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Abstract Programming languages and platforms improve over time, sometimes resulting in new language
features that offer many benefits. However, despite these benefits, developers may not always be willing to
adopt them in their projects for various reasons. In this paper, we describe an empirical study where we assess
the adoption of a particular new language feature. Studying how developers use (or do not use) new language
features is important in programming language research and engineering because it gives designers insight
into the usability of the language to create meaning programs in that language. This knowledge, in turn,
can drive future innovations in the area. Here, we explore Java 8 default methods, which allow interfaces to
contain (instance) method implementations.

Default methods can ease interface evolution, make certain ubiquitous design patterns redundant, and
improve both modularity and maintainability. A focus of this work is to discover, through a scientific approach
and a novel technique, situations where developers found these constructs useful and where they did not, and
the reasons for each. Although several studies center around assessing new language features, to the best of
our knowledge, this kind of construct has not been previously considered.

Despite their benefits, we found that developers did not adopt default methods in all situations. Our study
consisted of submitting pull requests introducing the language feature to 19 real-world, open source Java
projects without altering original program semantics. This novel assessment technique is proactive in that the
adoption was driven by an automatic refactoring approach rather than waiting for developers to discover and
integrate the feature themselves. In this way, we set forth best practices and patterns of using the language
feature effectively earlier rather than later and are able to possibly guide (near) future language evolution.
We foresee this technique to be useful in assessing other new language features, design patterns, and other
programming idioms.
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1 Introduction

Programming languages and platforms change for a variety of reasons such as to
accommodate new environments and/or trends or to add new language features. For
example, new Java features have included generics and lambda expressions [8, 9].
To benefit from new language features, however, developers must be willing to

adopt them into their projects. Developers may or may not favor a certain feature,
and several researchers have investigated the reasons. For instance, Dyer, Rajan,
Nguyen, and Nguyen [14] and Parnin, Bird, and Murphy-Hill [31] investigate how
(or if) generics and other Java features have been adopted by mining open source
software. Uesbeck, Stefik, Hanenberg, Pedersen, and Daleiden [40] assess the impact
of C++ lambda expressions on developers’ experience by analyzing log data, and Wu,
Chen, Zhou, and Xu [41] analyze C++ concurrency construct usage in open source
software. Gorschek, Tempero, and Angelis [18] and Tempero, Counsell, and Noble [38]
study developers’ usage patterns of Object-Oriented concepts like encapsulation and
inheritance via surveys and metrics, respectively.
This paper describes an empirical study where we assess the adoption of a particular

new language feature, namely, default methods, part of Java 8’s enhanced interfaces.
Default methods enable developers to write default (instance) methods that include an
implementation that implementers will inherit if one is not provided [8]. Its original
motivation was to effectively facilitate interface evolution, i.e., interface augmentation
without breaking existing clients [7]. Default methods can also be used [17, 24] as
a substitution for the skeletal implementation pattern, which employs an (abstract)
skeletal implementation class that interface implementers extend [3, Item 18]. In this
way, interfaces are easier to implement due to the class providing a partial interface
implementation.
Although default methods can be useful in making interfaces more evolvable and

bypassing the need for auxiliary design patterns, during our study, we found that
there are also trade-offs to using default methods that may not be obvious. For
example, certain implementations may be considered too general to serve as a default
implementation to be inherited by all interface implementers, which is in contrast to
the skeletal implementation pattern as these would be available to them regardless
of any subclassing. Also, interface authors lose the guarantee that all clients will
provide their own specific implementation of a method. Moreover, adding non-trivial
implementations to interfaces may result in module dependencies that violate existing
architectural constraints.
In the sections that follow, we detail reactions of developers in adopting default

methods in their projects, extracting best practices of their uses, as well as situations
where these new constructs work well and where trade-offs must be made by perform-
ing an empirical study on 19 real-world, open source Java projects hosted on GitHub.1
Pull requests (patches) were issued that contained particular interface method im-

1 http://github.com, last accessed on March 23, 2018.

6:2

http://github.com


Ra� Khatchadourian and Hidehiko Masuhara

plementations migrated to interfaces as default methods in a semantics-preserving
fashion.
A popular approach for assessing language features, as utilized by related work

(e.g., [14, 28, 29, 31, 40, 41]), involves a postmortem analysis. Specifically, either past
data (e.g., source code, commits) of source repositories are analyzed or surveys
of previous coding activities are taken. This approach has several problems. Firstly,
developers must discover new language features and integrate them themselves before
any analysis of the construct can be done. The necessary time for this to take place can
be extremely long and new language versions may not benefit from the analysis prior
to the next release. Best practices and patterns that can normally be extracted from
these studies are also delayed. Furthermore, developers may be unable to manually
identify all opportunities where the new language construct can be utilized. Lastly,
observing software histories may discover cases where new language features are
adopted but may not easily identify those where they were rejected as these may not
have been adequately documented.
To combat these problems, we introduce a novel technique for assessing new

language constructs proactively. The pull request changes in our study consist of
transformations performed via an automated refactoring tool. As such, developers are
immediately introduced to the new construct, irrespective of any previous experience,
via a semantically equivalent transformation that they can either accept or reject.
Their decisions can be studied early to assess the feature’s effectiveness, extracting
best practices.
The use of refactoring automation is key in minimizing human bias that such a

proactive approach can introduce. Furthermore, it is also extremely important that
the tool be highly conservative in its refactoring approach, as well as founded in a
firm theoretical basis. In this way, the refactoring tool performs transformations that
are (i) correct (i.e., semantics is preserved), (ii) minimally invasive (i.e., composite
refactorings are not performed so that singular construct under question can be
studied in isolation), and (iii) a subset of those that a project owner would have
performed.
To this extent, we chose to use the Migrate Skeletal Implementation to

Interface refactoring tool [23], based on type constraints [30, 39], to conservatively
and confidently discover opportunities and necessary semantics-preserving transfor-
mations for migrating methods possibly participating in the skeletal implementation
pattern to interfaces as default methods for this study. Its conservative nature and
use of a well-founded type constraint framework ensures that project owners can be
confident that it makes correct changes, that it only makes the changes necessary to
introduce default methods into existing projects, and only makes changes in unam-
biguous situations, i.e., where there is only one possible outcome. In other words, the
approach is fully-automated.
Our study assesses the use of default methods in existing code. In other words, as

previously mentioned, the original motivation for default methods was interface exten-
sion, i.e., adding new methods to an interface, without breaking existing clients [17].
Substituting the skeletal implementation pattern is the only sensible use of default
methods when not introducing new functionality. Thus, an acceptance of the refac-
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toring results in this context for reasons pertaining only to the result content itself is
equivalent to acceptance of using default methods as a programming construct for
existing code and vice-versa.
Our approach is highly appropriate for studying the adoption of default methods

as Java 8 is still relatively new. Also, the refactoring tool can automatically locate
feature usage opportunities that developers may have missed otherwise, allowing
us to study more occurrence where the construct may be used. Finally, pull request
rejections were typically accompanied by the thorough and thoughtful reasoning of
why the language feature was not to be used. This would have otherwise not been
documented or been easily identifiable in the source code as developers may subsume
such reasons implicitly.
Preliminary results of this pull request study are briefly presented by Khatchadourian

and Masuhara [23], however, its sole focus is evaluating the usability of the refactoring
approach itself as a secondary metric. In other words, the discussion there argues
that the tool results are useful in real-world scenarios and is not intended to study the
construct’s applicability. That, though, is precisely one of the main goals of this work.
Here, our intent is not to evaluate the refactoring tool itself but rather describe key
characteristics of why developers either accepted or rejected using default methods.
Doing so is possible due to the above discussion regarding the tool’s conservative
qualities.
From these observations, we additionally set forth best practices for default method

use, identifying where they are most effective, as well as where and when they should
be avoided. The results provide valuable insight into the applicability of this new
construct to real software, pinpoint their best usage scenarios, including those where
default methods may not be, perhaps surprisingly, advantageous, and guide future
language evolution, for Java or other strongly-typed languages considering similar
constructs.
This paper makes the following contributions:

Proactive Evaluation Our study features a novel empirical analysis technique to assess
new language features early rather than later by using an automated refactoring tool
to introduce developers to the new construct regardless of their previous experience.
Developers are informed that the transformation is semantic-preserving. Moreover,
this facilitates the study of otherwise possibly unobservable reasons for unadopted
cases.

Practicality Assessment Key insights into the adoptability of default methods in 19
real-world, vetted open source projects of varying size, domain, and popularity
are given. Scenarios where default methods made sense and where it did not and
why are thoroughly detailed. This highlights the practicality of default methods in
existing code.

Best practices Extraction From these scenarios, we describe general best practices
for using default methods. These practices (or patterns) are extracted from real
software. Carefully considered evidence is presented to support the claims.
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Listing 1 An example migration from the skeletal implementation pattern to default
methods. Inspired by [10, 23, 39].

(a) Abstract skeletal implementation pattern.

1 interface List<E> {
2 int size();
3 boolean isEmpty();
4 int capacity();
5 abstract boolean atCapacity();
6

7 void setSize(int i);
8 void removeLast(); // optional operation.
9

10 void set(int i, E e);
11 void print(PrintStream stream);}
12 abstract class AbsList<E> implements List<E> {
13 @Override public boolean isEmpty()
14 {return this.size() == 0;}
15 @Override public boolean atCapacity()
16 {return this.size() == this.capacity();}
17 @Override public void removeLast()
18 {throw new UnsupportedOperationException();}
19 @Override public void print(PrintStream out)
20 {out.println(this);}}
21 class ArrayBasedList<E> extends AbsList<E> {
22 Object[] elems; int size; // instance �elds.
23 @Override public int size() {return this.size;}
24 @Override public void setSize(int i) {this.size = i;}
25 @Override public int capacity()
26 {return this.elems.length;}
27 @Override public void set(int i, E e)
28 {this.elems[i] = e;}}
29 class Main {
30 public static void main(String[] args) {
31 List<Integer> list = new ArrayBasedList<Integer>();
32 assert(list.isEmpty());
33 assert(!new AbsList<String>() {/*...*/}.atCapacity());}}

(b)Migration to default methods.

1 interface List<E> {
2 int size();
3 default boolean isEmpty() {return this.size() == 0;}
4 int capacity();
5 abstractdefault boolean atCapacity()
6 {return this.size() == this.capacity();}
7 void setSize(int i);
8 default void removeLast() // optional operation.
9 {throw new UnsupportedOperationException();}
10 void set(int i, E e);
11 default void print(PrintStream out) {out.println(this);}}
12 abstract class AbsList<E> implements List<E> {
13 @Override public boolean isEmpty()
14 {return this.size() == 0;}
15 @Override public boolean atCapacity()
16 {return this.size() == this.capacity();}
17 @Override public void removeLast()
18 {throw new UnsupportedOperationException();}
19 @Override public void print(PrintStream out)
20 {out.println(this);}}
21 class ArrayBasedList<E> implements AbsList<E> {
22 Object[] elems; int size; // instance �elds.
23 @Override public int size() {return this.size;}
24 @Override public void setSize(int i) {this.size = i;}
25 @Override public int capacity()
26 {return this.elems.length;}
27 @Override public void set(int i, E e)
28 {this.elems[i] = e;}}
29 class Main {
30 public static void main(String[] args) {
31 List<Integer> list = new ArrayBasedList<Integer>();
32 assert(list.isEmpty());
33 assert(!new AbsList<String>() {/*...*/}.atCapacity());}}

Organization

The remainder of this paper is organized as follows. Default method and skeletal
implementation pattern concepts are explained in Section 2. Section 3 discusses our
experimental methodology, its setup, etc. In Section 4.1, details of the issued pull
requests are described. Section 4 presents the results of the study, specifically, a
depiction of the developers reactions to the pull requests. A discussion of the results
resides in Section 5, alongwith extracted patterns and best practices. Section 6 presents
the threats to validity. Section 7 compares related work, and Section 8 concludes and
details plans for future work.

2 Background

6:5
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2.1 Skeletal Implementation Pattern

While default methods are useful for introducing new methods into interfaces without
breaking existing clients, in this study, default methods are integrated into projects via
a semantics-preserving transformation (refactoring) of methods possibly participating
in the widely-used [23] skeletal implementation pattern. To illustrate what a developer
may be presented with as part of the study, Listing 1 portrays a hypothetical collection
type hierarchy snippet inspired by related work [10, 23, 39]. For presentation purposes,
the hierarchy has been simplified, showing only relevant portions. The original system
(white space added for alignment) is pictured in Listing 2a, while Listing 2b depicts
the same system with several methods migrated to interfaces as default methods.
Removed code is struck through, added code is underlined, and replaced code is
both underlined and emphasized. Both systems are type-correct and semantically
equivalent. We refer readers to Khatchadourian and Masuhara [23] for more details
of the refactoring.
A List interface is shown on lines 1–11. Note that, unlike classes, Java interfaces can

extend multiple interfaces. Methods exist for determining a List’s size(), whether it
isEmpty(), its capacity(), whether it is atCapacity(), setting a List’s size, removing its last
element, replacing an element at a specified position, and printing it to a specified
stream. removeLast() is denoted as a so-called optional operation as, e.g., not all list
types may support deletion. In such cases, implementers may throw an exception
when these methods are invoked.
AbsList, an abstract class providing a skeletal implementation of a List, is declared on

line 12. It “assists” classes with the interface implementation by declaring appropriate
basic method implementations for the more primitive operations. Since it is abstract,
it is not required to implement all interface methods. For the optional operation
removeList(), the provided implementation (line 18) simply throws an Unsupported-
OperationException. This way, concrete implementers extending AbsList that support
element removal can override it with a working implementation, while others need
not override it. The provided implementation of print() effectively sends the standard
string representation of the List (the result of Object.toString()) to the stream. Notice
that all method implementations besides print() invoke only methods contained within
the interface; print() includes a call to the println() method that resides outside of the
hierarchy.
ArrayBasedList (lines 21–28) is a sequential, variable length List implementation.

Main is a driver whose main method (line 30–33) instantiates a concrete List, as well
as a subclass of the AbsList skeletal implementations classes via an anonymous inner
class (AIC, line 33).
Listing 2a illustrates the skeletal implementation pattern. As this example depicts,

there are several drawbacks, which include inheritance restrictions, e.g., ArrayBasedList
must extend the skeletal implementation class and cannot easily take advantage of
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other skeletal implementations if it were to extend multiple interfaces [20].2 Further-
more, a whole program analysis may be required to discover skeletal implementation
classes as there is no syntactic path between them and the interface, adversely affect-
ing modularity [24]. Although modern IDEs may help alleviate this problem, reliance
on IDEs can be time consuming and costly as they can be resource-heavy [4]. Also, the
pattern may result in bloated libraries due to the additional classes needed, possibly
making maintenance challenging, especially since method declarations (in the case of
classes, method headers) must be repeated in the skeletal implementation class.

2.2 Default Methods in Java 8

Default methods enable skeletal implementations in interfaces, thereby foregoing the
need to place such methods in separate classes. Moreover, interface implementers
need not search for separate skeletal implementations classes. Lastly, implementers
are free to extend classes other than the skeletal implementation class, as well as
inherit behaviors from multiple interfaces, which can reduce code duplication and
forwarding methods [17].
Listing 2b shows a refactored version of the code in 2a. All skeletal implementations

in AbsList have been migrated to List as default methods. To later facilitate discussion
in Section 4, we denote methods that are being migrated to interfaces as source
methods, the class declaring the source method as the declaring class, the interface in
which the source methods are migrated to as their corresponding destination interface,
and the (non-default) interface methods they replace (i.e., those that become default
methods) as target methods (cf. Table 2). Note it is possible for a class to contain
source methods with different destination interfaces and for target methods to have
multiple source methods [23].
ArrayBasedList (Listing 2b) now implements List rather than extending AbsList

(line 21); it can now extend other classes. The call at line 32 now dispatches to
the interface implementation, which is equivalent to the one formerly belonging to
the (now removed) abstract class. Since AbsList no longer exists as a result of the
refactoring, line 33 is updated to be an AIC directly implementing the interface.
Now, developers considering implementing List can clearly recognize the default

behavior for methods without consulting a separate class or documentation. For
instance, it is clear that List.removeLast() is optional and what should happen when
it is not implemented. Classes can simply inherit default implementations without
needing to find and subclass a separate skeletal implementation class or, perhaps
worse, duplicate existing code.

2 Implementers already extending a class can use the skeletal implementation via delegation
to an internal class [3] at the expense of auxiliary forwarding code.
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Table 1 Pull requests.

subject pull ID KLOC* watches† stars† forks† contribs† +LOC -LOC δ files concrete?

m
er
ge
d aalmiray/jsilhouette 1 2 2 4 1 2 147 294 4 false

aol/cyclops-react 258 99 68 554 54 21 8 15 2 false
eclipse/eclipse-collections 128 1,266 40 258 63 18 172 307 21 false
nhl/bootique 79 5 103 744 183 5 22 31 4 true

re
je
ct
ed

iluwatar/java-design-patterns 472 20 1,783 17,234 5,808 71 24 38 6 false
jOOQ/jOOQ 5469 136 127 1,614 411 40 93 187 22 false
google/guava 2519 244 1,568 14,721 3,502 98 241 427 16 false
google/binnavi 99 309 215 2,048 373 16 244 469 16 false
eclipse/jetty.project 773 329 196 1,225 811 61 140 263 29 false
spring-projects/spring-framework 1113 506 2,299 12,463 9,575 200 770 1,674 135 false
elastic/elasticsearch 19168 1,266 1,928 21,063 7,275 784 297 544 51 false
jenkinsci/blueocean-plugin 296 7 114 1,688 173 28 8 19 5 true
junit-team/junit5 5365 25 146 865 215 41 4 18 1 true
ReactiveX/RxJava 4143 154 1,677 21,792 3,819 142 29 131 23 true

pe
nd

in
g

perfectsense/dari 218 66 111 48 31 28 39 58 7 false
eclipse/jgit 34 172 57 429 247 121 35 127 10 false
rinfield/java8-commons 81 2 1 0 2 1 26 48 3 true
criscris/koral 1 7 1 1 1 1 169 197 6 true
advantageous/qbit 767 52 82 534 115 12 80 202 29 true

Totals: 4,665 10,518 97,285 32,659 1,690 2,548 5,049 390
* At time of analysis.
† As of February 27, 2017.
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3 Methodology

The refactoring described in Section 2 is used to present developers with modifications
(pull requests) of their projects that utilize default methods. It conservatively and con-
fidently discovers opportunities and necessary semantics-preserving transformations
for migrating methods possibly participating in the skeletal implementation pattern
to interfaces as default methods. It does so unambiguously, i.e., the refactoring tool
only takes action when there is only one possible choice to be made, requiring no
input from the developer. Because of this, the presented study is that of the construct
rather than the tool’s performance. We then study the adoption of default methods
into developers’ projects.

3.1 Research Questions

We seek answers to the following research questions:

R1. In which situations do developers adopt default methods in their projects? What are
the reasons?

R2. Despite their benefits, are there situations where developers do not favor default
methods?

R3. What are the trade-offs of using default methods over the skeletal implementation
pattern?

R4. Which external factors, if any, influence developer’s decisions in adopting default
methods?

R5. Are there best practices and/or patterns that can be extracted from these situations?

3.2 Refactoring Tool Implementation

The automated refactoring tool Migrate Skeletal Implementation to Inter-
face [23]3 is implemented as an open source plug-in for the Eclipse IDE⁴ and is
built upon an existing refactoring framework [2]. Eclipse ASTs with source symbol
bindings are used as an intermediate representation.

3.3 Subjects

19 open-source Java applications and libraries were selected for the study (Table 1).
We purposely selected projects that had the majority of their code base in Java and
were not Android projects since Java 8 was to supported in Android at the time of
the study. The projects were also selected so that they range in size, domain, and
popularity. Both projects that had moved to Java 8 and those that had not were used
in the study. For projects that had not yet moved to Java 8, our pull request typically

3 Available at http://git.io/v2nX0, last accessed March 23, 2018.
4 http://eclipse.org, last accessed March 23, 2018.
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contained modifications to the build script to increment the Java version number to
use.
Subjects comprised projects (column subject) from organizations such as Eclipse,

AOL, and NHL (National Hockey League), and include the Eclipse (formally Goldman
Sachs) Collections framework. Column pull ID is the pull request ID for the associated
project.⁵
Column KLOC is the number of non-blank, non-comment thousands of lines of Java

source code⁶ at the time the analysis was performed. Columns watches, stars, forks,
and contribs denote the number of GitHub users monitoring the project, number of
users that marked the project as a “favorite,” the number of users that copied the
project into their own personal space for modification, and the number of individual
project contributors, respectively. Such attributes give insight into the popularity and
usage of the subjects. More details regarding the subject projects may be obtained
from the respective GitHub pages.⁷ The remaining columns are discussed throughout
the sections that follow.

3.4 Pull Requests Issuance

Refactoring Application To study developer reactions to the introduction of default
methods, pull requests were submitted to each of the projects listed in Table 1. To
minimize experimental variability, we ensured that projects compiled correctly and
had identical test results and compiler warnings before and after the refactoring.⁸ The
Migrate Skeletal Implementation to Interface refactoring tool automati-
cally analyzes and transforms, where applicable (i.e., where refactoring preconditions
passed), each project to utilize default methods in lieu of the skeletal implementation
pattern. It mines for occurrences of the pattern and then determines instances of
which that (i) are viable candidates for the refactoring (as dictated by language
constraints), (ii) would result in a semantics-preserving transformation, and (iii) have
one and only one possible destination.

Manual Intervention In some cases, minor manual cosmetic intervention was required
for the delta to more closely resemble changes made by a human. Such changes in-
cluded the merging of documentation (Javadoc) between method definitions in classes
and those in interfaces. These changes did not have a direct effect on the acceptance
of default methods but do make the submitted pull requests more amenable to accep-
tance. However, there were other manual changes that were necessary, specifically,
to fix build (e.g., Maven [16], Gradle [22]) module dependencies for source meth-
ods that crossed module boundaries, which was out of the scope of the automated

5 Pull request URLs consist of http://github.com/, the subject column value, /pull/, and the
pull request ID.

6 Generated using ‘SLOCCount’ by David A. Wheeler.
7 Project URLs are http://github.com/ followed by the subject column value.
8 Running tests locally prior to issuing a pull request was sometimes complicated by differences

in test machine environments, resulting in pull request reissuance.
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refactoring. This is discussed further in Section 4.2.4. Whether refactoring changes
are completed or mostly automated w.r.t. artifacts other than source code should not
influence developers’ final decisions.

Convincing Developers of Semantics-Preservation Most subjects used continuous inte-
gration (CI), and an effort was made to apply the refactoring to the head of a previous
commit that had passing tests. To gain developers’ confidence that the proposed
refactorings were indeed semantics-preserving, since CI would run the projects’ test
suite on our commits, we ensured that the tests either passed or had the same results
as the previous commit. Importantly, our commits did not contain any significant
changes to test code.
For projects that did not include CI, the test suite was run locally, and the test

results were conveyed to the developers via pull request messages. For projects that
did not include a (working) test suite, developers analyzed change sets to ensure
semantics-preservation.

4 Results

4.1 Pull Requests and Change Sets

In Table 1, columns +LOC and -LOC depict the number of added and removed lines of
code, respectively, in the pull request, while column δ files is the number of changed
files. These statistics are from the git commits comprising the pull requests. Changes
ranged from large, with the largest submitted to spring-projects/spring-framework,
totaling 2,444 changed lines of code and 135 files, to small, with one of the smallest
stemming from junit-team/junit5, totaling 22 changed lines and 1 file.
These columns give insight into the scope of the changed proposed to each subject

project; naturally, one would expect that large, more pervasive change proposals
would be treated more skeptically. In fact, among pull requests with changes to
≥ 10 files, only one project, namely, eclipse/eclipse-collections, merged (accepted)
the request. On the other hand, projects with requests consisting of < 10 changed
files were equally likely to be merged. This result is statistically significant in that
the associated p-value on the number of changed files against merged and rejected
requests from a Mann–Whitney U test, calculated using R [32], is 0.05156⁹ (a value
< 0.1 is considered statistically significant). The script used to calculate p-values is
available on our website.1⁰
During the study, it was found that developers did not always use the classic version

of the skeletal implementation pattern. Particularly, would-be skeletal implementation
classes were not always abstract, though, they seemed to follow much of the essence
of the pattern. This was particularly the case with smaller projects and those not

9 A one-tailed test is used since the hypothesis is directional.
10 http://cuny.is/interefact, last accessed March 23, 2018.
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necessarily providing APIs for use by other applications. Other times, we did not
wish to prevent a project from participating due to its small number of classes. In
other words, although a project may not follow the pattern exactly, there may still be
methods that pass refactoring preconditions for migration. To accommodate these
projects, the refactoring tool was set to allow source methods declared in concrete
classes. Typically, abstract classes serve as declaring classes in the classical version of
the pattern.
Column concrete is true iff there exists at least one source method declared in

a concrete class. It was slightly more likely for a pull request containing concrete
methods to be rejected; only 25% of such non-pending requests were merged as
opposed to 30% that only contained source methods declared in abstract classes,
having a p-value of 0.4641. Indeed, only one project, nhl/bootique, merged a request
that contained such methods.
Table 1 is divided into three distinct row-wise sections,merged, rejected, and pending.

A merged pull request is one where the refactoring results have been integrated into
the project, a rejected request is one where developers refused to incorporate the
refactoring results, and pending requests are ones where developers’ decisions have
not been finalized.
Of the issued 19 pull requests, 4 were successfully merged, 10 were closed without

merging (rejected), and 5 are still pending (open). Projects with merged requests
averaged ∼343 KLOC, slightly higher than the average of those projects that did not
(∼299 KLOC), with a p-value of 0.1608. However, although several of the projects with
merged requests were popular, other project attributes, e.g., stars, for projects with
rejected requests were, on average, much higher than those of the merged requests,
having an average p-value of 0.001998. This may indicate that more widely used
projects were more risk-adverse than less used ones.
Likewise, the average pull request change set size, both in terms of LOC and number

of changed files, was significantly greater for rejected requests than for those that
were merged, indicating that pull requests consisting of larger change sets were
more likely to be rejected. However, the p-value for changed files is 0.05156, but the
p-value for total changed LOC is 0.2697. Thus, the former is statistically significant,
while the latter is not. Nevertheless, two merged pull requests, namely, those for the
aalmiray/jsilhouette and eclipse/eclipse-collections, had comparably sized change
sets to some of the larger sets of rejected requests. Moreover, the total number of
“changed” lines (added LOC plus the removed LOC) for the merged request sent
to aalmiray/jsilhouette was 441, which is large compared to its total code base,
specifically, 19.33%. This merged pull request consisted of the largest percentage of
change proposed to any one project, with the next largest at 5.14% for criscris/koral.
Rejected pull requests were not unequivocally due to the the contents of the refac-

toring results. Some projects, e.g., google/guava, had external factors like being in
the middle of release cycles and desired to consider the pull request at a later time. In
fact, at the time of our request issuance, google/guava was in the process of creating
a Java 8 branch of their project, and the introduction of our automated refactoring
may have complicated their migration that was already in progress.
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Table 2 Refactoring terminology.

Term Description

Source Method The class instance method being migrated to an inter-
face as a default method.

Declaring Class The class declaring the source method.
Target Method The interface (abstract) method that will be converted

to a default method.
Destination Interface The interface declaring the target method.

4.2 Observations

We now detail several categories and particular instances of when pull requests were
either accepted or rejected.

4.2.1 Backwards Compatibility with Earlier Java Versions
Several projects, including ReactiveX/RxJava and google/binnavi, rejected our pull
requests, citing reasons such as that they had not yet moved (or were in the process of
moving) to Java 8 and/or needed to support older Java clients at the time. Particularly,
many such projects were required to support Android clients. At the time of this study,
Android had not officially fully supported all Java 8 features (but does support at least
default methods currently [21]).

4.2.2 Client Impact and Loss of Implementation Control
Requiring Explicit Client Implementations As discussed in Section 2.2, interface im-
plementers will inherit the default implementation of an interface method if they
do not provide (or inherit) their own. In fact, this is one of the main benefits of
the Skeletal Implementation Pattern, i.e., interface implements will receive interface
method implementations that are common to all implementers. In the case of optional
methods, interface implementers need only provide implementations for the methods
they support; the default implementation could just throw a UnsupportedOperationEx-
ception, as shown in Listing 1, or simply be blank. We found several instances of the
latter in pull requests issued to projects such as ReactiveX/RxJava. Part of the reason
these pull requests were rejected was because developers preferred to force clients
to implement particular interface methods. Converting these methods to default
methods would not have this effect, i.e., interface developers would lose control of
interface clients providing their own implementations for particular methods. This
was particularly noticed in the case of what we thought were optional methods as the
skeletal implementations consisted of an empty body. What was surprising is that the
refactoring introduced only minimal code, and, as such, the (undesirable) skeletal im-
plementations emanate from an existing corresponding skeletal implementation class.
Moreover, the refactoring tool is very conservative and only performs the migration if
one and only one valid source/target method combination exists (i.e., there are no
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ambiguous target methods for a single source method) [23]. As such, a more suitable
skeletal implementation should not have existed in the system at the time.

In�uencing Client Implementations In the case of elastic/elasticsearch, the developers
agreed that no suitable “default” implementation existed for their highly utilized
Client interface, that all clients of their framework implement. This is despite the
project providing an abstract skeletal implementation class AbstractClient. From the
developer’s comments, we speculate that separating default implementations from
interfaces was desirable so that only seemingly savvy implementers would find them.
Such implementers may be more aware of the ramifications of utilizing a common
behavior for all clients.
Tedor [37] states in response to the migration of skeletal implementations to default:

I’m not sure if we should do this, this assumes behavior on all Client imple-
mentations (which exist outside of core elasticsearch). AbstractClient, though, is
exactly for those that do want the behavior here.
I think of default as “it’s okay if implementers do not implement this method

because this default implementation should work for all of them if they maintain
the invariants assumed by this interface” but I don’t think that we can safely say
that that is the case here.

We observe that placing default implementations in core packages, where many inter-
face declarations reside, would advocate or even encourage certain implementations.
On the contrary, having such implementations outside the interface would deter from
this notion.

Interface Evolution There was also a concern in elastic/elasticsearch that the “default
methods may cause . . . implementations to miss new methods” [5]. In effect, one
reason this project was leery was for the fear that upon interface evolution, existing
clients would not break. This breakage is desirable because when linking against a new
framework/library version, clients would be required to implement new methods to
compile correctly. Default methods may “hide” the fact the new interface methods exist
that need specific (new) implementations from existing implementers. Projects, in this
way, use the compiler to “announce” to implementers that interface functionality has
been extended. Providing a default implementation may result in these new methods
going unnoticed.

Risk vs. Reward Although intrigued by the refactoring, project eclipse/jetty.project
ultimately, after much discussion, rejected our pull request. The developer thought
that the risk of introducing default methods in replacement of abstract skeletal im-
plementation classes outweighed the benefits because their framework was quite
popular and thus extended by many clients. As such, the developers were extremely
cautious of introducing widespread syntax (but not semantic) changes throughout
their project, especially considering that they were not bug fixes. Indeed, the changes
proposed to eclipse/jetty.project comprised one of our largest with nearly 30 modified
files. To ease their anxiety, we offered to revert some of the more invasive changes,
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which were issued in separate commits, such as the declaring class removal. This
effort proved to be futile, however.

4.2.3 Choosing a Suitable Default Implementation
Narrow Implementations We found several instances where the migrated (source)
methods provided an implementation that was too narrow to be applicable as a
default implementation for the particular destination interface. This was in spite of
the conservative nature of the refactoring, meaning that the narrow source method
implementations were the only ones available that could be migrated to a default
method without (i) breaking the rules of such methods (e.g., no field dependence)
and (ii) preserving original program semantics. For example, project junit-team/junit5
has a central interface org.junit.platform.engine.TestEngine with a method getId(). Only
one implementation, namely, org.junit.jupiter.engine.JupiterTestEngine.getId(), of four
was a viable source method as it utilized a constant as a return value while the others
relied on instance fields, which cannot be declared in interfaces. However, the value
returned in this source method was that of "junit-jupiter", which is too narrow for
an arbitrary TestEngine to inherit as a default implementation. To put another way,
"junit-jupiter" is the name of a specific TestEngine, one that would not apply to another
implementation and thus would not be considered generally applicable to all potential
implementers.

Cardinality Between Skeletal Implementations and Interfaces Enhanced interfaces,
for a particular method, allow one and only one skeletal implementation to serve as
the default implementation for a method. But, the skeletal implementation pattern
allows for multiple skeletal implementation classes, each possibly providing their own
implementation of each method. Implementers can then choose between these by
extending the appropriate skeletal implementation class. Furthermore, since default
methods become the de facto skeletal implementation for an interface method as they
are declared directly in the interface, great care should be taken in its selection. A
suitable skeletal implementation must be selected to serve as the default for a certain
method. The implementation should be beneficial and applicable to all potential
interface implementers.
We found in at least one case, namely, with the pull request issued to ReactiveX/Rx-

Java, that, despite a unique, viable skeletal implementation existing for each refactored
target method, several of the migrated methods would not have been the default
implementation of their choosing. This proved to be one of the reasons this pull
request was rejected.

Migrating Skeletal Implementations from Test to Core Packages In some cases, as in
the migration that occurred with elastic/elasticsearch, interfaces in core packages,
i.e., those central to the system and normally having many inward dependencies, had
unique skeletal implementation classes emanating from test packages. More than
likely, this pattern is used to facilitate easier development of mock objects for testing
purposes. However, as tests normally have to deal with artificial data [34, Ch. 8],
skeletal implementations used in testing situations are most likely not suitable for
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default methods for interfaces in core packages. For example, in nhl/bootique, one
particular source method of a successful migration was declared in a test package,
while the destination interface was not test-related. The implementation was very
test-specific and, although it stemmed from a unique skeletal implementation of
the interface, it would not have been a suitable default implementation for non-
test related implementers. Moreover, as was the case with elastic/elasticsearch, it is
possible that default implementations reference elements, e.g., classes, contained in
the test package. In these cases, we would have core packages depending on test-based
packages, which is architecturally undesirable (e.g., one would not want to bundle a
test package in a deliverable product but would want to bundle a core package).

4.2.4 Default Methods and Dependencies
Primitive Operations Project aalmiray/jsilhouette accepted our pull request with no
modifications or critiques. Although the project is relatively small and not widely
used (at least in terms of its activity on GitHub), the change set size, consisting of
147 added lines, 294 removed lines, and 4 changed files, is non-trivial with the total
number of changed lines accounting for nearly 20% of its code base. The average
added lines, removed lines, and changed files across all projects was 134, 266, and 21,
respectively.
Upon further investigation, we noticed that no modification to import statements

were included in the change proposal, signifying a self-contained migration. Further-
more, the migrated default method bodies only contain method calls to methods
of the destination interface. We speculate that such a use case of default methods
is ideal, and further expound in Section 5. In fact, Bloch [3, Item 18] states that
candidate methods, so-called primitive operations, for skeletal implementations are
those implementations that are only in terms of the interface. We conjecture that
this notion also extends to default methods. List.atCapacity() (lines 5–6, Listing 2b) is
an example of such a method, i.e., a default method written only in terms of other
(default or non-default) interface methods.

In contrast, the pull request issued to project spring-projects/spring-framework
contained a non-trivial amount of import statement changes, which was necessary as
the migrated source methods had dependencies outside of the destination interface
package. This pull request was rejected, with Clozel [6] citing the following as one of
the reasons:

It is really important for us to keep a clean [code base,] and we have a strict
“[zero] package tangle” policy. Moving code (and imports) around is rather
risky. I haven’t run sonar[qube, a code quality reporting tool [35]] on your [pull
request] but I think this might be . . . interesting . . . .

Zero package tangle corresponds to the situation where classes do not form strongly
connected components in terms of their package dependencies [13, 15]. Thus, at least
this particular project was adverse to the introduction of default methods that had
dependencies on external packages, e.g., due to non-interface method calls.
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Constant Fields In addition to method declarations and now, with the emergence of
Java 8, default method bodies, interfaces are also allowed to declare constant fields.
Since interfaces are not allowed to have (variable) state, constants are the only form
of fields that an interface can declare. In turn, default methods cannot work with
interface state but they can work with constants declared in the interface.
Project nhl/bootique, also consisting of an accepted pull request, had two successful

migrations where two source methods were not only in terms of solely destination
interface methods (cf. Section 4.2.4), but also accessed solely constant fields. In this
particular case, the source methods were migrated to the destination interface Environ-
ment from the declaring class DefaultEnvironment. The (now default) implementations
used two constants whose values consisted of "bq" and "BQ_", respectively, to recall
environmental variables that began with the given prefix. DefaultEnvironment served
the purpose of providing prefixes associated with the entire project. In part, because
these constant fields were only accessed by the source methods, the constant declara-
tions could also be safely migrated to the destination interface. Similar to the scenario
depicted in Section 4.2.4, this resulted in a self-contained migration and, furthermore,
made full use of the (language) capabilities available to interfaces.

Method Parameters We observed that accepted pull requests did not only contain
calls to “local” interface methods or references to “local” constant fields but also
included calls and references to entities related to method parameters. One such case
was observed in the pull request issued to aol/cyclops-react.

Crossing Build Script Module Boundaries Several projects, including eclipse/eclipse-
collections, advantageous/qbit, and junit-team/junit5, had build script produced
modules separating their APIs (interfaces) from provided implementations, which,
perhaps surprisingly, included skeletal implementation (declaring) classes. Thus,
migrating source methods from implementation modules to target methods in API
modules may introduce dependencies between the modules. This can cause circular
dependencies, which are disallowed by many popular build script and/or module sys-
tems, e.g., OSGi [1]. For migrations that did not induce circular module dependencies,
eclipse/eclipse-collections only accepted those with default methods that were either
in terms of other interface methods or did not require external imports.

4.2.5 Implicit Reliance on Skeletal Implementation Classes
In spring-projects/spring-framework, there was at least one instance where a (now
empty) declaring class was removed because all of its contents were migrated. Ad-
ditionally, there were apparently no dependencies on the class, and it was deemed
safe to remove. However, the class removal caused a test failure for a test dealing
with the Aspect-Oriented Programming (AOP) [26] features of the framework. This
failure was due to an indirect dependency caused by pointcut, i.e., a specification over
the program’s execution of where code (advice) is to be applied in the underlying
program, contained within an aspect. Specifically, the test asserted behavior that
would only be present if advice applied to executions of the source method. However,
AspectJ [25], a Java AOP implementation, does not consider an interface method
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as executable if there are no classes explicitly implementing the interface. As such,
although the source method in question was migrated, for the advice to apply, the
empty declaring class had to remain.

4.2.6 Skeletal Implementations and Deprecated Methods
In jOOQ/jOOQ, both several source methods and associated target methods were
marked as@Deprecated. The target method javadoc mentioned that different methods
of the same (destination) interface should be used instead. The source methods simply
delegated (forwarded) calls to the new, replacement methods. With these methods
now migrated to the interface, it was clear from the default implementation what
the replacement method was, rather than solely relying on documentation for this
information. Unfortunately, this pull request was rejected due to the restriction of
supporting Java 6 clients and that the developers did not see an overwhelming
benefit to the change versus the risk (the change set was rather large with 22 files
changed). However, only some of these changes involved deprecated methods, and,
as elaborated upon in Section 5.5, deprecated methods are an intriguing use case for
default methods, especially considering that documentation may be either absent,
incomplete, or outdated.

5 Discussion

In this section, we summarize and relate the results in Section 4 with the research
questions posed in Section 3.1.

5.1 Default Method Adoption R1

Note that, in answering R1, our study focuses solely on how default methods have been
adopted in existing code in an effort to replace the classic Skeletal Implementation
Pattern. There may be other situations in existing code where default methods can
be used but not as a replacement, e.g., introducing a new interface method without
breaking existing clients.

5.1.1 Interface Locality
The answer of R1 includes situations where the migrated default methods were self-
contained, i.e., that the default implementation was mostly if not fully in terms of
both methods and constant fields declared either within the same interface or one
up its interface hierarchy. In other words, these default methods were composed
of either calls to more primitive operations or constant fields in the interface. This
typically lent itself to default implementations that were simple and easy to reason
about because referenced elements are more or less local to the interface, as well
as introduced no new external dependencies, thus preserving any architectural and
packaging constraints. Circular dependencies between build script modules are also
averted.
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5.1.2 Parameter Locality
Default method implementations that referenced entities related to and calledmethods
on parameters also did not introduce any new dependencies or import statements.
Dependencies between the interface and the method parameter types must have
existed prior to the default method migration. As such, although parameter types may
not have been local to the interface as described above, they were in some respect
“local” to the default implementations. Additionally, this is a use case not thoroughly
discussed in [3, Item 18] as guidelines for writing skeletal implementations.

5.1.3 Optional Interface Methods
eclipse/eclipse-collections accepted several migrations where the default methods
simply threw UnsupportedOperationException. Default methods seemed useful for
these optional methods as implementers can clearly see via the implementation that
they are not required to implement them, as well as what should happen if they
are not supported. Typically, implementers rely on documentation to make these
determinations.

5.1.4 Instance Method Interfaces to Static Methods
Also in eclipse/eclipse-collections, we noticed several accepted default methods that
were used to provide instance method interfaces to existing static methods. In other
words, the default methods allowed clients to call methods on the implementing
instance as instance methods that would normally be called as static methods. For
example, the default method ListIterable.binarySearch() simply forwarded the call to
the static method Collections.binarySearch(), allowing clients to effectively call the
static method as an instance method, which may be more consistent with surrounding
code. This typically did not involve introducing new dependencies and required only
one call.

5.2 Default Method Rejection R2

5.2.1 JDK Versions
In answering R2, we encountered several underlying situational themes as to why
developers did not wish to incorporate default methods into their projects. The most
prevalent, perhaps not surprisingly, was due to backward compatibility restrictions on
supporting older Java Development Toolkit (JDK) versions. Java 8 is relatively new,
and the popular Android SDK still, at the time of this study, depended on JDK 7. As
such, projects that were frameworks were likely to be hesitant in breaking existing
Android clients as a result of moving to Java 8. We expect demand for Java 8 features to
increase in the near future, especially since they are now (at least partially) supported
by Android [21].
The focus of our study is on new language feature adoption. Being restrained by

backwards compatibility with earlier platforms is a reason not to adopt new language
features. In the case of default methods and Java 8 in particular, the legacy restrictions
posed by the widely popular Android SDK is of interest. In deciding to adopt a new
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language construct, developers must not only consider the language construct itself
but also substantial reliance on platform backwards compatibility.

5.2.2 Architectural Constraints
Also in addressing R2, developers were not always keen on introducing new external
dependencies into interfaces as some default methods required. Doing so sometimes
violated both implicit and explicit architectural constraints. For example, as was the
case with spring-projects/spring-framework and others, introducing dependencies
into modules may deteriorate the architecture and introduce cyclic dependencies.
Perhaps more significant is the situation where developers overriding the default
implementation still must provide the code (modules) to satisfy the, e.g., import
statements. In this situation, because of default methods, developers may be forced
to package modules in their distributions despite not using them in the code.
Another problematic situation is when projects separated their APIs (interfaces) and

an implementation of that API into separate modules. In such cases, modules provided
by the (framework) developers are particular (perhaps reference) implementations of
the provided API. If the interfaces are accompanied by code in the form of default
methods, (framework) clients providing their own API implementations must also
package the framework provided (reference) implementation in their distributions.
In this situation, despite possibly only one API implementation being utilized, two
are delivered to customers, perhaps resulting in bloated deliverables, an added main-
tenance burden, and decreased program compression. As such, coupling complex
default implementations with interfaces may not be practical in these circumstances.

5.2.3 Client Enforcement
Several projects, especially those that are frameworks, were particularly anxious
regarding “inlining” skeletal implementations directly into interfaces. One of the
benefits of default methods is not having to discover and maintain a separate class
containing a skeletal interface implementation [24], however, several projects seemed
to use this to their advantage. That is, project developers looked to bemore comfortable
forcing clients to provide an interface method implementation, despite providing
a skeletal implementation in a separate class. We speculate that having a default
implementation front and center by defining it in the interface directly may bring to
light any problems it may have and/or that it might not be general enough for all
implementers. There was also concern for new (default) interface methods not being
overridden by clients that should.

5.2.4 The “Correct” Default Implementation
In several cases, we found some skeletal implementations to be too narrow to be
the “de facto” implementation of an interface method. The skeletal implementation
pattern allows for multiple skeletal implementations per interface method, whereas
default methods only allow for one such implementation. Moreover, skeletal implemen-
tations were popular in automated testing code and were sometimes the only skeletal
implementations for a given interface method. However, these implementations are
typically not appropriate to be used outside of testing.
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5.3 Default Method Trade-o�s R3

As outlined in Section 4.2.2, there were several cases where developers were anxious
regarding the loss of interface implementer control. Compared to the Skeletal Im-
plementation Pattern, default methods are available to all interface implementers,
regardless whether or not they extend a separate skeletal implementation class. Plac-
ing skeletal implementations directly inside interfaces as default methods explicitly
presents implementers with a skeletal implementation that they may or may not
choose to override with their own. If these implementations are not applicable to
implementers, default methods may actually have a negative effect.
One project initially brought up a recently reported performance degradation with

default methods as a reason to reject the pull request. However, this was not a deciding
factor in the decision as it was seen as a temporary problem with the JVM that affected
only a small number of cases.

5.4 External Factors R4

Several external factors seemed to influence developer adoption decisions in some
cases. Project eclipse/eclipse-collections was significantly the largest project with
the largest proposed changeset to accept our pull request. Prior to this study, it had
already made relatively extensive use of Java 8 features. Thus, it seemed more likely
to adopt default methods, perhaps due to the developers’ prior familiarity with Java
8.
As discussed in Section 4.1, smaller changesets were more likely to be accepted than

larger ones, although developers had the ability to dissect the refactoring. Nevertheless,
the more migrations were from diverse files across module boundaries (evident from
column δ files in Table 1), the less likely a successful adoption would occur. Lastly,
migrations stemming only from abstract skeletal implementation classes were more
likely to be adopted, indicating that these source methods were general enough to be
applicable to a wider variety of interface implementers.

5.5 Best Practices in Using Default Methods R5

In this section, we set forth several best practices and patterns of using default methods
based on the experience obtained during this study.

Default methods should be simple. This reduces the likelihood of introducing
complex dependencies into interface modules, creating self-contained default im-
plementations, and having the default implementation serve as an enhancement to
the interface documentation (e.g., what optional methods do when called if they
are not implemented).
Take care in using default methods for new methods that interface implementers
should override. As discussed in Section 4.2.2, default methods may inadvertently
mask interface evolution if the developers’ intention is to break existing imple-
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menters by adding a new interface method so as to alert them to override (imple-
ment) new methods.
Write default methods in terms of (other) methods and constants of the same
or closely related interfaces and/or their parameters. Not only can this simplify
default method implementations but, as discussed in Sections 4.2.4 and 5.1.2, it can
make implementations more self-contained and reduce external dependencies.
Consider the implications of using default methods during architectural design.
As detailed in Section 5.2.2, (particularly framework) developers may need to
rethink separating interface declarations and interface implementations into sepa-
rate modules in light of default methods because they may contain references to
implementation modules, which are typically not available to interface modules.
Forward calls to deprecated interface methods to their replacement API, if appli-
cable, using default methods. As discussed in Section 4.2.6, doing so can enhance
method documentation, as well as eliminate any confusion involving deprecation
between the interface method and its corresponding skeletal implementation in a
separate class.
Choose default methods that are general enough for all potential implementers. As
stated in Section 5.3, in contrast to the skeletal implementation pattern, all interface
implementers can inherit default implementations regardless if they extend any
(skeletal implementation) class. In this case, it is essential to choose a general default
implementation. Sometimes the only viable option due to language restrictions
(cf. Section 4.2.3) is too specific. In these cases, it may be best not to use default
methods.

6 Threats to Validity

In this section, we consider possible threats that may undermine our study and how
they have been mitigated.

Subject Selection Bias To minimize bias, none of the authors were involved in the
development of any of the subjects prior to conducting the study. Moreover, a wide
variety of subjects were selected, varying in size and domain.

Automated Refactoring Bias The automated refactoring tool used could be overly
conservative in certain situations, and, thus, may not match a human-initiated migra-
tion. Furthermore, a human could “massage” the code so that it passes refactoring
preconditions, which would be considered too invasive for the automated tool to
mimic. Therefore, the refactoring produced by the tool may vary from what an expert
developer may produce, which could influence developers’ decisions. However, since
the refactoring tool is highly conservative, the changes made are minimal; developers
were free to alter the code further. In other words, the conservative nature of the
refactoring used in the study can be seen as a bridge to initiate a more large-scale or
customized refactoring. As such, the refactoring issued by an automated tool could be
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used as a guide of possible locations where default methods may be applicable. More-
over, using the results of the tool as a guide, developers had the option of choosing
a different implementation by altering the source code directly as necessary. Lastly,
developers were allowed to critique the automatic refactoring, as well as request
changes, which, while mostly minor, were accommodated.

Simulating Human Development When developers introduce a new language feature
manually, it may be done in step-wise fashion rather than in bulk. Henceforth, perhaps
large changes deterred developers from accepting our pull requests due to risk,
especially when the project included a popular external API. Other projects, e.g.,
google/binnavi, cited concerns on the change set size and that they preferred to apply
the refactoring in a more incremental fashion as opposed to merging (accepting) a
large pull request. However, many of the developers, despite being introduced to large
change sets, carefully reviewed pull requests in a step-wise fashion, inspecting and
often commenting on smaller changes. This behavior, in a sense, is approximate to a
step-wise process. To further mitigate this threat, our study was comprised of a wide
range of change set sizes, both in terms of number of altered lines of code and files.
We also typically demarcated commits so that they separately included the default
method migration, i.e., where the migration occurs, removal of declaring classes, and
javadoc modifications. This afforded developers a path of step-wise changes to follow
so that they may consider the change impact more in depth.

Tool vs. Construct Assessment It could be argued that acceptance or rejection of pull
requests may not equate to acceptance or rejection of the default method construct.
However, since this work is focused on the introduction of default methods into existing
code, i.e., that the introduction of the construct results in semantically-equivalent
code, and that replacing the skeletal implementation pattern is the only sensible
motivation of using default methods without extending interfaces [17], acceptance
and/or rejection of pull requests due to the refactoring result contents must equate
to the acceptance and/or rejection of the construct itself. This is also due to the
conservative, unambiguous, and fully-automated refactoring tool used during the
study. The developer discussion presented in the prior section holds as evidence of
these facts.

Open Source Software Our study deals with the adoption of default methods in
primarily open source software. However, results of studying open source software
may not generalize to all software development scenarios. In particular, there may be
characteristics and peculiarities that are specific to open source development that may
not be found in, e.g., a commercial product. It could be argued that closed source or
commercial software developers would be more reluctant to take risks compared to
open source developers since their customers are paying for their product. However, a
counter argument could be made that, since open source software is publicly available,
it has a wider audience and thus any potential breakage would have a comparable, if
not greater, impact. In fact, many private companies use, invest in, and contribute to
open source software.
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7 Related Work

7.1 Investigating Language Features and Library Usage

Others have also inquired into how developers use new language features. For in-
stance, Parnin, Bird, andMurphy-Hill [31] study the usage of Java generics, particularly,
whether they meet their intended purpose of relieving explicit type casting, measuring
their effectiveness and adoption by automatically mining open source project histories.
Dyer, Rajan, Nguyen, and Nguyen [14] perform a similar but more general study.
Their work studies different language features, both in terms of usage and intended
benefits. Also, their analysis is postmortem while ours is proactive, enabling us to
study language features much sooner after their initial release. They also do not
provide usage best practices.
Uesbeck, Stefik, Hanenberg, Pedersen, and Daleiden [40] assess the human factor

impact of C++ lambda expressions on developers by comparing their usage to that
of iterators. They do so via a study of how long students spent writing programs with
lambda expressions. This approach is concerned with ascertaining the learning curve
associated with the new language feature during programming tasks. Hoppe and
Hanenberg [19] perform a similar study but for Java generics. Our approach, on the
other hand, enables the study of reactions of experienced developers in incorporating
a new language feature into their existing projects that may be used by many other
experienced developers and whether the feature improves their projects in some way.
Wu, Chen, Zhou, and Xu [41] examine how C++ concurrency constructs are used

in open source software by examining the code with no developer input. Gorschek,
Tempero, and Angelis [18] and Tempero, Counsell, and Noble [38] inspect the us-
age of other Object-Oriented language features, namely, information hiding and
encapsulation and inheritance, using surveys and metrics, respectively. Souza and
Figueiredo [36] scrutinize the use of optional types in dynamic languages. Lin,
Okur, and Dig [27] investigate how developers retrofit asynchrony into Android apps,
while Okur, Hartveld, Dig, and Deursen [29] scrutinize usage of programming con-
structs for asynchronous programming via a large scale study of C# programs. Okur
and Dig [28] analyze the usage of parallel libraries in a large scale study. Each of
these involves a level of postmortem analysis.

7.2 Mining Pull Requests

Rahman and Roy [33] also analyze GitHub pull requests but for the purpose of gaining
insights into why and how they are either accepted or rejected. Our work, on the
other hand, uses pull requests for developer feedback on a new language construct.
They also study developer conversations inside of pull request bodies (discussion
text) and project information, and go beyond our methodology to further examine
developer project maturity and specific developer information such as experience. It
is conceivable that our work could also benefit from project maturity and domain
dimensions to our analysis. However, since our technique relies on the output of an
automated refactoring tool, developer experience would most likely be less useful.
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7.3 Refactoring Automation

Khatchadourian and Masuhara [23] present a default method refactoring approach
and corresponding evaluation, the implementation of which is utilized in this work.
While Khatchadourian and Masuhara [23] bring forth the results of a brief preliminary
pull request study, it is solely focused on assessing the accuracy of the refactoring.
The current work presented in this paper, on the other hand, is not an assessment
of the refactoring tool but rather a presentation and study of a technique where an
automated refactoring is used to ascertain the usefulness of default methods. Here, we
include thorough details of developer reactions, which include situations where pull
requests were merged and where they were rejected, as well as outline the reasons
for each. We also set forth best practices in using default methods.

8 Conclusion & Future Work

We describe a novel proactive approach, using automated refactoring, to empirically
assess new programming language features early. The new construct is introduced
to developers as refactoring results in which they decide whether to incorporate,
regardless of any previous experience, and at the same time providing insight into
their decisions. This facilitates reasons why new features are not adopted as such
cases may not be explicitly documented, thus possibly alluding traditional postmortem
approaches. Moreover, the developers, typically project committers, being questioned
are experienced and thus more than likely to provide feedback that is superior in
quality over traditional student studies.
Our approach was applied to 19 open source projects to assess Java 8 default meth-

ods. Scenarios where and reasons why default method migrations from the skeletal
implementation pattern were either accepted or rejected by developers were put
forth, and best practices were extracted. This insight can not only benefit developers
but also language designers, especially those considering similar constructs for other
languages.
In the future, we plan to apply our proactive approach in studying other new

language features such as those available as part of Project Jigsaw [12], which will be
part of Java 9 [11]. Additionally, now that Android supports Java 8 features [21], we
plan to conduct a specialized study of new language features in the context of mobile
applications.
Rather than investigating adoption of new language features, in the future, we plan

to apply our approach to investigating those that are currently being proposed. The
goal would be to justify the introduction of a possible future language feature being
considered. Doing so would provide further insight into the usefulness of the proposed
feature prior to its wider deployment. With the proactive method presented here,
language designers may create an automated refactoring along with the language
feature implementation and apply both to existing projects. The results may then
be submitted as pull requests to project developers for proactive feedback on the
proposed feature.
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Another avenue of interesting future work is to examine the relationship between
refactored code and unit test case coverage. Test coverage may serve as an external
factor for developers in deciding if the proposed change is too risky and conversely
may be more likely to accept a pull request if the code changes are well-covered by
existing test cases.
Lastly, our study results may be used to enhance the Migrate Skeletal Im-

plementation to Interface refactoring tool. Specifically, the knowledge gained
may be formulated to prioritize and/or rank refactoring suggestions. Suggestions are
normally presented by file. An alternate approach inspired by the results of this study
would be to present the suggestions so that the ones more likely to be desired by the
developer would be presented first. To achieve this, a cross-examination can be made
between the change set proposal and general heuristics derived from accepted pull
requests, e.g., refactorings involving fewer introduced dependencies could be ranked
higher than ones with more.
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