
2019-5-(2): Manuscript for presentation at IPSJ-SIGPRO, 12 3 2020.

Improving Keyword-based Code Recommendation
by Exploiting Context Information

Shu Aochi,a) Hidehiko Masuhara,b)

Abstract: Code recommendation provides code fragments that the programmer likely to type in. One of
the advanced code recommendation techniques is keyword programming, which can reflect the programmers’
intention. Keyword programming lets the user specify keywords and recommends expressions that contain
as many of them. Another one is neural code completion, which uses neural networks to recommend likely
occurring expressions according to the context (the program text preceding the cursor position). Previous
work showed that the accuracy of a keyword programming system is not high enough. One of the reasons is
that the existing keyword programming always recommends shorter expressions without using the context
information. In this presentation, we improve keyword programming by combining a neural code completion
technique. In addition to the occurrence of keyword, the ranking algorithm incorporates the likeliness factor
of the code fragment concerning the context. To estimate the likeliness, we utilize a neural network-based
sentence generator. Thus, we can achieve a more complicatedly suitable code fragment and generate a can-
didate list varying along with different contexts. We implemented our proposal for Java called ACKN as an
Eclipse plug-in. The implementation is publicly available.

1. Introduction

Code recommendation, also called code completion, is one

of the common features in modern programming editors that

presents a list of code fragments to the programmer so that

he or she can input the desired code by merely choosing one

of them. While a typical implementation presents the names

of available methods/functions/variables that match the let-

ters already typed in the editor, there are many variations

with respect to the lengths of the presented code fragments

(from function names to a few lines of code), and with re-

spect to information used for making recommendations.

Information used for making recommendations can

roughly be classified into two kinds, namely explicit inten-

tion and implicit context.

Explicit intention is the information that the program-

mer provides to the system when he or she wants to obtain

recommendation. Examples are prefix letters, an abbrevia-

tion, and keywords. When the programmer wants to type

InputStreamReader, he or she can type “Inp” or “ISR” to

a prefix-based or abbreviation-based system, respectively,

then the system will generate identifiers that start with Inp

or that are concatenation of words starting from I, S and R.

These kind of recommendation systems can be found many

programming editors, for example Eclipse IDE.

Keyword programming, on which we are based on, uses

keywords*1 as the explicit intention [1]. The key idea is, by

a) shuaochi@prg.is.titech.ac.jp
b) masuhara@is.titech.ac.jp
*1 In keyword programmings, the term keyword means a query

word used for searching, like the one used for web search en-
gines. It should not be confused with keywords (or reserved

Fig. 1 Eclipse code completion system

letting the programmer provide a bit longer explicit inten-

tion, to enable the system can recommend longer expressions

or statements. For example, when the programmer wants to

input

new BufferedReader(

new InputStreamReader(System.in)),

he or she can type “buffered reader in” so that the sys-

tem will recommend expressions including the above one.

(In the next section, we explain how keyword programming

generates recommendations.)

Implicit context is the information available in the code

and the past behaviors of the programmer. For example,

the recommendation system in Eclipse uses the type infor-

mation of the expressions around the cursor position, and

recommends identifiers (class, variable or method names)

that can form an expression with a matching type.

Implicit context can improve the quality of recommenda-

tions. For example, Robbes et al. discovered that the type

information and code structure are useful to greatly improve

a prefix-based recommendation system [2].

Han et al. proposed a method to improve an abbreviation-

words) in the syntax of programming languages.

1

2019-5-(2): Manuscript for presentation at IPSJ-SIGPRO, 12 3 2020.

based recommendation system by using a hidden Markov

model (HMM) [3]. They construct a HMM of a program

corpus, and use it for recommending expressions that are

more likely to appear in the corpus.

Many recommendation systems use implicit context in-

formation in combination with knowledge from a corpus. In

other words, those systems recommend expressions/identi-

fiers that “programmers who wrote these also wrote.” For

example, TabNine [4] and Bruch et al.’s work [5] extract a

sequence of tokens or a sequence of method calls before the

cursor position in the editor, and recommend expressions

or identifiers that frequently appear in the expressions that

share the same sequence in the corpus.

Those system exploit corpora by using statistical meth-

ods in order to cope with large corpora. Bruch et al. use a

clustering method, for example. TabNine uses a deep learn-

ing method [4] called GPT-2 [6]. Our work also uses a deep

learning method for augmenting the keyword programming

with the corpus knowledge. We will explain a fundamental

mechanism of using a deep learning method for exploiting a

corpus in the next section.

This paper proposes a method of improving the key-

word programming by exploiting program corpus knowl-

edge. With the support from a neural network based sen-

tence generator, it tries to recommend expressions not just

containing the programmer provided keywords, but those

more likely appear in the corpus. By doing so, we aim at

making the keyword programming usable for larger expres-

sions.

The rest of the paper is organized as follows. We first in-

troduce how the original keyword programming recommends

expressions based on the generate-and-ranking method. We

also overview what a neural network can generate sentences

with a corpus (Section 2). We then illustrate that the orig-

inal keyword programming works poorly for recommend-

ing larger expressions (Section 3). We present our pro-

posal, which lets the keyword programming recommend ex-

pressions that more likely appear in the corpus, based on

the probabilities from the sentence generator (Section 4).

We implemented the proposal as an Eclipse plug-in called

ACKN (Section 5) and evaluated the proposal by performing

an experiment of inserting 15 expressions with the original

and proposed keyword programming (Section 6).

2. Background

2.1 Keyword Programming

The keyword programming [1] is an expression-level rec-

ommendation system based on keywords. It is used when

the programmer wants to write an expression (the desired

expression)*2 in a partially written program (the program

context), by typing a set of words (the keywords) into the

position where it should appear (the cursor position). The

system then shows an ordered list of expressions (the recom-

*2 The keyword programming system can recommend not only
expressions but also one or multiple statements. Here, we only
explain the case for expressions for simplicity.

mendations), one of which will be selected by the program-

mer and inserted into the cursor position. Below, we explain

the mechanism in the four steps, namely reading keywords,

extracting context information, expression generation, and

ranking.

Fig. 2 Code completion by using keyword programming

2.1.1 Keywords

The keywords are set of words separated by a space char-

acter, and should be part of the desired expression. Similar

to the keyword-based web search engines, the user of the

keyword programming needs to select the words that repre-

sent the desired expression well.

Even when the programmer does not exactly know the

desired expression, it is possible to provide keywords by us-

ing the terms at the semantic level. For example, when the

programmer wants to display the file name of the variable

f of the type File, providing “print f name” can lead to

a recommendation System.out.print(f.getName()) with-

out knowing the exact method name.

2.1.2 Extracting Context Information

As program context, the system extracts information of

• the variables and their types that can be referenced at

the cursor position, and

• the types (including method and field signatures) avail-

able in the program files.

The information will be used for generating expressions that

have valid types in the next step.

2.1.3 Expression Generation

The system then generates all valid expressions and passes

them to the next ranking step. A “valid” expression is such

an expression that will be safely compiled when it is inserted

at the cursor position. Since there can be infinitely many

valid expressions, an implementation actually generates only

expressions with a limited size, and avoids generating ex-

pressions that will have lower scores in the next step.

2.1.4 Ranking

The system calculates scores of the generated expressions

in order to show top N recommendations. The scoring func-

tion prefers expressions that are more concise and have more

keywords. The function is defined in this formula:

−0.05N + 1.0K − 0.01D + 0.001L (1)

where

N is the nesting level of the expression (i.e., the height of

its abstract syntax tree representation),

K is the number of keywords that match tokens in the

expression,

2

2019-5-(2): Manuscript for presentation at IPSJ-SIGPRO, 12 3 2020.

D is the number of tokens in the expression that do not

match any keyword, and

L is the number of tokens that reference local variables or

method names.

Here, a token is a component of an identifier split by the

“camel case.” For example, the method name getName con-

sists of the two tokens namely get and name; hence the

keyword name is considered as appeared therein.

For example, the score of array.add() (where array is

a local variable) with respect to the keywords add and line

is calculated in this way. The above four parameters are

determined as follows:

• N = 2

• K = 1 (for add)

• D = 1 (for array), and

• L = 1 (for array).

Thus, the score is

−0.05 · 2 + 1.0 · 1− 0.01 · 1 + 0.001 · 1 = 0.891.

2.1.5 Beam search

It is a search problem to select expressions with the high-

est score among all possible generations. In the previous re-

search, they used dynamic programming to generate one re-

sult by finding the local optimal solution and A* (acturally

beam search) to get multiple generations.

Beam search is a heuristic graph search algorithm. It

is based on breadth first search with width constraint. In

each depth, it first sorts the candidates by a scoring func-

tion. Then remove the node with lower score and continue

to search on the remaining node. bw, short for beam width,

denotes the number of remaining nodes for each depth.

array
result
index
src
…
depth=1

array
result
System.out
System.err
…

depth=2

result
System.out
System.out.print(result)
System.out.println(result)
…

depth=3

Fig. 3 Beam search in expression generation

For example, in Fig 3, suppose the keywords are “print

out result”, and the expressions in the third black block

stand for all possible expressions that the depth of AST is

under 3. If the user sets the bw to be 2, then the system

only remain two expressions before generate a deeper one.

The remaining expressions are shown in the red block.

2.2 Neural network text generation

Our proposal in this paper uses a neural network text

generation technique for improving the keyword program-

ming. Since we use the technique by merely retargeting the

domain from natural language sentences to programs, we

simple overview of its functionality here.

Neural network text generation is a technique, which is

originally developed in the domain of natural language pro-

cessing, that can train a neural network by using a large

corpus of text, so that it will generate, given an input se-

quence of words, a sequence of words that likely to follow

the input sequence.

Shakespear’s
works

Preprocessing

 over → hill
 over hill → over
 …

word
embedding

 over: [0.21,…,0.14]
 hill: [0.32,…,0.29]
 …

Neural
Networks

NN model

word
sequence

next likely
word

Fig. 4 Using nerual network text generation to get a text in
Shakespear’s style

Fig. 4 illustrates the three main operations in neural net-

work text generation, namely word embedding, training, and

predicting.

Word embedding operation converts between a word in

the text and a numerical vector that is used as input and out-

put of the generator network. Among many embedding tech-

niques, we use an embedding method called Word2Vec ?,

which can naturally embed semantic similarity into the vec-

tor representation. Note that Word2Vec is based on neural

network technology, we need to train another network by

using a corpus. Though there are also more sophisticated

and domain specific embedding methods (for example em-

bedding nodes in a tree structure ?), we do not consider in

this paper.

Training a neural network is to adjust parameters in

the network by providing training data set from the cor-

pus. A training data for text generation is a sequence

of words appear in the corpus as an input, and a word

that appear just after the sequence as an expected out-

put. For example, when there is a phrase “Over hill,

over dale” in the corpus, there will be three training data,

namely ⟨[“over”], “hill”⟩, ⟨[“over”, “hill”], “over”⟩, and
⟨[“over”, “hill”, “over”], “dale”⟩.

In our work, we use the LSTM (long short-term memory)

network ? for text generation. LSTM is one of the recurrent

neural network (RNN) models. RNN is one of the network

models for handling inputs in a form of a sequence by re-

taining a state inside of the network. LSTM is developed

for handling sequences that have structures (such as natu-

ral language grammars and phrase structures) by separately

maintaining the states affected by immediately preceding

words and by distantly preceding words.

The trained network can predict the next word for a given

input sequence of words. Precisely, the output of the net-

work is probability distribution of multiple words. We can

therefore determine the word with the highest probability,

or a ranked list of words with higher probabilities.

The network can also be used for predicting a sequence of

3

2019-5-(2): Manuscript for presentation at IPSJ-SIGPRO, 12 3 2020.

words followed by the input sequence by providing the next

predicted word as the next input word.

3. Problems

The original keyword programming does not always work

well. We here point out two problematic cases, namely pref-

erence of shorter expressions and ignorance of context, and

discuss the causes of the problems.

3.1 Preference of shorter expressions

Though it is difficult to evaluate the effectiveness of this

kind of recommendation systems, the original paper ? re-

ported that the accuracy drops when the desired expres-

sions get larger, even with an experiment with artificially

prepared keywords. We also confirmed that the quality of

recommendation degrades when we tried to input a larger

expressions with our re-implementation of the original key-

word programming system.

We can understand the cause of the problem from the

scoring function (1) as it gives a penalty every token that

does not match any keyword. It therefore ranks shorter ex-

pressions higher, if containing the same number of keywords.

We believe that this preference can be more problematic

in a practical situation, for example when the programmer

wants to input a long idiomatic expression. Let us see the

problem by an example when we want to input the follow-

ing expression that frequently appear in many programs that

reads the standard input on a per-line basis.

new BufferedReader(

new InputStreamReader(System.in))

Assume we provided reader and in as the keywords. Then

the system ranks this expression lower with score of 1.74

than its sub-expression:

new InputStreamReader(System.in)

with score of 1.81 because the latter has a fewer number

of tokens in total. By considering the fact that the latter

expression alone is used less frequently, it is not ideal.

3.2 Ignorance of context

Even if we had improved the system to give higher

scores to more frequently used expressions, another

problem would remain: ignorance of context. As-

sume we already typed in new BufferedReader(), and

provided reader and in as the keywords in order

insert new InputStreamReader(System.in) as the pa-

rameter position. Since the original algorithm cal-

culates the scores regardless the cursor position, it

would then give higher score for the expression new

BufferedReader(new InputStream. . .) as the parameter of

new BufferedReader().

3.3 Summary of the problems

To summarize, we would like to improve the original key-

word programming on the following two respects.

• It generally gives lower ranks to larger expressions.

However, it also should rank frequently appearing ex-

pressions higher even if they are large.

• It gives the same ranking regardless the context. How-

ever, it should rank expressions higher if the expressions

frequently appear in the context at the cursor position.

4. Proposal: Using a NN text generator

Our proposal is to use a neural network text generator to

recommend more context-dependent expressions.

The approach is straightforward. For each expression, we

calculate not only a score by the orginal scoring function but

also the occurance probability. We add these two values to

represent the final score of the expression.

For example, if the user is editing a program where the

cursor is in line 6, and the keyword query is read in:

1 import java.io.BufferedReader;

2 import java.io.InputStreamReader;

3

4 public class ReadInput{

5 public static void main(String [] args){

6 reader in|

7 }

8 }

By using the original scoring function, the score of the

expression is +1.74.

Subsequently, to calculate the occurance prob-

ability of the expression new BufferedReader(new

InputStreamReader(System.in)), we need 3 steps.

First, we take the token sequence from import to args as

an argument and predict the probability of the token new

by the neural network model.

Then, append the token new to the token sequence and

predict the probability of the token BufferReader. Repeat

this procedure until get the probability of the last token in.

At this moment, we have 6 probability numbers for each

tokens. Finally, we add these 6 probabilities and use it to

represent the occurance probability of the expression.

Thus, in the new scoring function, the final

score for the expression new BufferedReader(new

InputStreamReader(System.in)) is +(1.74 + proba-

bility).

By exploiting the implicit information from the previous

codes and considering the context, an expression would have

a higher probability value if it is more likely to be the next

expression.

These implicit information includes the imported pack-

age declaration, the identifier names and the order of

previous method invocations. For example, in the pre-

ceding program, the program has imported two classes

java.io.BufferedReader and java.io.InputStreamReader.

Moreover, the class name is ReadInput. The

user is more likely to write the expression new

BufferedReader(new InputStreamReader(System.in))

than new InputStreamReader(System.in). Therefore,

the probability of the former expression is higher than the

latter one. In other words, the candidate expression new

BufferedReader(new InputStreamReader(System.in))

could be shown in a higher position.

4

2019-5-(2): Manuscript for presentation at IPSJ-SIGPRO, 12 3 2020.

1 import java.io.BufferedReader;

2 import java.io.InputStreamReader;

3 import java.io.FileReader;

4

5 public class Read{

6 public static void main(String [] args){

7 String path = "foo.in";

8 reader file|

9 }

10 }

Neural network text generation and keyword program-

ming are complementary, that is why we conbine these two

technique.

Neural network text generation could distin-

guish which expression is likely to be used after-

wards. For example, if the program imports classes

java.io.BufferedReader, java.io.InputStreamReader and

java.io.FileReader. Both new BufferedReader(new

InputStreamReader(System.in)) and new

BufferedReader(new FileReader(path)) have a higher

probability to be the next expression.

Then keyword programming can represent the user’s

intention. For example, if they want to read the in-

put from the specified file, the keyword query would be

reader file. Then the candidate new BufferedReader(new

FileReader(path)) is more likely to be shown in the

recommenedation list. On the other hand, if the user wants

to read the input from the console, then the keyword query

becomes reader in. As a result, new BufferedReader(new

InputStreamReader(System.in)) would be shown in the

toppest of the recommendation list.

5. Implementation

We build an Eclipse plug-in to implement our idea. The

plug-in is written in Java. We named this plug-in as ACKN,

which shorts for Auto Completion with Keyword program-

ming and Neural network text generation.

5.1 Search expression from all generations

In our proposal, we also use beam search in expression

generation. However, we change the standard of the limita-

tion.

Except for remaining the expressions with higher scores,

the system also remaining the expressions with larger prob-

ability. We define pn as the number of the remaining ex-

pressions compared by the probability.

To the generations in a certain depth, we first sort these by

the original scoring function and remain bw−pn expressions.

Then sort other expressions with the new scoring function

we introduced in the section 4 and remain pn expressions

with a higher score.

5.2 Preprocessing the training data

Subsequently, we need 2 steps before learning from the

neural networks. One is to reduce some unnecessary infor-

mation from the training program, and another is to trans-

form the code into numbers.

First, we eliminate the comment of each program and

transform all string literal to “stringliteral”. Since we want

to focus on the information from methods and variables, we

ignore these noise.

After this step, we use word2vec to map each token to a

vector value. We implemented the word2vec by using the

gensim package.

Subsequently, we use LSTM as the neural networks model

of the neural network text generator. We implement the

LSTM networks by using the keras deep learning package.

6. Evaluation

6.1 Procedure

We evaluate ACKN by following five steps.

First, we prepare 15 expressions decided by ourselves.

Then, for each expression, we search on the github and

collect 21 programs containing the expression in the former

step.

After we get the programs, we add 20 of 21 programs for

each to the training dataset of the LSTM model. In order

to avoid overfitting, we also add 5000 Java programs from

the dataset built to evaluate the implementation in the [7],

which are the top active Java GitHub projects on January

22nd 2015.

Subsequently, we create a task for each by using the re-

maining one program. We erase the code of the expression

in that program. and make it to be a program with a hole.

And for each expression, we think a keyword query that can

describe the expression.

Finally, we run each task on both ACKN and the original

keyword programming system. Then, compare the position

where the expected expression is in each recommendation

list. The recommendation list only show the first 30 results.

6.2 Result

Table 1 shows the expected expression and corresponding

keyword. The first column is the index, the second one rep-

resents the expected expression and the third column shows

each keyword query. The first six expressions using methods

or fields related to System class. From 7th to 10th are com-

mon expressions to process a string. The 11th and 12th are

only used in a special task. The 13th and 14th are the ex-

pressions that can read a standard input from console. The

last expressions has a larger abstract syntax tree.

Table 2 shows the result evaluated by the exisiting key-

word programming and ACKN. The first column is the index

of each task. The second and the third column represent the

position of the result on the recommendation list by using

keyword programming and ACKN. The fourth and the fifth

column denotes the top result by the original system and

ACKN. “×” stands for the top-30 results do not contain the

expected expression.

By using the existing keyword programming,11 tasks can

show the expected expression on the list and the expected

expression are in the Top-5 results in 8 tasks. In contrast,

by using ACKN, 10 tasks can show on the recommendation

list, and 6 tasks are in the Top-5 results.

5

2019-5-(2): Manuscript for presentation at IPSJ-SIGPRO, 12 3 2020.

AKCN mechanism

Generate
all possible
expressions upper()

limit to shorter
expressions

upper()upper()

Beam Search

Scoring
function

toUpperCase()

toLowerCase()

upper()

System.err

…

keywords

limit to likely to
be generation

context NN sentence generator

longer

exps

Word2Vec

Fig. 5 Overview of ACKN mechanism

No. Expected Expression Keyword Query
1 System.out.println(result) print result
2 System.err.println(error) print error
3 System.out.print(result) print result
4 System.err.print(error) print error
5 System.nanotime() get time
6 System.currentTimeMillis() get time
7 str.charAt(index) str at index
8 str.toUpperCase() upcase str
9 str.toLowerCase() lower str
10 str.substring(begin, end) str from begin to end
11 sb.ensureCapacity(min) limit capacity to min
12 InetAddress.getLocalHost() get address of host
13 new Scanner(System.in) input

14
new BufferedReader(new
InputStreamReader(System.in))

read standard in

15
Thread.currentThread()
.getContextClassLoader()
.getResource(name)

load resource name

Table 1 keywords and expected expressions of 15 tasks

Fig. 6 Code completion by using ACKN

7. Future Work

7.1 Support synonyms in the keyword query

A keyword programming user would use similar words

to the substrings of the expected expression in the key-

word query. For example, if the user wants to print

a file’s name on the console, the expression would be

System.out.print(filename). Instead of using print

filename as the keyword query, the user would type dis-

play path. For a human being, the meaning between two

keyword querys are basically identical, whereas it is different

for a machine.

One approach is to use word2vec. As we introduced in

the section 5.2, variable names such as filename and path

can be recognized as synonym when the surrounding codes

are similar.

However, the word display and print can not be counted

as similar with this approach. Because in the program-

ming world, similarity stands for similar function, not sim-

ilar meaning in the natural language. For instance, print

and println can be considered as similar tokens. Because

they are often written after the code fragment System.out.

7.2 Shorten completion time

In ACKN, we have to calculate the probability for each

generation. Thus, it always costs few minutes to get the

result and show it on the monitor, which are not acceptable

for a code recommendation system.

7.3 Using different neural networks

Except LSTM, there are also many neural networks that

can be used in text generation. For example, the gated re-

current unit(GRU), generative pre-training(GPT), or gener-

ative adversarial nets(GANs). In addition, the LSTM model

can be improved by using a attention mechanism.

7.4 Adding more training data

Although we use nearly 5000 program as our training

data, it is still not enough for a deep learning issue. There-

fore, it is neccessary to add more training data to avoid

overfitting.

8. Conclusion

In this paper, we propose a code recommendation system

6

2019-5-(2): Manuscript for presentation at IPSJ-SIGPRO, 12 3 2020.

Task KP rank ACKN rank Top KP Top ACKN
1 × 5th System.err.print(result) System.err.print(result)
2 × × new PrintStream(error) new PrintStream(error).println()
3 2nd 2nd System.err.print(result) System.err.print(result)
4 3rd × new PrintStream(error) new PrintStream(error)
5 2nd 1st System.getProperties() System.nanoTime()
6 4th 1st System.getProperties() System.currentTimeMillis()
7 1st 1st str.charAt(index) str.charAt(index)
8 10th 9th str str
9 1st 1st str.toLowerCase() str.toLowerCase()
10 4th × str.substring(end, begin).toString() str.substring(end, begin).toString()
11 × 30th sb.append(min).insert(sb.capacity(),sb.toString()) sb.append(min).insert(sb.capacity(),sb.toString())
12 2nd 25th local.getHostAddress() new Main().getLocalHost().isMulticastAddress()
13 24th 22th new Main().readInputUntilEndOfLine() new Main().readInputUntilEndOfLine()
14 29th × new InputStreamReader(System.in).read() new InputStreamReader(System.in,input.readLine())

15 × ×
ClassLoader.getSystemClassLoader()
.loadClass(ClassLoader
.getSystemResource(name).getRef())

ClassLoader.getSystemClassLoader()
.loadClass(ClassLoader
.getSystemResource(name).getRef())

Table 2 position and top result by using the original keyword programming and ACKN

based on context-aware keyword programming. We exploit

corpora by using an LSTM token generator to predict the

probability of the next token and make the keyword pro-

gramming recommend expressions regarding the probability.

We built a Eclipse plug-in and name it ACKN to implement

our idea. We evaluated our proposal by comparing the ac-

curacy and precision of inserting 15 expressions.

References

[1] Greg Little and Robert C Miller. Keyword programming in
java. Automated Software Engineering, 16(1):37, 2009.

[2] Romain Robbes and Michele Lanza. How program history can
improve code completion. In 2008 23rd IEEE/ACM Interna-
tional Conference on Automated Software Engineering, pages
317–326. IEEE, 2008.

[3] Sangmok Han, David R Wallace, and Robert C Miller. Code
completion from abbreviated input. In 2009 IEEE/ACM In-
ternational Conference on Automated Software Engineering,
pages 332–343. IEEE, 2009.

[4] TabNine, Inc. Autocompletion with deep learning.
https://tabnine.com/blog/deep/, July 15 2019. Accessed
February 11, 2020.

[5] Marcel Bruch, Martin Monperrus, and Mira Mezini. Learn-
ing from examples to improve code completion systems. In
Proceedings of the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium
on the foundations of software engineering, pages 213–222,
2009.

[6] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language models are unsuper-
vised multitask learners. OpenAI Blog, 1(8):9, 2019.

[7] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles
Sutton. Suggesting accurate method and class names. In Pro-
ceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, pages 38–49, 2015.

7

