of code, then detach the run-

ning environment from its parent and substitute it. Therefore all

assignment syntaxes are available, including function definition.

For example:

(make-account ?balance) = {

balance = $balance

(deposit ?amt) = (%balance = (add %amt ←֓

%balance))

(withdraw ?amt) = (%balance = (sub %amt ←֓

%balance))

}

A planned extension would allow using special syntax to register

additional parents, allowing users to inherit by direct delegation.

Environment lookup uses the ! symbol, as in $env!key. We

use this symbol because it is already reserved by bash, unlike

both / or . which need to be available in bareword syntax to in-

dicate file paths for external programs. Environments can also be

mutated using the same access syntax. For example:

account = (make-account 10)

$account!withdraw 4

put $account!balance # => 6

3.1.5 Collection and Substitution

A priori, a capture mechanism such as described in Section 2.1.2

would have to return a list, as any process may output zero or

more values. However, as a function calling convention, that ap-

proach would require the callers of functions to manually unwrap

lists on every function call.

In order to simplify substitution, Magritte uses normal paren-

theses to collect and expand the resulting values into the current

command vector—increasing the argument number by the num-

ber of values output from the function. For example:

A function defintion: output three values

(count-three) = (put 1; put 2; put 3)

Collect three writes and expand 1 2 3 in-place

other-fn 0 (count-three) 4

equivalent to

other-fn 0 1 2 3 4

These semantics are similar to the $(...) syntax in bash, with

the exception that we have the ability to properly separate values

without relying on whitespace.

This mechanism is also available in vector literals, allowing us

to collect outputs as a vector:

outputs = [(some-command)]

The list built-in function, which simply returns its argument

vector, is also available for this purpose. The for function men-

tioned above can be used to splat vector arguments into function

calls:

some-fn $arg1 $arg2 (for [$arg3 $arg4])

3.1.6 Blocks

A parenthesized grouping that is not in argument position is a

block. Blocks do not collect or modify the environment’s chan-

nels in any way, but instead simply run the code contained within

them, and output values normally. These are mostly used to group

commands within a pipeline, and in the body of function defini-

tions:

generate-values | (process; process; process)

In the case that a user might want to use a substitution at the

root level—i.e. to generate a function and immediately call it,

we provide the exec builtin which executes its arguments as a

command.

3.2 Channels and Processes

3.2.1 Synchronous Channels

Channels in Magritte are synchronous—readers and writers can-

not continue until a communication is completed successfully.

Given the decision to allow rich values to be passed through chan-

nels, we have decided that a buffer is not as necessary for perfor-

mance purposes, since a single write may contain an arbitrarily

4

2018-4-(5): Manuscript for presentation at IPSJ-SIGPRO, 17 Jan 2019.

large amount of data—or for that matter a process handle or ob-

ject reference. Additionally, synchronous channels have simpler

semantics both for implementation and for users, and we leave

open the possibility of user-implemented queues, such as:

producer | buffer 10 | consumer

3.2.2 Spawning and Redirecting

Spawning uses a syntax similar to bash, with an ampersand (&) at

the beginning of a command indicating that it should be spawned

in a new thread.

Standard input and output may be redirected into and from

channels using the > and < symbols, or chained together with the

pipe (|) symbol, much like bash. Commands in pipelines will all

be spawned in their own threads, with the exception of the final

command, which will be run in the current process.

3.3 Interruption and Compensation

3.3.1 Lazy Interruption

We have decided that the predictability of lazy interruption is

worth the tradeoff for the extra-values problem discussed in Sec-

tion 2.2.3, and we discuss some ways to mitigate this problem in

Section 5.

3.3.2 Process Registration

In order to satisfy the constraints of Section 2.2.4, we maintain

a process register inside of each channel, so that we can decide

when all readers or all writers have returned or been interrupted,

at which time we can guarantee that processes on the other side of

the channel cannot be woken up without spawning new processes.

Therefore this covers the architecture of pipelines, in which many

processes are spawned together in fixed configurations. Other ar-

chitectures will have to manually manage process shutdown in

some cases.

3.3.3 Compensation and Unconditional Compensation

We implement compensation directly using the %% operator to in-

dicate a compensation action, which is run in case of an interrup-

tion, and cleared at the end of the current function body:

(my-function) = (

action %% cleanup-action

...

)

Additionally, we define unconditional compensations using the

%%! operator, which run both in the case of an interruption and

in the case of a normal return. In this way, they are analogous to

finally or ensure sections of standard exception handling. For

example, the function read-lines above could be implemented

as:

(read-lines ?fname) = (

f = (open-file $fname) %%! close-file $fname

until (=> eof? $f) (=> read-until "\n" $f)

)

In this way, we can ensure that the file is closed when the function

exits, whether by a normal return or by interruption.

3.3.4 Interrupt Handling

While we plan to explore more general mechanisms for exception

handling, we find that it suffices for most applications to provide

two builtin functions, produce and consume, to indicate the in-

tent to fill or consume the entirety of the output or input streams,

respectively. Each of these functions takes a single zero-argument

function which will loop forever until the standard output or stan-

dard input respectively is closed, whereby control flow continues

after the invocation. Using these functions, we might define each

as:

(each ?fn) = (consume (=> %fn (get)))

With this definition, the call to consume will mask the interrup-

tion from the standard input closing, and control flow after any

each invocation will continue as normal. This is enough to re-

solve the issue discussed in Section 2.2.6.

4. Implementation of Magritte

The current version of Magritte is implemented as a straightfor-

ward interpreter written in Ruby, using Ruby’s builtin threads,

exceptions, and mutexes to implement processes and channels.

4.1 Channel Registry

Our channel implementation is a standard implementation of

synchronous channels, with the addition of four intrinsic meth-

ods, used only internally by the interpreter: add_reader,

remove_reader, add_writer, and remove_writer, which

register and deregister processes as described in Section 3.3.2.

When a remove_* method results in an empty set, it will addi-

tionally close the channel and raise an internal exception in every

blocked thread.

Once the channel is closed, every call to read and write will

interrupt the calling process as described in Section 2.2.5.

In order to reduce unnecessary use of Ruby threads, we also

find it is simpler, instead of registering processes to the chan-

nels, to register stack frames. In this way, we can register all

inputs and outputs on frame entry, and use standard Ruby ex-

ception handling to ensure we properly run compensations and

deregister inputs and outputs on frame exit. This means that dif-

ferent frames in the same process can be connected to different

channels, which makes the > and < redirection syntax straightfor-

ward to implement—we simply push a new frame with different

channels attached.

Interruptions then cascade naturally—when a channel closes, a

process is interrupted, causing it to unwind its stack and deregis-

ter channels, thereby potentially causing other channels to close.

4.2 Spawning Order Dependency

It is necessary to take some care with the implementation of the

spawning primitive (&), that we wait until the spawned process

has finished registering its channels before the spawning process

continues. Consider the following example, which outputs 10

numbers, possibly out of order:

(drain) = (each (?x => put %x))

count-forever | (& drain; & drain) | take 10

5

2018-4-(5): Manuscript for presentation at IPSJ-SIGPRO, 17 Jan 2019.

The middle process is responsible for spawning two processes

that funnel data from their input to their output. However, since

they are both spawned in the background, the spawning process

will immediately return. In general this is not a problem, since the

drain processes should be keeping the two pipes open. However,

if we do not take care to wait until they have finished registering

their channels, there is a risk that the spawning process will return

first and close the two pipes.

For this reason, we have special case handling for the root

frame of a process—the channels are registered in the spawning

process, before the spawned process is allowed to start.

4.3 Collectors

In order to implement the return semantics described in Section

2.1.2, we also implement a write-only channel called a collec-

tor, and implemented an intrinsic that waits for channel closing.

Collectors cannot be created directly by users, but only appear in

the interpreter when we evaluate a Subst node, which represents

parentheses in argument position.

Naively, collectors would ignore registration commands and

simply append written elements to an array. However, it is still

necessary to track registered writers. Consider the example:

(range ?n) = (count-forever | take %n)

my-list = [(range 10 | (& drain; & drain))]

In this example, there is an open question of how long we should

wait until reading the collection and continuing. If we naively

wait until the base command is finished, we will continue early

and miss values that may be written later. Thus substitution waits

until all writers to the collector have deregistered.

To implement this, we add a wait_for_close intrinsic to col-

lectors, which returns immediately if closed, and otherwise adds

the current thread to a waiting set and sleeps. Upon closing the

channel, all elements of this waiting set are awoken, and flow

continues. Thus the algorithm for substituting a block is:

* Create a new collector $c

* Run the parenthesized expressions with ←֓

standard output set to the collector

* Run $c.wait_for_close

In the most common case, there will only be a single thread writ-

ing to the collector, so that the channel will be closed by the time

the evaluation is finished, making wait_for_close a null oper-

ation.

5. Discussion

5.1 Open Checking

Because our system implements lazy interruption, we must miti-

gate the problem of producers creating one extra element than is

needed, in the case that elements are expensive to produce. One

possibility is to introduce the concept of open checking, so that

producer processes can periodically run a builtin command that

will interrupt if the output is closed, without actually writing any

data to the channel.

5.2 OS Integration

In order to be viable as a shell, we must integrate seamlessly

with a POSIX-like environment. This involves marshalling val-

ues to strings and byte streams in order to communicate with ex-

ternal processes, and allowing external processes to interact with

Magritte values. We plan to use a suite of parsing and unparsing

functions for linewise and table data, along with a custom JSON

streaming format to allow integration with most languages. We

also plan to use a socket and a static executable to allow external

programs to call back into Magritte lambda functions.

5.3 Macros

While we do not currently have a use case for macros, it is likely

that there is a use case for syntactic abstraction. Our parsing

technique involves an intermediate skeleton tree representation

adapted from Bachrach and Playford[1] that makes macro sys-

tems simpler to implement in non-lisp syntaxes.

5.4 Performance

The current Ruby interpreter is slow. We plan to bootstrap using

a JIT-compiled virtual machine implemented in RPython.

5.5 Desktop Scripting

We believe Magritte offers a promising solution to the desktop

scripting problem: an interface for end users to integrate and au-

tomate independent programs, a problem attempted by projects

such as Guile Scheme[12] and TCL[9]. What differentiates our

approach is that our platform should be able to integrate with pro-

grams as they are currently written, without the need for further

integration on the part of application developers.

6. Related Work

6.1 General-Purpose Languages

Many general purpose languages, including Go[4] and Clo-

jure[6], contain robust channel implementations, which could be

used to implement a wide variety of concurrent algorithms. In

such a system we could implement something similar to our sys-

tem by adding input and output channels to every function and

heavily currying functions.

However, such a system would still require manual use of in-

put and output channels when a simple pipeline would suffice—

and the user must still translate between returning vs. outputting

functions and expressions. Additionally, these systems do not

contain any kind of channel closing semantics or automatic pro-

cess cleanup.

6.2 Shell Extensions

Many systems, such as xonsh[11] and Es Shell[5], attempt to ex-

tend traditional shells with object or functional semantics, but do

not sufficiently integrate their semantics with pipes, leaving pipes

to remain bytes-only.

Systems that extend existing languages with shell semantics,

such as scheme-shell, also do not integrate fully with pipes.

6.3 Object Shells

Projects such as powershell[8] and mash[10] allow objects

6

2018-4-(5): Manuscript for presentation at IPSJ-SIGPRO, 17 Jan 2019.

(.NET objects and Scala objects, respectively) to be passed

through pipelines. However, this approach still ties the language

to one specific platform or object system and makes it difficult to

integrate with programs written for other platforms. By only re-

lying on the most universal OS concepts of standard input/output,

argument vectors, and interrupt signals, we should be able to inte-

grate programs across a wide variety of languages and platforms.

6.4 PUSH Shell

The PUSH shell[3] extends a traditional shell with fan-out and

fan-in operators which separate data into discrete records. This

enables it to be used safely to orchestrate distributed comput-

ing tasks. However, the underlying pipe implementation remains

byte-based, so that features like Magritte’s collection and expan-

sion remain impossible.

7. Conclusion

We proposed Magritte, which is both capable of integrating

closely with operating systems, and serving as a general-purpose

language for larger applications. Our channel implementation al-

lows for robust composition of concurrent algorithms, and can

also serve as the fundamental unit of composition for our lan-

guage, which integrates with modern general-purpose language

features like rich data structures and lambda functionsn with lex-

ical scoping.

At the same time, the language stays close enough to the com-

mon OS spawning model that we believe it should be straightfor-

ward to integrate with an operating system. Because of this, we

believe Magritte is capable of filling a currently unserved niche as

a desktop integration language, and also provides an interesting

platform for experimenting and building concurrent algorithms.

Acknowledgments This work was supported by JSPS KAK-

ENHI Grant Number 18H03219. J. Westlund’s contribution to

this research was made possible by The Sweden-Japan Founda-

tion and Stockholms Grosshandelssocietet.

References

[1] Bachrach, J. and Playford, K.: D-expressions:
Lisp power, Dylan style, Retrieved Dec 2018 from
https://people.csail.mit.edu/jrb/Projects/dexprs.pdf (1999).

[2] Duff, T.: RC—a Shell for Plan 9 and UNIX, UNIX Vol. II (Hume,
A. G. and McIlroy, M. D., eds.), W. B. Saunders Company, Philadel-
phia, PA, USA, pp. 283–296 (1990).

[3] Evans, N. P. and Van Hensbergen, E.: Brief Announcement: PUSH, a
DISC Shell, Proceedings of the 28th ACM Symposium on Principles
of Distributed Computing, PODC ’09, New York, NY, USA, ACM,
pp. 306–307 (online), DOI: 10.1145/1582716.1582780 (2009).

[4] Griesemer, R., Pike, R. and Thompson, K.: The Go Programming
Language, Retrieved Dec 2018 from http://golang.org/ (2018).

[5] Haahr, P. and Rakitzis, B.: Es: A shell with higher-order functions,
Proceedings of the USENIX Winter 1993 Conference Proceedings on
USENIX Winter 1993 Conference Proceedings, USENIX’93, Berke-
ley, CA, USA, USENIX Association, pp. 53–62 (1993).

[6] Hickey, R.: The Clojure Programming Language, Proceedings of the
2008 Symposium on Dynamic Languages, New York, NY, USA, ACM
(2008).

[7] Linux man-pages Project: pipe(7) Linux User’s Manual, The
Linux Foundation, https://www.kernel.org/doc/man-pages/, 4.16 edi-
tion (2018).

[8] Microsoft: PowerShell Documentation, Retrieved Dec 2018 from
https://docs.microsoft.com/en-us/powershell/ (2018).

[9] Ousterhout, J. K.: Tcl: An Embeddable Command Language, Techni-
cal report, Berkeley, CA, USA (1989).

[10] Russell, M.: Mash: An object shell for UNIX, Retrieved Dec 2018

from http://mash-shell.org/ (2018).

[11] Scopatz, A.: The Xonsh Shell, Retrieved Dec 2018 from https://xon.sh/
(2018).

[12] The GNU Project: The Guile Programming Language, Retreived Dec
2018 from http://gnu.org/s/guile (2018).

7

