
2024-4-(x): Manuscript for presentation at IPSJ-SIGPRO, d 1 2025.

Dynamic Version Checking for Gradual Updating

Satsuki Kasuya1,a) Yudai Tanabe1,b) Hidehiko Masuhara1,c)

Abstract: Programming with Version (PWV) is a programming paradigm that allows programmers
to safely utilize multiple versions of the same package within a single program, facilitating flexible
version updates of dependent packages. Existing PWV languages ensure consistent version usage so
as not to break software behaviors by leveraging the type system of the base language. However, dy-
namically typed languages need a mechanism to support multiple versions with an efficient method
of ensuring consistent version usage without a type system. To introduce PWV features into dynam-
ically typed languages, we propose a dynamic version checking (DVC) mechanism. It records version
information in a value, propagates it during evaluation, and checks inconsistency using version in-
formation recorded in values. When an inconsistency is detected, the mechanism suggests how to
modify the program to resolve potential semantic errors from the inconsistency. We develop Vython,
a Python-based PWV language with DVC, and implement its compiler. The compiler translates a
Vython program into a Python program with bitwise operations. Our performance measurement
shows the DVC mechanism’s overhead is scalable and acceptable for small programs but requires
further optimization for real-world use. Additionally, we conduct a case study and discuss future
directions to facilitate smoother updates in practical development.

Keywords: Software maintenance, Software migration, Dependency management, Compiler, Python

1. Introduction
Updating the version of upstream packages is one of the

most troublesome tasks for downstream developers [15], [18].
An incompatible new version can break the behavior of
downstream programs [10], [14]. Each new release of up-
stream packages requires downstream developers to assess
its impact and modify their source code accordingly.

Replacing an upstream package with its new version is au-
tomated by package managers such as pip*1 in Python. For
example, developers using NumPy [11] can automatically in-
stall the latest version by running pip install --upgrade
numpy. Many developers benefit from this automation, as
packages like NumPy are widely used across various do-
mains, such as data analysis, deep learning, and image
processing, in libraries like Pandas [27], PyTorch [22], and
OpenCV [4].

Downstream developers carefully coordinate existing pro-
grams to update fundamental packages such as NumPy. The
first major update of NumPy, version 2.0.0, was released in
2024. If any of the packages in use depends on NumPy 1.x
series, the automatic installation of NumPy 2.0.0 via pip will
fail. Manual installation, which is possible from the source,
can break the existing behavior of downstream programs
unintentionally, as some NumPy functions are incompatible

1 Institute of Science Tokyo
Ookayama 2-12-1, Meguro, Tokyo 152–8552, Japan

a) satsuki.kasuya@prg.is.titech.ac.jp
b) yudaitnb@prg.is.titech.ac.jp
c) masuhara@acm.org
*1 pip: The PyPA recommended tool for installing Python pack-

ages. https://pip.pypa.io/ (Accessed December 6, 2024)

with the old ones (see Appendix A.1).
Programming with Versions (PWV) [17], [24], [25] is a

recent proposal designed to enable a gradual transition to
new versions, thereby reducing update costs. The key ideas
of PWV are (1) the simultaneous use of multiple versions,
and (2) language mechanisms (i.e. types) that check version
compatibilities. PWV languages ensure that programs use
values created by compatible versions.

While previous research realized PWV in statically-typed
languages, this research explores methods implementing
PWV functionalities in dynamically-typed languages. To
achieve this, we propose dynamic version checking (DVC)
to alert when values of incompatible versions are used to-
gether at runtime. The DVC mechanism facilitates devel-
opers’ communication regarding incompatibilities [16]; up-
stream developers specify compatibility for each function,
allowing downstream developers to assess the impact of up-
dates on their software through warnings.

The contributions of this paper are summarized as follows:
• We developed DVC, which records version information

within values, propagates it during an evaluation, and
detects inconsistencies based on the recorded version
data.

• We implemented a Vython compiler, a PWV language
with DVC. The Vython compiler translates Vython pro-
grams into Python programs, and the DVC functions
are compiled into efficient bitwise operations.

• We evaluated the runtime performance of the Vython
compiler. The results showed that Vython is scalable
and acceptable for debugging small programs as an of-
fline analysis tool but requires further optimization for

1

masuhara
タイプライターテキスト
Preliminary draft. The final version will beuploaded after the workshop.

2024-4-(x): Manuscript for presentation at IPSJ-SIGPRO, d 1 2025.

User SciPy

NumPy

1.12.0

× Update
1.26.4 ⇒ 2.0.0

1.26.4

Fig. 1: Dependencies of the User program.

1 class SciPy: # SciPy 1.12.0:
2 def place_poles(A, B, poles):
3 return NumPy().solve(..) # Using NumPy 1.26.4

1 def my_place_poles(A, B, poles): # User Program
2 return NumPy().solve(..) # Using NumPy 2.0.0
3 NumPy().array_equal(
4 my_place_poles(A, B, poles),
5 scipy.place_poles(A, B, poles)) # => False

Fig. 2: A program that uses NumPy and SciPy in Python

real-world use.
• We conducted a case study using gradual update scenar-

ios with the Vython compiler. Based on these findings,
we discussed how Vython could work effectively in more
practical scenarios.

The rest of the paper is organized as follows. Section 2
introduces inflexible update scenarios that motivate our re-
search, and Section 3 offers an overview of the proposed
features. Section 4 explains the semantics of the DVC
mechanism, and Section 5 details the implementation of the
Vython compiler. Section 6 presents the performance evalu-
ation and case study conducted using the compiler. Finally,
Sections 7 and 8 discuss related work and provide concluding
remarks.

2. Motivating Example

Consider a scenario where we update a user program that
reimplements a function for solving pole placement prob-
lem*2 and test its behavior against SciPy [26] implementa-
tion. Figure 1 shows the dependencies of the User program.
User depends on SciPy version 1.12.0, which indirectly de-
pends on NumPy 1.26.4, and User directly depends on NumPy
and attempts to update it from version 1.26.4 to 2.0.0.

As shown in Figure 2, both SciPy and User use the
solve function from NumPy*3. In User (Figure 2 bottom),
my place poles is implemented using the solve function,
and its results are compared against the existing implemen-
tation in SciPy. place poles in SciPy 1.12.0 (Figure 2 top)
directly returns the result of the solve function. We try to
update NumPy in the User project.

*2 This is a common task in control theory, placing closed-
loop poles in desired locations to control the system re-
sponse. The SciPy implementation can be found at SciPy
Manual. https://docs.scipy.org/doc/scipy/reference/
generated/scipy.signal.place_poles.html (Accessed De-
cember 6, 2024)

*3 These programs are simplified, but are essentially identical
to the actual implementation. For more details, see Ap-
pendix A.2.

Updating NumPy via pip
This attempt fails as follows.

1 $ pip install numpy==2.0.0
2 ERROR: scipy 1.12.0 requires numpy<1.29.0,>=1.22.4, but

you have numpy 2.0.0 which is incompatible.

The error message indicates that this attempt resulted in
broken dependencies, as the installed SciPy is locked to
NumPy versions below 1.29.0. Similarly, other Python pack-
age managers, such as poetry*4 and pyenv[YT: pyenv is not
for version management for user package, for python version
instead]*5, also conservatively reject the installation of mul- ←−
tiple versions of the same package within the development
environment.

Updating NumPy from the Source
A potential workaround for using NumPy 2.0.0 without

waiting for SciPy updates is to use NumPy 1.26.4 for SciPy
and 2.0.0 for User independently. As mentioned earlier,
while standard Python package managers do not support
the installation of multiple versions of a package simultane-
ously, the importlib package*6 in the Python standard li-
brary allows dynamic switching to specific package versions
(see Appendix A.2).

However, the workaround using the importlib pack-
age involves dynamically modifying module objects in
sys.modules, which can result in unpredictable program
behavior. For example, subtle differences between the two
versions of NumPy could lead to unintended behavior in the
User program. The solve implementation was incompati-
bly changed in the NumPy 2.0.0 release. As explained in Ap-
pendix A.1, the ambiguous broadcasting rule was corrected
in 2.0.0, so the solve function in the two versions may re-
turn different outputs even with the same input. As a result,
the test of my place poles against place poles in Figure 2
line 5 fails, even if both implementations are logically the
same.

Identifying the cause of this failure is challenging. Current
build systems lack mechanisms to detect the mixed use of in-
compatible implementation versions. [24] Additionally, such
incorrect version usage is often reported as Python seman-
tic errors, which fail to pinpoint the root cause stemming
from version incompatibilities. Consequently, programmers
must engage in tedious tasks such as reading release notes
and reviewing implementations of all upstream packages. To
mitigate such unfavorable situations, re-importing the NumPy
through the importlib package triggers a warning message
cautioning against its use due to the risk of unpredictable
behavior as follows.

1 UserWarning: The NumPy module was reloaded (imported
a second time). This can in some cases result in
small but subtle issues and is discouraged.

*4 Poetry, https://python-poetry.org/ (Accessed December 6,
2024)

*5 pyenv/pyenv, https://github.com/pyenv/pyenv (Accessed
December 6, 2024)

*6 importlib — The implementation of import, https://docs.
python.org/3/library/importlib.html (Accessed December
6, 2024)

2

2024-4-(x): Manuscript for presentation at IPSJ-SIGPRO, d 1 2025.

1 class NumPy!1.26.4():
2 def solve(self, A, B):
3 return res

1 class NumPy!2.0.0():
2 def solve(self, A, B):
3 return res.incomp(..)

1 class SciPy!1.12.0():
2 def place_poles(A, B, poles):
3 return NumPy!1.26.4().solve(..) # Using NumPy

1.26.4

1 def my_place_poles(A, B, poles): # User Program
2 return NumPy!2.0.0().solve(..) # Using NumPy 2.0.0
3 array_equal(
4 my_place_poles(A, B, poles),
5 SciPy!1.12.0().place_poles(A, B, poles)) # =>

Warning!

Fig. 3: A program that uses NumPy and SciPy in Vython

2 spec.loader.exec_module(numpy)

3. Safely Use Multiple Versions in
Vython

Vython is a Python subset that implements the PWV up-
date model (gradual updating), which splits the burden of
program modifications caused by package updates. Vython
is designed to mitigate the version-locking problem by en-
abling version selection at individual code sites and provides
debugging information to help address incompatibility errors
with mixed package versions through the following features:
• Using multiple versions in a code: The programmer

can selectively use multiple versions of a class definition
by specifying a version when instantiating.

• Dynamic version checking (DVC): Vython records
information about the class and its version used for cre-
ating a value, ensuring that programs use values created
with consistent versions.
Vython differentiates multiple class versions internally, al-

lowing for their selective use. As shown in Figure 3, the
current naive implementation requires version annotations
in the surface language. Additionally, DVC is intended to
be enabled only in debug mode. Vython has a production
mode that deploys programs without runtime checks.

Vython provides a mechanism for upstream developers to
specify compatibility, which is utilized in DVC as follows.

Upstream Developer Specifies Compatibilities in
Code

In Vython, upstream developers are responsible for spec-
ifying incompatibilities. In NumPy 2.0.0 (Figure 3 top
right), the NumPy developer uses incompatible() (denoted
as incomp() below for brevity) to mark an expression as in-
compatible with previous versions. Additionally, upstream
developers can provide guidance (as shown below) to help
downstream developers. This information is recorded along
with the class definition in the source code.

1 [Changed in 2.0.0] (How it differes from 1.26.4)

Notifying Downstream Developers of Incompatibil-
ity Causes

The downstream developer using both NumPy versions
benefits from DVC and the guidance for updates specified
by the NumPy developer. In the user program (Figure 3
bottom), the DVC mechanism reports runtime warnings (as
shown below) on lines 3-5 because array equal uses values
derived from incompatible versions of the solve function.

1 Incompatible version usage found in Lines 3-5:
2 - NumPy 1.26.4
3 - NumPy 2.0.0
4 [Changed in version 2.0] `NumPy().solve(a,b)`:
5 - If `b` is 1-dim, it is treated as a column vector (

M,).
6 - Otherwise, it is treated as a stack of (M, K)

matrices.
7 - Previously, `b` was treated as a stack of (M,)

vectors if `b.ndim` equaled `a.ndim - 1`.

4. Vython Semantics for DVC

4.1 Intuition to Vython Semantics
Vython associates version information with each object

and ensures that method return values are created from
a combination of consistent version implementations. This
version information reflects the versions of implementation
used to create the object. Version information is recorded
in a format called version table (VT). Additionally, Vython
considers any value derived from another object created us-
ing version V as also originating from version V . This sub-
section illustrates the principle behind the design decision
through examples that clarify its principles.
4.1.1 Version Tables Recorded in Objects

In Vython, all class instances will record the information
of their instantiated class and its version when it is created.
For example, the following program creates an instance of
the NumPy class in Vython, specifying version 2.0.0.

1 x = NumPy!2.0.0()

The Vython runtime with DVC records version informa-
tion in the NumPy instance, indicating that it was made from
version 2.0.0 of the NumPy class. The VT of an instance
of NumPy version 2.0.0 immediately after instantiation is
represented as follows.

class NumPy
version 2.0.0
flag -

The class and version fields indicate the class and ver-
sion of the implementation used to create the value, and the
flag field indicates any incompatibility of the implementa-
tion with other versions. Here, the flag is set to -, and the
VT is simply recording class and version information.
4.1.2 Version Information Propagation

At the time of returning a value from method invocation
or field access, a runtime with DVC appends the version in-
formation of the receiver object to the return value. The
following program performs a method invocation on an in-
stance of NumPy version 2.0.0 on line 8.

3

2024-4-(x): Manuscript for presentation at IPSJ-SIGPRO, d 1 2025.

1 class NumPy!2.0.0():
2 def add(self, a, b):
3 res = a + b
4 return res
5
6 x = NumPy!2.0.0()
7 a, b = 1, 2
8 y = x.add(a, b)

The version information recorded in the value created by
x.add(a, b) merges the version information of the return
value from the add method (on line 7) with the version in-
formation of the value bound to x, as follows.

class Int NumPy
version 1 2.0.0
flag - -

Here, the records for Int and NumPy come from the VTs
of the return value of the add method and the NumPy instance
bound to x, both of which are shown below.

class Int
version 1
flag -

class NumPy
version 2.0.0
flag -

4.1.3 Dynamic Version Checking
Vython checks whether the value is created using con-

sistent version implementations on the return values of
method calls and field accesses. If the value is created
using potentially incompatible implementations, Vython
considers the method call to be a usage of incompati-
ble implementation and issues a warning to the program-
mer. The following program compares arrays created
by incompatible implementations of the solve method.

1 class NumPy!1.26.4():
2 def solve(self, A, B):
3 return res

1 class NumPy!2.0.0():
2 def solve(self, A, B):
3 return res.incomp(..)

1 def array_equal(arr1, arr2):
2 ..
3 arr1 == arr2
4 ...
5 a, b = [..]
6 res1 = NumPy!1.26.4().solve(a, b)
7 res2 = NumPy!2.0.0().solve(a, b)
8 array_equal(res1, res2)

As described in Section 3, in Vython, upstream developers
can use the incomp method to explicitly declare the incom-
patibility introduced in version 2.0.0 of the solve func-
tion, thereby encouraging downstream developers to use the
solve function with caution regarding its incompatibility.
On lines 6 and 7, Vython records the following VTs for the
values bound to res1 and res2, respectively.

class NumPy . . .
version 1.26.4 . . .
flag - . . .
VT of the value bound to res1

class NumPy . . .
version 2.0.0 . . .
flag True . . .
VT of the value bound to res2

Note that the flag field of the new column is set to True
for the value bound to res2 (right). For VTs where the flag
field is set to True, Vython performs consistency checking at

the return point of method calls and field accesses. For ex-
ample, on line 8, the array equal function is called with
res1 and res2 as arguments. Inside the array equal func-
tion, on line 3, the equality of the vectors arr1 and arr2
is checked. At this point, Vython performs a consistency
checking on the return value of == on line 3 and outputs a
warning and refactoring hints set by the upstream developer,
as described in Section 3.
4.1.4 Difference between Vython and Existing

PWV Languages
An important design decision for DVC is that the version

information of function arguments is not directly reflected
in the return value. This design decision leads to differ-
ences in consistency-checking capabilities compared to the
existing PWV languages. For example, in cases where an
argument is merely discarded during the function body, the
version information of the argument is not propagated into
the version information of the return value.

1 class A!1.0.0(): ..
2 class A!2.0.0(): ..
3 class Choose!1():
4 def discard_snd(self, fst, snd):
5 return first
6
7 c = Choose!1.0.0()
8 x = c.discard_snd(A!1.0.0(), A!2.0.0())

As shown in line 5, the discard snd method does not use
snd in the actual computation, and therefore, the VT of the
return value does not include the VT of the second argu-
ment. On the other hand, existing PWV languages such as
VL [23], [24], [25] and BatakJava [17] conservatively reflect
the version information of arguments in the return value.

Another interesting aspect of DVC is path sensitivity.

1 class A!1.0.0(): ..
2 class A!2.0.0(): ..
3 if rand():
4 x = A!1.0.0()
5 else:
6 x = A!2.0.0()
7 y = x

With the DVC mechanism, the recorded version informa-
tion in the value bound to y in line 7 is only the one as-
sociated with the path actually taken. Therefore, upon the
completion of the above program’s execution, the VT of the
value assigned to y is the lower left VT if the then branch is
executed, and lower right VT if the else branch is executed,
as shown below.

class A
version 1.0.0
flag -

through then branch

class A
version 2.0.0
flag -

through else branch

In contrast, In existing PWV languages, a type-system-
based analysis is performed for the above example; that
is, the analysis enforces the result where the versions (and
types) of the then and else branches completely match
(meet), or become the join of both.

4

2024-4-(x): Manuscript for presentation at IPSJ-SIGPRO, d 1 2025.

Vython semantics t ⇓ v

t ⇓ v v = C(vi)

fi ∈ fields(C) vt = v.get()

t.fi ⇓ vi .setwf∪ (vt)
(E-Field)

ti ⇓ vi vt = mk(C, V,−)

C!V (ti) ⇓ C(vi).set(vt)
(E-New)

t ⇓ v vt = mk(C, V,T)

t.incomp(C, V) ⇓ v.set∪(vt)
(E-Incomp)

t ⇓ v v = C(. . .) ti ⇓ vi mbody(m,C) = (xi, tb)

tb[vi/xi] ⇓ v′ vt = v.get()

t.m(ti) ⇓ v′ .setwf∪ (vt)
(E-Invk)

op ∈ BuiltinOp op(v1, v2) = v

vt1 = v1.get() vt2 = v2.get()

op(v1, v2) ⇓ v.set∪(vt1).setwf∪ (vt2)
(E-BuiltinOp)

where v.setwf∪ (vt) ≜ vt ′ ← join(vt , v.get()); wf(vt ′); v.set(vt ′)

v.set∪(vt) ≜ vt ′ ← join(vt , v.get()); v.set(vt′)

Fig. 4: Vython semantics with the highlight of VT operations. get and set are getters and setters for the VT of each object,
and they are assumed to be defined in all classes. BuiltinOp represents the set of operators (op) for Python’s built-in types,
such as +, or, and =, etc. The operator op also is a meta-level function for constant objects v1 and v2. For example, when
op = +, op(Int(1), Int(2)) = Int(3) that has an empty VT.

4.2 The Vython Semantics
This section presents the Vython semantics, which are de-

fined through DVC functions over VT. Before detailing the
DVC extensions applied to the underlying Python seman-
tics, we begin by defining version tables.
4.2.1 DVC Functions for VT

We define VT as follows.

Definition 4.1 (Version Tables). A version table (VT) is
a set of triples {(C, V, f)}, where C represents the class,
V represents the version associated with a constructor,
method, or field implementation, and f indicates incom-
patibility with other versions of the implementation when
f = T.

Note that each VT does not have duplicate triples and
the order of recording triples does not relate to the meaning
of the VT.

Next, we define DVC functions for VTs. All operations
on the VT are performed using the following functions.

Definition 4.2 (DVC functions). The mk function takes a
class name C, a version number V , and a flag f , and creates
a VT of size 1. The join function takes multiple VTs and
creates a union set of VTs. The wf function takes a VT and
checks whether the VT is well-formed or not.

mk(C, V, f) = {(C, V, f)} join(vt1, vt2) = vt1 ∪ vt2

wf(vt) =

incomp ∃V1, V2. V1 ̸= V2

∧ (C, V1,T) ∈ vt

∧ (C, V2, f) ∈ vt

comp otherwise

Here, incomp indicates that the value with the associated
VT was produced by a computation involving a value orig-
inating from an incompatible class. At the implementation
level, a warning is issued at the time when wf is called. Con-
versely, comp indicates that the value associated with the VT
is derived from values generated with consistent class ver-
sions, allowing evaluation to proceed without any warnings.

To aid the reader’s understanding, we provide several ex-

amples using DVC functions.

Example 4.1 (VT operations (join and mk)).

join(mk(NumPy, 2.0.0,T),mk(NumPy, 2.0.0,T))

= {(NumPy, 2.0.0,T)}

join(mk(NumPy, 2.0.0,T),mk(NumPy, 2.0.0, -))

= {(NumPy, 2.0.0,T), (NumPy, 2.0.0, -)}

join(mk(NumPy, 2.0.0,T),mk(Array, 1.0.3, -))

= {(NumPy, 2.0.0,T), (Array, 1.0.3, -)}

Example 4.2 (VT consistency checking (wf)).

wf({(NumPy, 2.0.0,T), (NumPy, 2.0.0, -)}) = comp

wf({(NumPy, 2.0.0,T), (NumPy, 1.26.4, -)}) = incomp

wf({(NumPy, 2.0.0,T), (NumPy, 1.26.4,T)}) = incomp

4.2.2 The Vython Semantics Using DVC Functions
Using DVC functions, we define the Vython semantics.

The current Vython is a minimal object-oriented language
because it lacks support for abstract classes, interfaces, class
inheritance, and method overriding.

To highlight VT operations, we present the big-step opera-
tional semantics as an extension of standard object-oriented
language semantics like Featherweight Java [12] in a some-
what informal manner. Figure 4 illustrates the semantics
for an excerpt of the Vython syntax. The meta-variables
t, v, C, m, and f represent terms, values, method names,
and field names, respectively. The meta-functions fields and
mbody represent the lookup of field names and method ar-
guments with their bodies for a given class. Method calls
t.m() and field accesses t.f follow the standard notation,
but note that C!V (ti) and C(vi) denotes instance creation
(term) and class instance (value).

Furthermore, while the syntax allows the incompatible tag
t.incomp(C, V) to be applied to any terms, we assume it will
be used specifically in the return statements of methods or
constructors. The arguments C and V represent the class
and version in which the method or constructor is defined,
and they are expected to be automatically inserted during

5

2024-4-(x): Manuscript for presentation at IPSJ-SIGPRO, d 1 2025.

Vython
Program

Vython
AST

Version
Space

Limited
Version Space

Python AST
w/ DVC Functions

DVC
Functions

Parse

CompileGenerate & optimize

Restrict by user intention

Fig. 5: Compilation flow of the Vython compiler.

the compiler’s preprocess.*7

As discussed in Section 4.1, (E-Field) and (E-Invk) fol-
low similar patterns since both field accesses and method
calls involve accessing an instance’s attributes. The VT of
a method call’s return value is determined by concatenating
the VTs recorded in two components: the method’s return
value and the receiver object. Similarly, the VT for a field
access result is derived by concatenating the VTs recorded in
the field-assigned value and the target object. Lastly, both
rules include a consistency check using wf.

(E-BuiltinOp) defines the rule for VT operations on
built-in type values, such as boolean and numerical oper-
ations. In Vython, these operations are treated differently
from method calls, as they are considered computations that
always use the argument values. Therefore, the VTs of all
arguments are joined into the VT of the resulting value.

(E-Incomp) defines the VT semantics for the incompat-
ibility tag. The incomp function is the only mechanism
for assigning the T flag, which triggers consistency check-
ing at a wf call. In contrast, (E-New) specifies the VT to
be recorded for a newly created class instance, recording a
mk(C, V,−). Unlike (E-Incomp), the attached checker flag
here is −, meaning it only records version information with-
out triggering DVC except in the cases where computations
involve values with T flag assigned by incomp.

5. Implementation

5.1 The Vython Compiler
We implemented the Vython compiler which translates

the Vython program into the Python program. In the
Python programs generated after compilation, the DVC
mechanism is achieved by representing a VT as an attribute
of each object and operating and checking VTs by predefined
DVC functions, which are inserted against class methods,
field accesses, and class instantiation. Since we treat all val-
ues as objects, Vython literals are compiled into predefined
Python classes.

Figure 5 shows the compilation flow of the Vython com-
piler. First, the Vython program is parsed into a Vython

*7 The current Vython compiler does not yet support this fea-
ture. In the current implementation, incomp calls require both
C and V in a surface program.

1 class A!1():
2 def __init__(self, value):
3 self.value = value
4 def get(self):
5 return self.value

(a)

1 class A_v_1:
2 def __init__(self, value):
3 self.vt = 1
4 self.value = value
5
6 @ vt invk
7 def get(self):
8 return vt field(self, self.value)
9 ..

10 def _vt_invk(func):
11 def wrapper(*args, **kwargs):
12 result = func(*args, **kwargs)
13 if result is not None:
14 result = vt join(result, args[0])

15 if not vt well formed(result):
16 _issue_warning(result, args[0])
17 return result
18 return wrapper

(b)

Fig. 6: Simple Vython program (a) before and (b) after com-
pilation.

AST using the parser library lark*8. During parsing, the
compiler extracts version information for classes and con-
structs version space (available class and version pairs) glob-
ally. Programmers can further restrict the size of version
tables by specifying the classes they want to use with mul-
tiple versions as input to the compiler. The limited version
space is then used to generate DVC functions. Finally, the
Vython AST is compiled into Python AST, along with the
insertion of generated DVC functions.

The Vython compiler inserts DVC functions by each eval-
uation rule. Figures 6a and 6b illustrate a program before
and after compilation for a class A version 1, which only
includes getter get. As shown in line 6 of Figure 6b, the
VT operation for method calls is implemented through the
decorator function vt invk, and the VT operation for field
accesses is implemented through vt field in line 8. Addi-
tionally, as shown in line 3, the constructor bit-encodes the
initial VT and assigns it to the vt field (mk).

Among the implementation functions introduced so far,
we will use the implementation of vt invk, which corre-
sponds to (E-Invk), as an example to explain. When a
method with this decorator is invoked, the vt invk func-
tion performs VT operations according to (E-Invk). First,
the method is executed in line 12. Then, VT propagation
to the return value is handled by vt join (join) in line 14,
and the VT consistency of the return value is checked by
vt well formed (wf) in line 15.

5.2 Optimization
To avoid the significant runtime overhead anticipated,

*8 lark-parser/lark, https://github.com/lark-parser/lark
(Accessed December 6, 2024)

6

2024-4-(x): Manuscript for presentation at IPSJ-SIGPRO, d 1 2025.

Algorithm 1: VT Encoding Algorithm
Data:
• V: Restricted versions space, a map of class names to

available versions {Ci 7→ [Vij]}
• vt ∈ {(Ci, Vij , fi) | Ci ∈ dom(V), Vij ∈ V[Ci], fi ∈ {T,−}}

Result: A bit sequence b representing the vt under V.
1 begin
2 |b| ← 2×

∑
C∈dom(V) |V[C]|;

// |V[C]| = 2 in our assumption
3 for i← 0 to |b| − 1 do
4 b[i]← 0;

5 foreach (Ci, Vij , fi) ∈ vt do
6 offset ← 2× (j +

∑i−1
k=0 |V[Ck]|);

// |V[Ck]| = 2 for any k in our assumption
7 if fi = T then
8 index ← offset + 1;

9 else if fi = − then
10 index ← offset ;

11 b[index]← 1;

12 return b;

Vython compiles VTs into bit sequences and DVC functions
into combinations of bitwise operations.
5.2.1 Encoding VTs as Bit Sequences

Algorithm 1 shows the algorithm for encoding a VT into a
bit sequence. The algorithm takes as input the version space
V (limited in size by the user) and the vt to be encoded, and
outputs the bit sequence representation of vt under V.

Note that the current implementation of Vython is re-
stricted to two versions per class within a program. This
limitation is based on the assumption that, in most cases,
programmers are primarily concerned with compatibility be-
tween two specific versions. By leveraging this assumption,
a bit-encoded VT is a bit sequence whose length is equal
to four times the number of classes in the limited version
space. Every grouped set of four bits records what version
of a certain class was used to create the value.

For example, consider a program whose resulting limited
version space consists of NumPy versions 1.26.4 and 2.0.0.

Example 5.1 (Bit-encoded VT). The following version ta-
ble is encoded into the bit sequence 1101 under the version
space {NumPy 7→ [1.26.4, 2.0.0]}.

class NumPy NumPy NumPy
version 2.0.0 2.0.0 1.26.4
flag True - -

The length of the bit sequence encoding the VT, |b| in
Algorithm 1, is 4. The first, second, third, and fourth bits
correspond versions 1.26.4 with flag −, 1.26.4 with flag T,
2.0.0 with flag −, and 2.0.0 with flag T, respectively. Fol-
lowing the three elements contained in the version table,
the encoding algorithm returns a bit sequence 1101 with
the first, third, and fourth bits set to 1.
5.2.2 Encoding Helper Functions as Bitwise Oper-

ations
Along with the encoding of VT into a bit string, DVC

functions are also encoded into bitwise operations. The

three DVC functions, mk, join, and wf are represented using
bitwise operations as follows.

Definition 5.1 (DVC functions (bit-encoded)).

mk(C, V, f) = J{(C, V, f)}Kbit join(vt1, vt2) = vt1 | vt2

wf(vt) =

incomp (((vt ≫ 1) & vt) ≫ 1

| (vt ≫ 3) & vt)

& mask ̸= 0

comp otherwise

where mask is a bit sequence of the form (0001)+.

The mk function is compiled into a bit sequence deter-
mined by J∗Kbit, the encoding function defined in Algo-
rithm 1. This function is evaluated at compile time, pro-
ducing hard coded bit sequences in the Python AST, thus
incurring no runtime overhead with J∗Kbit. The join function
is simply compiled into a bitwise OR operation (|).

Compared to the other two DVC functions, wf is less
straightforward and requires a detailed explanation. The
purpose of wf is to detect when a VT element (C, V1,T)

exists and another element (C, V2, f) is present in the input
VT, where V2 ̸= V1 and f can be either T or −, returning
incomp as a result. Assuming each class has only two ver-
sions, this detection corresponds to recognizing one of the
following bit patterns.
• 1 1
• 1 1
• 1 1
Furthermore, we focus on (E-Incomp), which, as previ-

ously noted, is the sole mechanism for assigning the T flag,
and optimizing its behavior at the implementation level. As
defined in Definition 4.2, if a VT element (C, V1,T) ex-
ists in vt , adding (C, V1,−) – an element with the same
class name and version name – to vt does not affect the
results of the wf functions with other VT elements, such
as (C, V2, f). Accordingly, Vython implements (E-Incomp)
with vt = join(mk(C, V,T),mk(C, V,−)) in the premise.

By leveraging this optimization, the bit pattern 1 1 will
always simplify to 1 1 1 1, which is subsumed by the other
two patterns. Therefore, it suffices to detect the following
two patterns:
• 1 1
• 1 1
To achieve this, the 1 1 pattern is detected by

(((vt ≫ 1) & vt) ≫ 1) & mask ̸= 0, and the 1 1 pattern
is detected by ((vt ≫ 3) & vt) & mask ̸= 0. Further op-
timization is performed to eliminate redundant operations,
resulting in the current wf definition in Definition 5.1.

6. Evaluation
6.1 Performance Evaluation of Debugging Mode

We conducted preliminary experiments on runtime per-
formance. This performance evaluation focuses on the over-
head introduced by DVC in Vython’s debug mode. In con-
trast, the production mode (without the DVC feature) in-

7

2024-4-(x): Manuscript for presentation at IPSJ-SIGPRO, d 1 2025.

insert sort is_prime fib
Algorithm

0

20

40

60

Av
er

ag
e

ex
ec

ut
io

n
tim

e
re

la
tiv

e
to

 p
yt

ho
n

python
(baseline)

wrap-literals
mk
join
wf (vython)

20 21 22 23 24 25 26 27 28 29 210 211

Number of entries in a version table
0

10

20

30

40

50

Av
er

ag
e

ex
ec

ut
io

n
tim

e
re

la
tiv

e
to

 p
yt

ho
n

python
(baseline)

wrap-literals
mk
join
wf (vython)

Fig. 7: Overhead of DVC functions in Vython (left) for simple benchmarks and (right) for repeating additions 2000 times
with the number of VT entries.

curs no additional runtime cost, as it simply executes a
Python program where multiple class versions are distin-
guished by their names.
6.1.1 Settings

We ran the following two benchmarks and calculated the
average over 1000 iterations. The experiments were con-
ducted with Python 3.12.1 on an Intel Core i5-10400F run-
ning Windows 11 23H2.
Benchmarks
• Simple algorithms: Vython programs implementing

four simple algorithms insert, sort, fib, and is prime (see
Appendix A.3 for more details) using a VT with a max-
imum of two entries.

• Scalability: a Vython program that repeats additions
2000 times, with the number of VT entries doubling
from 20 to 211.

The four algorithms in the simple algorithms benchmark
were chosen to examine the overhead trends of the DVC
feature in programs that can be written using the current
Vython. insert and sort rely heavily on user-defined class
instances, whereas fib and is prime do not.

Each benchmark examines where the overhead occurs
by disabling certain VT operations through the following
Vython compiler options.
Compiler options
(1) python: baseline, production mode.
(2) wrap-literals: compiling literals as with VTs.
(3) mk: (2) + VT Initialization at instantiations.
(4) join: (3) + VT propagation.
(5) wf (vython): (4) + consistency check.

6.1.2 Result and Discussion
Simple algorithms

Figure 7 (left) shows the execution times of simple al-
gorithms relative to python. Focusing on each algorithm’s
case wf (vython), the program dominated by method calls to
user-defined class instances, such as insert and sort, exhibit
an overhead mostly within 20 to 30 times. In contrast, pro-
grams dominated by arithmetic or boolean operations, such
as is prime and fib, show a larger overhead ranging from 45

to 60 times.
Focusing on individual DVC functions, it is evident that

weap-literals and join exhibit significant overhead across all
benchmarks. In particular, these two DVC functions ac-
count for 90% of the overhead in sort, is prime, and fib.

Compared to other dynamic analysis tools for Python (i.e.
DynaPyt [9]), which generally exhibit an overhead of up to
20x, the current overhead of Vython is not practically ac-
ceptable and requires further optimization.

We believe the following optimizations could be effective
in addressing this issue. For the overhead caused by wrap-
literals, the current Vython attaches VT to all Python prim-
itive values, even when they are involved in computations
entirely unrelated to the classes of interest to the program-
mer. This negates bytecode optimizations for constant cal-
culations. By discontinuing compile-time literal wrapping
and instead performing dynamic casts only when computa-
tions interact with classes in the version space, we believe it
is possible to reduce the overhead. Regarding the overhead
of join, the current approach performs join on every field ac-
cess, method call, and built-in operation. By incorporating
static analysis, to compose DVC functions, we believe it will
be possible to omit most join.
Scalability

Figure 7 (right) shows that overhead does not increase
significantly as the VT size grows. Although an additional
case study is needed to ensure that the maximum VT size
does not grow excessively for practical programs, these re-
sults suggest that Vython is scalable.

6.2 Case Study
In the case study, we implement Keyword In Context

(KWIC) according to the second modularization criteria
presented by Parnas [21], and verify incompatible updates
in downstream programs that use it. In [21], KWIC is de-
scribed as follows:

The KWIC index system accepts an ordered set
of lines, each line is an ordered set of words, and
each word is an ordered set of characters. Any line
may be "circularly shifted" by repeatedly removing
the first word and appending it at the end of the
line. The KWIC index system outputs a listing of
all circular shifts of all lines in alphabetical order.

8

2024-4-(x): Manuscript for presentation at IPSJ-SIGPRO, d 1 2025.

User

Integrate

Input

RotateSort

Output

LineStore

String

Fig. 8: Class dependency diagram.

6.2.1 Setting
Class Structure

Figure 8 shows the class dependencies of the KWIC im-
plementation. We define that class A depends on class B if
class A’s definition includes at least one of the following: a
B instantiation, a method call of a B object, or field access
of a B object. When class A depends on class B, any mod-
ifications to class B necessitate a code review of class A’s
implementation.*9 We implemented Parnas’s module struc-
ture as individual classes shown in Figure 8. Additionally,
we introduced the String class, which assumes standard li-
brary APIs and was implicitly used by each module in the
original paper. The roles of the other classes remain the
same as described in the original paper.
KWIC Implementation

Figure 9 shows the definition of a series of classes for
implementing KWIC. Passing a list of String classes to
Integrate.main() will output the corresponding KWIC in-
dex. These classes are implemented using version 1 of the
String class. Notably, in the sort method of the Sort class,
the program processes words one letter at a time, converting
lowercase letters to uppercase. For further implementation
details, please refer to the published GitHub repository.*10

Update Scenario
We define an update scenario for the downstream User’s

program which uses the KWIC implementation as follows.
Initially, the User program relied on only version 1 of the
String class. However, a requirement arises to use a new
method introduced include pattern in version 2 of the
String class for a specific process, while keeping the use of
the KWIC implemented using version 1 of the String class.
Therefore, the downstream programmer selectively updates
some of the call sites of the String class in their program
to use version 2.

Figure 10 shows the definitions of version 1 (top) and
version 2 (bottom) of the String class. The update intro-
duces two incompatible changes: (1) the addition of a new

*9 It is important to note that the absence of a direct dependency
from class A to class B does not guarantee that a review is un-
necessary when class B is updated. Identifying such implicit
errors is the purpose of DVC.

*10 prg-titech/kwic-vython, https://github.com/
prg-titech/kwic-vython (Accessed December 6, 2024)

1 class LineStore!1():
2 def __init__(self):
3 self.rows = []
4
5 def set_char(self, row, word, offset, char):
6 current_word = self.get_word(row, word)
7 while offset >= len(current_word):
8 current_word.append("")
9 current_word[offset] = char

10
11 class Input!1():
12 def input(texts):
13 line_store = LineStore!1()
14 for row_i in range(len(texts)):
15 line = texts[row_i]
16 split_line = line.split()
17 for word_i in range(len(split_line)):
18 word = split_line[word_i]
19 for char_i in range(word.size()):
20 line_store.set_char(row_i, word_i, char_i,

word.get(char_i))
21 return line_store
22
23 class Rotate!1():
24 def __init__(self, line_store):
25 self.line_store = line_store
26 self.shift_table = []
27 for row in range(line_store.num_rows()):
28 for word in range(line_store.num_words(row)):
29 self.shift_table.append((row, word))
30
31 class Sort!1():
32 def __init__(self, rotate):
33 self.rotate = rotate
34
35 def first_shift_to_str(self, shift):
36 keyword = String!1("")
37 for char_i in range(self.rotate.num_chars(shift, 0))

:
38 char = (self.rotate.get_char(shift, 0, char_i))
39 if String!1("a").get(0) <= char <= String!1("z").

get(0):
40 char -= 32
41 keyword.add(String!1(char))
42 # keyword = "".join(self.rotate.get_char(shift, 0,

char) for char in range(self.rotate.num_chars(
shift, 0)))

43 return keyword
44
45 def do_sort(self):
46 self.row_indices = sorted(
47 range(self.rotate.num_rows()),
48 key=lambda r: self.first_shift_to_str(r),
49)
50 return self
51
52 class Output!1:
53 def __init__(self, sort):
54 self.sort = sort
55
56 def output(self):
57 ..
58
59 class Integrate!1:
60 def main(self, titles):
61 line_store = Input.input(titles)
62 rotated = Rotate(line_store)
63 sorted_rotate = Sort(rotated).do_sort()
64 Output(sorted_rotate).output()

Fig. 9: Classes for KWIC

method, include pattern, for checking the existence of a
substring that matches a given regex, and (2) a modifica-
tion to the behavior of the get method, which retrieves the
character at a specified index. In the original implementa-
tion, self.get(i) returned the character code of the ith
character in the string stored in self. After the update, it
instead returns a single-character string.
Downstream User’s Program

Figure 11 shows the user program after the gradual up-
date; the part that originally used version 1 of the String

9

2024-4-(x): Manuscript for presentation at IPSJ-SIGPRO, d 1 2025.

1 class String!1():
2 def __init__(self, value):
3 if type(value) == int:
4 self.value = chr(value)
5 elif type(value) == str:
6 self.value = value
7
8 def get(self, i):
9 if(i < 0):

10 return 0
11 if(len(self.value) <= i):
12 return 0
13 return ord(self.value[i])

1 class String!2():
2 def __init__(self, value):
3 if type(value) == int:
4 self.value = chr(value)
5 elif type(value) == str:
6 self.value = value
7
8 def get(self, i):
9 if(i < 0):

10 return 0
11 if(len(self.value) <= i):
12 return 0
13 return self.value[i].incomp(String, 2)
14
15 def include_patter(self, regex):
16 ..

Fig. 10: Class String before and after update

1 ..
2 titles = [String!2("reverse-engineering␣weep␣ReLU␣

networks"), String!2("Hi"), String!2("Reverse-
engineering␣deep␣ReLU␣networks")]

3 Integrate().main(titles)
4 ..
5 # operation using newly introduced method in version 2

of the String class
6 .. title.include_pattern(r'..') ..

Fig. 11: Updated Downstream User’s Program

class has been selectively updated to use version 2 of the
String class, as shown in line 2. In line 3, a list of String!2
instances is passed to the main method of the Integrate
class, which outputs the KWIC index corresponding to the
given list.
6.2.2 Gradually Updating KWIC in Vython
Inconsistent Version Usage in Sort

When we execute the updated user program in Figure 11,
a value derived from the get method for a String!2 instance
is assigned to the char in line 38 in Figure 9. Then, at the
execution of line 39, where char is passed to the inequality
operation, the following message is notified by both Python
runtime and DVC.

1 TypeError: '<=' not supported between instances of 'int
' and 'str'

Error Message from Python Runtime

1 Incompatible version usage found:
2 - String 1
3 - String 2
4 [Changed in version 2] `String().get(i)`:
5 - returns a string whose length is 1 consisting of the

i-th character.
6 - but returns the character code of the i-th character

in version 1.

The Waring Issued from DVC

Here, Python runtime reports that its inequality opera-
tions are performed on a combination of values with differ-
ent types (int and str). Specifically, the evaluating value
of String!1("a").get(0) has a type of int, and the eval-
uating value of char has a type of str.

DVC reports that its inequality operations are performed
on a combination of values created from an incompatible
version of the implementation. Specifically, the evaluating
value of String!1("a").get(0) has a VT of {(String, 1, -
),..} and the evaluating value of char has a VT of {(String, 2,
T),..}. Additionally, DVC also reports how these values can
be incompatible. By combining this information, we iden-
tify the cause of the program’s failure: the implementation
assumes that the return value of the get method from the
version 1 String class (an int value) is assigned to a char.
However, due to the update, the return value of the version
2 get method (a char value) is being assigned instead.

1 class Sort!1:
2 ..
3 def first_shift_to_str(self, shift):
4 keyword = String!1("")
5 for char_i in range(self.rotate.num_chars(shift, 0))

:
6 char = self.rotate.get_char(shift, 0, char_i)
7 if String! 2 ("a").get(0) <= char <= String! 2 ("z"

).get(0):
8 char = char - 32
9 keyword.add(String!1(char))

10 return keyword

Refactored Definition of first shift to str: 1

This cause analysis leads to a program revision, as ex-
emplified in the above program. We refactor the program
by changing the version of get method from version 1 to
version 2 in the inequality operation. Then, executing the
programs with this refactored program, the following results
were produced.

1 TypeError: unsupported operand type(s) for -: 'int'
and 'str'

Error Message from Python Runtime
The Python runtime raises an error at line 40 of Figure 9.

This error reports that an int type value and an str type
value were passed as operands to a subtraction operation.
Specifically, the evaluating value of 32 has a type of int,
and the evaluating value of char has a type of str.

However, no error is reported by the DVC mechanism in
this case. This is because the return value of the version 2
get method assigned to char and the naive integer value 32
seem to be version consistent.

1 class Sort!1:
2 ..
3 def first_shift_to_str(self, shift):
4 keyword = String!1("")
5 for char_i in range(self.rotate.num_chars(shift, 0))

:
6 char = self.rotate.get_char(shift, 0, char_i)
7 if String!2("a").get(0) <= char <= String!2("z").

get(0):
8 char = VInt(ord(char)) - 32
9 keyword.add(String!1(char))

10 return keyword

10

2024-4-(x): Manuscript for presentation at IPSJ-SIGPRO, d 1 2025.

Refactored Definition of first shift to str: 2

Therefore, in this case, we refactor the program as de-
scribed above based solely on information provided by the
Python runtime, without any feedback from the DVC mech-
anism. Specifically, we refactored the program to perform
the subtraction of character codes using the ord method to
explicitly obtain the character codes.

Executing the programs with this refactored program, it
outputs the correct KWIC index as same as before an up-
date along with countless warnings from Vython. However,
these warnings are due to DVC’s conservative design, and
the results confirm that there is in fact no problem. Thus,
we successfully done the gradual update of the program from
version 1 of String class to version 2.
6.2.3 Discussion

Through this case study, we demonstrate that Vython
with DVC can support gradual updates. However, several
limitations were also observed. For instance, during the ex-
ecution of the program after the first refactoring, DVC did
not issue any warnings about a type error caused by version-
related incompatibilities. While such issues fall outside the
current scope of DVC, they represent a class of problems
that are likely to occur frequently in practice due to ver-
sion incompatibilities. It will be necessary to extend DVC
to address these structural incompatibility issues.

In addition, the current implementation of DVC is not
able to identify which evaluation step each version informa-
tion was attached in when inconsistent version information
is detected. In addition to reporting inconsistency, it would
be more helpful to be able to report what piece of program
caused the inconsistency.

7. Related Work
7.1 Language-Based Approach Using Multiple

Version in a Program
Programming with Versions is a programming paradigm

proposed by Tanabe et al. that enables the use of multiple
versions of packages, modules, or classes within a program,
facilitating gradual updates. They highlight the incompati-
bility issues that arise when multiple versions of functions or
classes coexist in a program and emphasize the importance
of handling version consistency [24], [25] and structural com-
patibility [17] in their languages.

λVL [23], [24] is a functional core calculus with a type sys-
tem that ensures version consistency. Its implementation,
VL [25], enables the automatic selection of function versions
using consistency-based type inference. On the other hand,
BatakJava [17] is an extension of Featherweight Java [13]
with a type system that ensures structural compatibility.
Through BatakJava’s type inference, the version of the class
used for all instance creations is automatically determined.
Programs that pass BatakJava’s type inference are guar-
anteed to avoid method call or field access failures caused
by version incompatibilities. Vython can be viewed as a dy-
namic checking mechanism that ensures version consistency.

Exploring language extensions to guarantee structural com-
patibility presents an interesting direction for future work.

Carvalho and Seco propose a mechanism that allows ver-
sion updates of programs to be expressed within the pro-
gramming language itself, from the perspective of software
evolution. Versioned Featherweight Java [5], [7] is an exten-
sion of Featherweight Java that introduces multi-branching
and merge operations. Using program slicing, it extracts
a well-typed single-version Featherweight Java code from a
version-controlled codebase at compile time. They have also
implemented a similar approach for Python [6], reducing
the effort required for refactoring by automatically inserting
some compatibility-absorbing code at compile time. While
this approach cannot execute programs involving incompat-
ible versions without pre-defined conversions, Vython allows
programmers to run programs with any version combination
and has a mechanism that dynamically detects issues arising
from incompatibilities.

7.2 Dynamic Analysis Tools With an Implementa-
tion Similar to Vython

Some offline tools performing dynamic checks exhibit im-
plementation methods that are partially similar to DVC.
TaintCheck [20] is a dynamic analysis tool built on Val-
grind [19], designed to detect vulnerabilities such as buffer
overflows and format string exploits. TaintCheck marks in-
put data from untrusted sources as tainted, tracks the prop-
agation of tainted attributes during program execution (i.e.,
identifying which other data becomes tainted), and detects
instances where tainted data is used in unsafe operations.

Similar approaches are found in the literature on dynamic
information flow analysis. Austin and Flanagan [2], [3] intro-
duced the semantics of λinfo [1], a variant of lambda calcu-
lus designed to derive the evaluation rules for Featherweight
JavaScript, a subset of JavaScript. This calculus assigns se-
curity labels to values and dynamically verifies these labels
to prevent the leakage of sensitive information by malicious
JavaScript programs.

While these tools differ in purpose from Vython, they
share a key characteristic: attaching metadata to values
and defining how this metadata propagates. In Vython,
version tables are used in place of security labels. These
tools have been reported to incur runtime overheads rang-
ing from several times (as seen in λinfo) to as much as 25
times (as observed in TaintCheck) compared to implementa-
tions without additional checks. Although the level of opti-
mization varies significantly, incorporating techniques such
as sparse labeling—used in λinfo to minimize the addition of
check metadata—could potentially enhance the performance
of Vython.

8. Conclusion and Future Work
We implement Vython and conduct a preliminary eval-

uation. The results indicate that while the current imple-
mentation is prototypical, its performance is scalable and
acceptable for debugging small programs but requires fur-

11

2024-4-(x): Manuscript for presentation at IPSJ-SIGPRO, d 1 2025.

ther optimization for real-world applications. We plan to
undertake the following future work.

Compatibility Management Toward Better Feed-
back

We plan to extend the DVC mechanism to accommo-
date the diverse compatibility requirements of real-world
software. Practical software packages often have numerous
versions and evolve non-linearly [8] through experimental
features and language extensions. Currently, however, the
DVC mechanism assumes a linear evolution involving only
two versions or classes. The sole incompatibility annota-
tion available to upstream developers, incomp, simply indi-
cates that a version is incompatible with all others. This
limitation it impossible to express incompatibilities between
specific versions in scenarios involving three or more ver-
sions, as commonly encountered in real-world development.
Leveraging tools to manage source code differences and in-
compatibilities, it becomes possible to synthesize feedback
that accounts for the history of updates.

Surface Language Design
The current Vython requires specifying class versions in

the surface program. We plan to develop a method to auto-
matically infer versions working on Python programs. This
will help minimize the annotations given by downstream de-
velopers, identify dependencies on old versions, and auto-
mate updates.

Acknowledgments The authors would like to thank
the members of the PRG lab for their daily discussions.
The authors also thank the audiences of APLAS & ATVA
2024 and PPL 2024 for their valuable comments on the
preliminary stages of this research. This work was sup-
ported by JSPS KAKENHI Grant Numbers JP23K19961
and JP23K28058.

References
[1] Austin, T. H.: Dynamic Information Flow Anal-

ysis for Featherweight JavaScript Technical Re-
port # UCSC-SOE-11-19, (online), available from
⟨https://api.semanticscholar.org/CorpusID:16308311⟩
(2011).

[2] Austin, T. H. and Flanagan, C.: Efficient purely-dynamic
information flow analysis, Proceedings of the ACM SIG-
PLAN Fourth Workshop on Programming Languages and
Analysis for Security, PLAS ’09, New York, NY, USA, As-
sociation for Computing Machinery, p. 113–124 (online),
DOI: 10.1145/1554339.1554353 (2009).

[3] Austin, T. H. and Flanagan, C.: Permissive dynamic
information flow analysis, Proceedings of the 5th ACM
SIGPLAN Workshop on Programming Languages and
Analysis for Security, PLAS ’10, New York, NY, USA,
Association for Computing Machinery, (online), DOI:
10.1145/1814217.1814220 (2010).

[4] Bradski, G.: The OpenCV Library, Dr. Dobb’s Journal of
Software Tools (2000).

[5] Carvalho, L. and Costa Seco, J. a.: Deep Semantic Ver-
sioning for Evolution and Variability, Proceedings of the
23rd International Symposium on Principles and Practice
of Declarative Programming, PPDP ’21, New York, NY,
USA, Association for Computing Machinery, (online), DOI:
10.1145/3479394.3479416 (2021).

[6] Carvalho, L. and Costa Seco, J. a.: A Language-Based Ver-
sion Control System for Python, 38th European Conference
on Object-Oriented Programming (ECOOP 2024) (Aldrich,
J. and Salvaneschi, G., eds.), Leibniz International Pro-
ceedings in Informatics (LIPIcs), Vol. 313, Dagstuhl, Ger-
many, Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
pp. 9:1–9:27 (online), DOI: 10.4230/LIPIcs.ECOOP.2024.9
(2024).

[7] Carvalho, L. and Costa Seco, J.: Software Evolution with
a Typeful Version Control System, Software Engineering
and Formal Methods (Ölveczky, P. C. and Salaün, G.,
eds.), Cham, Springer International Publishing, pp. 145–
161 (2019).

[8] Conradi, R. and Westfechtel, B.: Version models
for software configuration management, ACM Comput.
Surv., Vol. 30, No. 2, p. 232–282 (online), DOI:
10.1145/280277.280280 (1998).

[9] Eghbali, A. and Pradel, M.: DynaPyt: a dynamic
analysis framework for Python, Proceedings of the 30th
ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engi-
neering, ESEC/FSE 2022, New York, NY, USA, Associ-
ation for Computing Machinery, p. 760–771 (online), DOI:
10.1145/3540250.3549126 (2022).

[10] Foo, D., Chua, H., Yeo, J., Ang, M. Y. and Sharma, A.: Ef-
ficient static checking of library updates, Proceedings of the
2018 26th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2018, New York, NY,
USA, Association for Computing Machinery, p. 791–796
(online), DOI: 10.1145/3236024.3275535 (2018).

[11] Harris, C. R., Millman, K. J., van der Walt, S. J., Gom-
mers, R., Virtanen, P., Cournapeau, D., Wieser, E., Tay-
lor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer,
S., van Kerkwijk, M. H., Brett, M., Haldane, A., del R’ıo,
J. F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Shep-
pard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C.
and Oliphant, T. E.: Array programming with NumPy,
Nature, Vol. 585, No. 7825, pp. 357–362 (online), DOI:
10.1038/s41586-020-2649-2 (2020).

[12] Igarashi, A., Pierce, B. C. and Wadler, P.: Featherweight
Java: a minimal core calculus for Java and GJ, ACM Trans.
Program. Lang. Syst., Vol. 23, No. 3, p. 396–450 (online),
DOI: 10.1145/503502.503505 (2001).

[13] Igarashi, A., Pierce, B. C. and Wadler, P.: Featherweight
Java: a minimal core calculus for Java and GJ, ACM Trans-
actions on Programming Languages and Systems, Vol. 23,
No. 3, pp. 396–450 (online), DOI: 10.1145/503502.503505
(2001).

[14] Jayasuriya, D., Terragni, V., Dietrich, J. and Blincoe, K.:
Understanding the Impact of APIs Behavioral Breaking
Changes on Client Applications, Proc. ACM Softw. Eng.,
Vol. 1, No. FSE (online), DOI: 10.1145/3643782 (2024).

[15] Kula, R. G., German, D. M., Ouni, A., Ishio, T. and Inoue,
K.: Do developers update their library dependencies?, Em-
pirical Software Engineering, Vol. 23, No. 1, pp. 384–417
(online), DOI: 10.1007/s10664-017-9521-5 (2018).

[16] Lam, P., Dietrich, J. and Pearce, D. J.: Putting the se-
mantics into semantic versioning, Proceedings of the 2020
ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and
Software, Onward! 2020, New York, NY, USA, Associa-
tion for Computing Machinery, p. 157–179 (online), DOI:
10.1145/3426428.3426922 (2020).

[17] Lubis, L. A., Tanabe, Y., Aotani, T. and Masuhara, H.:
BatakJava: An Object-Oriented Programming Language
with Versions, Proceedings of the 15th ACM SIGPLAN In-
ternational Conference on Software Language Engineering,
Auckland New Zealand, ACM, pp. 222–234 (online), DOI:
10.1145/3567512.3567531 (2022).

[18] Mirhosseini, S. and Parnin, C.: Can automated pull re-
quests encourage software developers to upgrade out-of-
date dependencies?, Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engi-
neering, ASE ’17, Urbana-Champaign, IL, USA, IEEE
Press, pp. 84–94 (2017).

[19] Nethercote, N. and Seward, J.: Valgrind: a framework
for heavyweight dynamic binary instrumentation, SIG-
PLAN Not., Vol. 42, No. 6, p. 89–100 (online), DOI:
10.1145/1273442.1250746 (2007).

[20] Newsome, J. and Song, D. X.: Dynamic Taint Analysis
for Automatic Detection, Analysis, and SignatureGener-

12

2024-4-(x): Manuscript for presentation at IPSJ-SIGPRO, d 1 2025.

ation of Exploits on Commodity Software, Network and
Distributed System Security Symposium, (online), available
from ⟨https://valgrind.org/docs/newsome2005.pdf⟩ (2005).

[21] Parnas, D. L.: On the criteria to be used in decomposing
systems into modules, Commun. ACM, Vol. 15, No. 12, p.
1053–1058 (online), DOI: 10.1145/361598.361623 (1972).

[22] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B.,
Fang, L., Bai, J. and Chintala, S.: PyTorch: An Imper-
ative Style, High-Performance Deep Learning Library,
Advances in Neural Information Processing Systems 32,
Curran Associates, Inc., pp. 8024–8035 (online), available
from ⟨http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-
library.pdf⟩ (2019).

[23] Tanabe, Y., Aotani, T. and Masuhara, H.: A Context-
Oriented Programming Approach to Dependency Hell, Pro-
ceedings of the 10th ACM International Workshop on
Context-Oriented Programming: Advanced Modularity for
Run-Time Composition, COP ’18, New York, NY, USA,
Association for Computing Machinery, p. 8–14 (online),
DOI: 10.1145/3242921.3242923 (2018).

[24] Tanabe, Y., Lubis, L. A., Aotani, T. and Masuhara, H.:
A Functional Programming Language with Versions, The
Art, Science, and Engineering of Programming, Vol. 6,
No. 1, pp. 5:1–5:30 (online), DOI: 10.22152/programming-
journal.org/2022/6/5 (2021).

[25] Tanabe, Y., Lubis, L. A., Aotani, T. and Masuhara, H.:
Compilation Semantics for a Programming Language with
Versions, Programming Languages and Systems (Hur, C.-
K., ed.), Singapore, Springer Nature Singapore, pp. 3–23
(2023).

[26] Virtanen, P., Gommers, R., Oliphant, T. E., Haberland,
M., Reddy, T., Cournapeau, D., Burovski, E., Peterson,
P., Weckesser, W., Bright, J., van der Walt, S. J., Brett,
M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A.
R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat,
İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A.,
Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa,
F., van Mulbregt, P. and SciPy 1.0 Contributors: SciPy
1.0: Fundamental Algorithms for Scientific Computing in
Python, Nature Methods, Vol. 17, pp. 261–272 (online),
DOI: 10.1038/s41592-019-0686-2 (2020).

[27] Wes McKinney: Data Structures for Statistical Computing
in Python, Proceedings of the 9th Python in Science Con-
ference (Stéfan van der Walt and Jarrod Millman, eds.),
pp. 56 – 61 (online), DOI: 10.25080/Majora-92bf1922-00a
(2010).

Appendix

A.1 Incompatible Behaviours Between
NumPy 2.0.0 and 1.26.4

This section outlines some of the major incompatibilities
between NumPy 1.26.4 and NumPy 2.0.0. All 11 examples
we collect, along with the scripts to reproduce them, are
available on the GitHub repository (https://github.com/
prg-titech/numpy_diff).

A.1.1 Incompatibilities in numpy.linalg.solve
The numpy.linalg.solve function solves a linear matrix

equation. It solves the equation ax = b for x, where a is a
square matrix and b is a vector or matrix provided as argu-
ments to the function. The implementation was changed in
NumPy 2.0.0. The following note is from the official NumPy
documentation:

Changed in version 2.0 : The b array is only treated
as a shape (M,) column vector if it is exactly 1-
dimensional. In all other instances it is treated as

a stack of (M, K) matrices. Previously b would be
treated as a stack of (M,) vectors if b.ndim was
equal to a.ndim - 1.

As a result, when b is not strictly one-dimensional, the
output of the solve function differs for the same input. For
example, consider the following program run with NumPy
1.26.4 and NumPy 2.0.0.

1 import numpy as np
2
3 # Shape (2, 2, 2)
4 a = np.array(
5 [[[3, 1], [1, 2]]
6 , [[2, 1], [1, 3]]])
7 # Shape (2, 2)
8 b = np.array(
9 [[9, 8]

10 , [7, 10]])
11
12 x = np.linalg.solve(a, b)
13 print(x)

When we run the above program with NumPy versions
1.26.4 and 2.0.0, we get the following different outputs due
to incompatibility in broadcasting rules.

1 @ Running linalg_solve.py with numpy 1.26.4
2 [[2. 3.]
3 [2.2 2.6]]
4 @ Running linalg_solve.py with numpy 2.0.0
5 [[[2.2 1.2]
6 [2.4 4.4]]
7
8 [[4. 2.8]
9 [1. 2.4]]]

The reason for this difference lies in how the b array is
treated in different versions of NumPy. In version 1.26.4,
if b’s number of dimensions (b.ndim) is equal to one less
than the number of dimensions of a (a.ndim - 1), b is in-
terpreted as a stack of (M,) vectors. This means that in ver-
sion 1.26.4, the b array is treated as a stack of 1-dimensional
vectors, each corresponding to a 2x2 matrix in a. Therefore,
the program is interpreted as follows:(

3 1

1 2

)(
x1

x2

)
=

(
9

8

)
,(

2 1

1 3

)(
y1

y2

)
=

(
7

10

)
.

However, in version 2.0.0, the behavior was modified such
that the b array is treated as a column vector only if it is
strictly 1-dimensional. In all other cases, it is treated as a
stack of (M, K) matrices. Consequently, for the given input,
b is treated as a stack of 2-dimensional matrices. Therefore,
the program is interpreted as follows:(

3 1

1 2

)(
x1 x2

x3 x4

)
=

(
9 8

7 10

)
,(

2 1

1 3

)(
y1 y2

y3 y4

)
=

(
9 8

7 10

)
.

A.1.2 Incompatibilities in Other Functions
In addition to numpy.linalg.solve, NumPy 2.0.0 intro-

duces several other backward-incompatible modifications.

13

2024-4-(x): Manuscript for presentation at IPSJ-SIGPRO, d 1 2025.

Among the programs we collected that produce different
outputs solely due to version differences in NumPy, we list
some notable input-output pairs below. For other examples
where downstream developers might easily notice incompat-
ibilities due to Python runtime errors, such as differences in
output types, please refer to the repository.

numpy.nonzero
The function return the indices of the elements that are

non-zero. The function previously ignored whitespace so
that a string only containing whitespace was considered
False, however, whitespace is now considered True in string
arrays newly in NumPy 2.0.0.

1 import numpy as np
2
3 arr = np.array(['␣', 'a', ''])
4 print(np.nonzero(arr))

1 @ Running nonzero.py with numpy 1.26.4
2 (array([1]),)
3 @ Running nonzero.py with numpy 2.0.0
4 (array([0, 1]),)

numpy.linalg.lstsq
The function returns the least squares solution to a linear

matrix equation. The default value of the rcond (cut-off ra-
tio) parameter in lstsq was changed in NumPy 2.0.0. This
change introduces a subtle incompatibility: while most in-
puts yield the same output regardless of the NumPy version,
inputs with elements near machine precision can produce
different results depending on the NumPy version. The fol-
lowing example illustrates such a case.

1 import numpy as np
2
3 a = np.zeros((10**2, 2))
4 a[0, 0] = 1
5 a[m-1, 1] = 2.22e-16
6 b = np.zeros(m)
7 b[m-1] = 1
8
9 x, res, rank, s = np.linalg.lstsq(a, b)

10 print(...)

1 @ Running linalg_lstsq.py with numpy 1.26.4
2 Solution with default rcond: [0.0000000e+00 4.5045045e

+15]
3 Residuals: [4.93038066e-32]
4 Rank: 2
5 Singular values: [1.00e+00 2.22e-16]
6 @ Running linalg_lstsq.py with numpy 2.0.0
7 Solution with default rcond: [0. 0.]
8 Residuals: []
9 Rank: 1

10 Singular values: [1.00e+00 2.22e-16]

numpy.loadtxt and numpy.genfromtxt
The functions provide readers for simly formatted files.

Default encoding for these functions was changed in
NumPy 2.0.0. Previously, these two functions selected
encoding=bytes as the default parameter, but starting from
version 2.0.0, it has been changed to encoding=string. As
a result, programs that expect custom converters assuming
a byte value will be broken by the update.

1 import numpy as np
2 import io
3 def custom_converter(byte_string):
4 return float(byte_string.decode('utf-8'))
5
6 data = b"1.1\n2.2\n3.3\n"
7 with open('data.txt', 'wb') as f:
8 f.write(data)
9

10 # Load the data using loadtxt with the custom converter
11 try:
12 data = np.loadtxt('data.txt', converters={0:

custom_converter})
13 print(f"Data␣loaded␣successfully:␣{data}")
14 except Exception as e:
15 print(f"An␣error␣occurred:␣{e}")

1 @ Running loadtxt_genfromtxt.py with numpy 1.26.4
2 Data loaded successfully: [1.1 2.2 3.3]
3 @ Running loadtxt_genfromtxt.py with numpy 2.0.0
4 An error occurred: could not convert string '1.1' to

float64 at row 0, column 1.

A.2 Dynamically Switching NumPy
Versions

This section describes the reproduction of the moti-
vating examples from Section 2 in actual Python pro-
grams. The complete source code and instrucations
to reproduce the results of this paper are available on
the GitHub repository (https://github.com/prg-titech/
use-multi-versions).

A.2.1 Installing Multiple NumPy Versions from
Sources

For example, to install numpy version 1.26.4 into a direc-
tory named numpy-1.26.4 using pip on a Linux OS, use the
following command.

1 $ mkdir numpy-1.26.4
2 $ pip donwload numpy==1.26.4
3 $ pip install numpy-1.26.4-whl -t numpy-1.26.4

A.2.2 Simultaneouslly Using Multiple NumPy
Versions in Code

The following load numpy function dynamically loads a
specified version of NumPy. It takes a string representing
the version, sets the appropriate NumPy path, and removes
any cached instances of NumPy from sys.modules. The
function then temporarily modifies the system path to in-
clude the specified version’s path installed in the last section
and imports the NumPy module from its initialization file.
Finally, load numpy returns the module object for the spec-
ified version of NumPy.

1 # version_dispatch.py
2 def load_numpy(version):
3 if version == '1.26.4':
4 numpy_path = os.path.abspath('numpy-1.26.4')
5 elif version == '2.0.0':
6 numpy_path = os.path.abspath('numpy-2.0.0')
7 else:
8 raise ValueError(f"Unsupported␣numpy␣version:␣{

version}")
9

10 # Clear cache
11 if 'numpy' in sys.modules:
12 del sys.modules['numpy']
13 for mod_name in list(sys.modules):
14 if mod_name.startswith('numpy'):

14

2024-4-(x): Manuscript for presentation at IPSJ-SIGPRO, d 1 2025.

15 del sys.modules[mod_name]
16
17 # Set environment pathes
18 original_path = sys.path.copy()
19 sys.path.insert(0, numpy_path)
20
21 try:
22 numpy_init_path = os.path.join(numpy_path, '

numpy', '__init__.py')
23 spec = importlib.util.spec_from_file_location("

numpy", numpy_init_path)
24 if spec is None:
25 raise ImportError(f"Cannot␣find␣numpy␣module

␣in␣{numpy_path}")
26
27 numpy = importlib.util.module_from_spec(spec)
28 spec.loader.exec_module(numpy)
29 finally:
30 # Restore sys.path
31 sys.path = original_path

The following program shows the full version of the
program shown in Figure 2. The implementation of the
pole placement problem (place poles and my place poles)
has been simplified, as it is not the focus of this sec-
tion. Using ./version dispatch.py, which defines the
load numpy function described in the previous subsection,
place poles is evaluated with NumPy 1.26.4 on line 26,
and my place poles is evaluated with NumPy 2.0.0 on line
27. Finally, the results of the two functions are compared
on line 29.

As mentioned in Section 2, despite place poles and my
place poles being identical implementations except for the
NumPy version they use, the result evaluates to False.

1 from version_dispatch import load_numpy
2
3 # SciPy
4 class SciPy():
5 def place_poles(self, A, B, desired_poles):
6 np = load_numpy('1.26.4')
7 res = np.linalg.solve(A, B)
8 return res
9

10 # User Program
11 def my_place_poles(A, B, desired_poles):
12 np = load_numpy('2.0.0')
13 res = np.linalg.solve(A, B)
14 return res
15
16 def main():
17 np = load_numpy('2.0.0')
18 A = np.array(
19 [[[3, 1], [1, 2]]
20 , [[2, 1], [1, 3]]])
21 B = np.array(
22 [[9, 8]
23 , [7, 10]])
24 desired_poles = np.array([-1.0, -2.0])
25
26 expect = SciPy().place_poles(A,B,desired_poles).

tolist()
27 actual = my_place_poles(A,B,desired_poles).tolist()
28
29 test = np.array_equal(expect, actual) # => False
30
31 main()

A.3 Programs Used for Simple Bench-
marks

sort performs a merge sort on a Python list of 1000 el-
ements, is prime uses a simple algorithm to determine the
primality of 128456903, fib recursively computes the 20th
Fibonacci number, and insert inserts one thousand Node
instances to a binary tree.

A.3.1 insert

1 class Node!1():
2 def __init__(self, value):
3 self.value = value
4 self.left = None
5 self.right = None
6
7 def insert_right(self, v):
8 if self.right == None:
9 self.right = Node!1(v)

10 else:
11 self.right.insert(v)
12
13 def insert_left(self, v):
14 if self.left == None:
15 self.left = Node!1(v)
16 else:
17 self.left.insert(v)
18
19 def insert(self, v):
20 if(self.value <= v):
21 self.insert_right(v)
22 else:
23 self.insert_left(v)
24
25 root = Node!1(5)
26 a = [...] # Array of 1000 elements, random numbers

between 1 and 10000
27 for i in a:
28 root.insert(i)

A.3.2 sort

1 def sort(list):
2 if len(list) < 1:
3 return []
4 elif len(list) == 1:
5 return list
6 pivot = list[0]
7 lower_list = []
8 upper_list = []
9 middle_list = []

10
11 for item in list:
12 if item < pivot:
13 lower_list.append(item)
14 elif item > pivot:
15 upper_list.append(item)
16 else:
17 middle_list.append(item)
18
19 sorted_lower_list = sort(lower_list)
20 sorted_upper_list = sort(upper_list)
21
22 return sorted_lower_list + middle_list +

sorted_upper_list
23
24 a = [...] # Array of 1000 elements, random numbers

between 1 and 10000
25 sort(a)

A.3.3 prime

1 def is_prime(n):
2 if n <= 1:
3 return False
4 if n == 2 or n == 3:
5 return True
6 if n % 2 == 0 or n % 3 == 0:
7 return False
8 return is_prime_recursive(n, 5)
9

10 def is_prime_recursive(n, i):
11 if i * i > n:
12 return True
13 if n % i == 0 or n % (i + 2) == 0:
14 return False
15 return is_prime_recursive(n, i + 6)
16
17 is_prime(128456903)

A.3.4 fib

15

2024-4-(x): Manuscript for presentation at IPSJ-SIGPRO, d 1 2025.

1 def fib(n):
2 if n<=2:
3 return 1
4 else:
5 return fib(n-1) + fib(n-2)
6
7 fib(20)

Satsuki Kasuya He is a graduate
student in Department of Mathemat-
ical and Computing Science, School of
Computing, Institute of Science Tokyo
(formerly Tokyo Institute of Technol-
ogy). He received B.S. degree from
Tokyo Institute of Technology in 2024.
He is interested in programming lan-

guages.

Yudai Tanabe He is an assistant
professor in Department of Mathemat-
ical and Computing Science, School of
Computing, Institute of Science Tokyo
(formerly Tokyo Institute of Technol-
ogy.) He received B.S., M.S., and D.S.
degrees from Tokyo Institute of Tech-
nology in 2018, 2020, and 2023 respec-

tively. Formerly, he was a JSPS Research Fellow at Tokyo
Institute of Technology from 2022 until 2023, a program-
specific researcher at Kyoto University from 2023 until 2024,
and an assistant professor in Department of Mathematical
and Computing Science, School of Computing, Tokyo In-
stitute of Technology until September 2024. His research
interest is programming language and software engineering,
especially in programming language theory, type systems,
and software maintenance.

Hidehiko Masuhara He is a Profes-
sor of Mathematical and Computing
Science, School of Computing, Insti-
tute of Science Tokyo (formerly Tokyo
Institute of Technology.) He received
his B.S., M.S., and Ph.D. in Computer
Science from Department of Informa-
tion Science, the University of Tokyo

in 1992, 1994, and 1999, respectively, and served as an as-
sistant professor, lecturer, and associate professor at Depart-
ment of Graphics and Computer Science, Graduate School
of Arts and Sciences, the University of Tokyo from 1995 until
2013. He was the Dean of the School of Computing of Tokyo
Institute of Technology from 2022 until 2024. His research
interest is programming languages, especially in aspect- and
context-oriented programming, partial evaluation, compu-
tational reflection, meta-level architectures, parallel/concur-
rent computing, and programming environments.

16

