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A Functional Programming Language with Versions

1 Introduction

It is common to use versioned packages in software development. A package is a unit of
software components developed and managed by the software developers themselves
or by external developers. A version is usually a chain of numbers that distinguishes
an implementation of an evolving package. A newer version usually improves the
older ones by adding features, improving performance, or fixing bugs. Developers can
notice the availability of newer implementations of externally developed packages by
checking their version numbers and decide whether they should replace the packages
currently in use with the new ones.
A new version of a package can either be compatible or incompatible (or with

“breaking changes”) from older versions. When it is compatible, we can replace an
older version with the new one without a problem. Otherwise, we would need to
modify our program in order to use the newer version [13, 28].

1.1 Existing Techniques to Use Multiple Versions of a Package

A new yet incompatible version of a package is an ambivalent thing: while it brings
benefits, it comes with a certain amount of cost of modifying the programs that are
using the package. The cost can be huge when a program happened to require a
new and an older version simultaneously [3]. Though many systems, programming
languages, and execution environments allow programs to use only one version for
each package simultaneously, there are many techniques to relax this restriction for
more flexibility. We can classify those techniques in terms of the unit in which such a
restriction is posed.

Device: For packages that are only allowed to exist in one version on a device (e.g.,
operating system standard libraries like the C standard library (libc)), OS-level
virtualization software enables one to use different versions in the virtualized
environment. For example, traditional UNIX-like operating systems only allow
one version of the OS standard library; OS-level virtualization software such as
Docker [20] and QEMU [4] can provide environments with different versions.
Process: For a package (or a library) linked to a program, a dynamic loading
mechanism can provide a different version for a different process of the program.
For example, with the shared library mechanism in UNIX-like operating systems,
a compiled program can run with a different version of a library by providing a
different load path. There are also more advanced mechanisms, e.g., OSGi [1], that
automatically load appropriate versions.
Package: For a package required by two modules of a program, some package
managers allow to load two different versions of the required package. Such features
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can be found in npm1 for JavaScript, cargo2 for Rust, and Maven3 with the shade
plugin⁴ for Java and are described in section 2.3.
By following this technology trend that supports multiple versions with a finer

computation unit, we investigate programming languages that support multiple
versions inside a module. In contrast to previous technical efforts that focused on
avoiding the simultaneous use of multiple versions, we focus on programming to
simultaneously use multiple versions of a package. In our proposed language, the
versions are held in units of expressions so that each expression can call a different
version of the implementation. We establish a foundation for more freely combining
and controlling different versions through a language-based approach.
As there are few attempts to develop such languages, it is not obvious what language

abstractions are suitable to represent multiple versions and what kind of safety we
can guarantee. As a first step, we propose a calculus called λVL, which models core
language features for such programming languages.

1.2 Versions within a Language Semantics

λVL supports multiple versions at the value level and has a type system that guarantees
a program to use values consistently with respect to versions. Our ideas are (1)
introducing versioned values: records of multiple values distinguished by their version,
and (2) statically checking whether versions of functions and arguments agree through
a type system.
(1) Versioned values represent multiple versions of a computation and bundle them as

a single value. Versioned values allow us to abstract multiple versions of values. For ex-
ample, the versioned value {v1 = λx .x , v2 = λx .x +1} represents a versioned function
whose initial implementation (v1) is an identity function and its next implementation
(v2) is a successor function.

Applying a versioned function to a versioned value results in a versioned value. This
versioned value consists of version-specific terms obtained by applying version-specific
functions to the corresponding values in the versioned value, in a version-wise manner.
For example, we obtain {v1 = 1, v2 = 3} if we apply {v1 = λx .x , v2 = λx .x + 1} to
{v1 = 1, v2 = 2}. If a function and its arguments have a different set of versions, the
application is calculated on the common part of each version set. For example, we
obtain {v1 = 1} if we apply {v1 = λx .x , v2 = λx .x + 1} to {v1 = 1}.
(2) To guarantee type safety, we develop a calculus called λVL based on the coeffect

calculus [7]. A coeffect calculus is a type system derived from linear type systems [17,
33] and a type system scheme for analyzing the usage of various computational
resources, not just the number of times a variable is used. Just as other coeffect calculi
track their computational resources, λVL attaches version numbers to types, such as
x : �{v1,v2}T , meaning x is a variable of type T and computable under versions v1 and

1 https://www.npmjs.com/ (February 1, 2021)
2 https://doc.rust-lang.org/cargo/ (February 1, 2021)
3 https://maven.apache.org/ (February 1, 2021)
4 https://maven.apache.org/plugins/maven-shade-plugin/ (February 1, 2021)
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Table 1 Structural change: availability of functions in GDK 3

version gdk_screen_get_n_monitors gdk_display_get_n_monitors
< 3.22 available not available
≥ 3.22 deprecated available

Table 2 Behavioral change: reliability of an alarm time in Android API

version set setExact
< 19 exact not available
≥ 19 inexact exact

v2. The λVL type system collects the annotated type information for the program and
calculates the set of versions needed to run the program. The type system ensures that
there is at least one consistent version where the given program can be evaluated.
In summary, we make the following contributions:
We introduce versions into a programming language and demonstrate that the
concept alleviates the dependency-hell problem (section 2, section 3).
We develop a type system of λVL (section 4).
We propose the notion of type safety of programs with multiple versions and prove
it (section 5).

In the non-technical sections of this paper, we discuss related research in section 6
and further work in section 7.

2 Incompatibility Problems

We focus on incompatibilities and the existing methods to manage them. For projects
that depend on frequently updated open-source packages, each package is continually
evolving, hence compatibility issues are inevitable [2, 3, 5, 13, 14, 28].

2.1 Types of Incompatibility

Code changes can cause the following two incompatibilities:
Structural incompatibilities:
Multiple versions of a package provide different sets of definitions, such as function
names and data structures.
Behavioral incompatibilities:
Multiple versions of a package provide the same set of definitions, but their behaviors
are different.

2.1.1 Structural Incompatibilities
Structural incompatibilities are caused by the addition and removal of definitions,
internal changes to data structures, renaming, etc. Table 1 shows an example of a
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structural incompatibility in GIMP Drawing Kit (GDK). GDK is a C library for creating
graphical user interfaces and is used by many projects, including GNOME.
If we suppose that deprecated functions are unavailable, version 3.22 is structurally

incompatible with version 3.20 because the former lacks gdk_screen_get_n_monitors
that is available in the latter. GDK versions prior to 3.22 provide gdk_screen_get_n_
monitors that tells the number of physical monitors connected. However, versions 3.22
and later provide the same functionality function gdk_display_get_n_monitors and
deprecate gdk_screen_get_n_monitors. When we upgrade GDK to version 3.22 and
build software that uses this function without modifying anything, the build system
will give us an undefined reference error. With a static type check, the programmer
will be informed of the incompatibility problem as a compilation error.

2.1.2 Behavioral Incompatibilities
Code changes may also cause behavioral incompatibilities that include the additions,
removals, and changes of side effects, even if there is no change in name or type.
Table 2 shows an example of the behavioral incompatibility in the Android Platform
API (henceforth Android API). The Android API is the standard library mostly written
in Java, and its version is synchronized with that of the Android OS.
Prior to version 19,⁵ the Android API provided the set method in the AlarmManager

class that schedules an alarm at a specified time. However, since version 19, the
Android API has changed its behavior for the sake of power management. Despite
having the exact same name and type definitions, set no longer guarantees accurate
alarm delivery. For developers who require accurate delivery, the method setExact is
provided instead.

2.2 Situations Where Incompatibility Problems Occur

Incompatibility problems are more likely to occur when there are transitive depen-
dencies among subcomponents [2, 5]. Since it is common to develop with multiple
packages, programmers often encounter this kind of problem [12]. Figure 1 shows a
situation where the developer updates the software called App. The upper and the
lower halves show the configurations before and after the update, respectively. On the
upper half, App depends on Package A version 1 and Package B version 1, and also,
Package A version 1 depends on Package B version 1. In this configuration, there is no
incompatibility problem.
Suppose that the developer of App decided to switch the version of Package A from

1 to 2. Package A version 1 and 2 are compatible, but the dependency on Package B
has been changed from version 1 to 2. Suppose that Package B version 1 and 2 are
incompatible. Since App itself requires Package B version 1, it is impossible to use
Package A version 2 from App without modifying App to use Package B version 2.

5 The Android API uses levels instead of versions as identifiers for API revisions, but we will
call them versions for consistency.
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AppPackage A

Package B

ver 1

ver 1
ver 1

AppPackage A

Package B

update

ver 2

||ver 1
ver 2

After the update, the two dependencies
on Package B cause a conflict.

Figure 1 Minimal configuration before
(top) and after (bottom) the up-
date that causes dependency hell.

AppPackage A

Package CPackage B

ver 1

ver 1ver 1
ver 1

AppPackage A

Package CPackage B

update

ver 2

||ver 1ver 2
ver 1

After the update, the two dependencies
on Package B cause a conflict.

Figure 2 Package configuration before
(top) and after (top) the update
cause dependency hell, where
only transitive dependencies on
Package B.

Even worse, if a program indirectly depends on two incompatible versions of a
package, there is no way to fix the problem until the developers of intermediate
packages catch up. As shown in fig. 2, if App used Package C, which in turn depends
on Package B version 1, the App developer would have no way of resolving the conflict
on their own.

2.3 External Tool Support for Dependency Con�ict in Transitive Dependency

The external tool support for transitive dependency is based on the following ideas:
Clarifying the dependencies using the notation of semantic versioning (SemVer)[27].
Generating two separate copies of a dependent package when multiple packages
have a common dependent package with SemVer-incompatible versions.
The semantic versioning recommendation [27] specifies that version numbers are

basically a sequence that consists of major, minor, and patch versions separated by
dots as in MAJOR.MINOR.PATCH. The semantic versioning strategy can explain to users
of a package what types of changes will occur in the new release, and users can use
version numbers as a guide to decide whether to accept the new release. For example,
when incrementing the minor version of a package (e.g., 1.2.1 ⇒ 1.3.0), all changes
should be backward compatible with previous versions. In contrast, incompatible code
changes are permitted only when the MAJOR level is incremented (e.g., 1.2.1⇒ 2.0.0).

2.3.1 Declarative Dependency Requirements
Some package managers, such as npm and cargo, use semantic versioning so that
package users can automatically update dependent packages while maintaining
compatibility. For this purpose, all package developers need to properly define the
version requirements of their dependent package, called dependencies.
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AppPackage A

Package B

1.0.0

1.0.0
1.0.0

AppPackage A

Package B Package B

update

2.0.0

1.0.02.0.0

Figure 3 Minimal package configuration in cargo to accept multiple versions of Package B.

Usually, dependencies can be described in the manifest file with each package
using the SemVer notation. For example, similar to fig. 1, fig. 3 shows a situation
where the developer updates software called App. The upper half of fig. 3 shows the
same package configuration as the upper half of fig. 1. The cargo user can specify the
dependencies of fig. 3 as follows:

1 [package]
2 name = "App"
3 [dependencies]
4 A = "1.0.0"
5 B = "1.0.0"

1 [package]
2 name = "A"
3 version = "1.0.0"
4 [dependencies]
5 B = "1.0.0"

In cargo, 1.0.0means >=1.0.0 && <2.0.0. This requirement shows the range of versions
that are backward compatible with 1.0.0 based on SemVer. Cargo collects these two
manifest files and automatically retrieves the latest version that meets all requirements
for each package. Assuming that all packages have only 1.0.0 and 2.0.0 for simplicity,
the requirements above are satisfied by getting 1.0.0 for all packages.

2.3.2 Name Mangling in External Tools
Modern, sophisticated package managers have a mechanism to alleviate the one-
version-at-a-time policy by mangling/shading package names. As with fig. 1, when an
App developer decides to switch Package A from version 1 to version 2 that requires
Package B version 2, then the manifest file is modified as on the left below. Due to the
modification, cargo refers to the manifest file of Package A version 2 as on the right.

1 [package]
2 name = "App"
3 [dependencies]
4 A = "2.0.0" // modi�ed
5 B = "1.0.0"

1 [package]
2 name = "A"
3 version = "2.0.0" // updated
4 [dependencies]
5 B = "2.0.0" // dependency updated

In this example, App and Package A have a common dependency to Package B, but
App and Package A require version >=1.0.0 && <2.0.0 and >=2.0.0 && <3.0.0 of Package
B, respectively.
As shown in the lower half of fig. 3, cargo alleviates this by making two copies of

Package B. The Rust compiler assigns a unique mangle symbol name to each program-
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ming unit using the package name and version. In this way, even if the same function
name exists in different versions of a package, it is possible to determine the correct
version of the function needed for each package. This solution merely replicates Pack-
age B into two completely different packages. However, it allows different versions of
the same package to coexist in a dependency graph, in a sense relaxing the limitations
of the one-version-at-a-time policy.

2.4 Problems Caused by Name Mangling

Name mangling is one reasonable mitigation measure, but it leads to new type-level
incompatibilities [11, 32]. This approach collapses when values derived from different
versions of a package are inevitably mixed in the same code. For example, consider
the situation where Package B is a framework package that provides the Key type
representing a cryptographic hash key, and Package A is a library that includes Key
in its API. Suppose that the definitions of Key are the same in v1.0.0 and v2.0.0, and
there are some breaking changes in other parts of the API as:

1 // package B v1.0.0
2 pub type Key = /* complicated */

1 // package B v2.0.0
2 pub type Key = /* Same as v1.0.0 */

Here, we simplify the code syntax, including function definitions, extern, semicolons,
etc., as we do not want to address Rust-specific issues. By using the Key defined in
Package B, the API in Package A and App are written as:

1 // package A v2.0.0
2 fn gen_key() -> Key // from v2.0.0

1 // App
2 let x : A::Key = gen_key() // type error!

Package A provides the gen_key function for generating hash keys. Note that the
return type of gen_key is internally Key from v2.0.0.
In this example, the App program above will be rejected by the Rust type system

because the Rust compiler gives v1.0.0 and v2.0.0 of the Key type completely different
identifiers. The expected version for the Key structure is v1.0.0, but Package A v2.0.0
relies on Package B v2.0.0, so the gen_key function only returns the Key object in
v2.0.0. Therefore, the programmer is eventually notified that the Key of v1.0.0 is not
equal to the Key of v2.0.0 even if the definitions provided by both versions of Package
B do not actually change at all.
The nature of this problem is that all interoperators must use compatible versions

of the package. This fact has a tremendous impact on the ecosystem when Package B
is a very widely used package such as a wrapper of libc and openssl[32]. Every time
there is an update that does not guarantee backward compatibility, the developers of
a very large number of packages need to collaborate to update their dependencies.
For software with many dependencies, it is an ordeal to resolve dependency conflicts.
Many developers are reluctant to upgrade dependencies unless they include a bug fix
or other significant updates [3].
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3 Approach: Programming with Versions

We are developping a programming language with a notion of versions to solve the
problem discussed in section 2.4. We call a hypothetical surface language based on
our ideas as VL here. A VL program can depend on multiple versions of a package, and
static checks ensure that each value is dispatched to the appropriate implementation.
We develop λVL to be used as a core calculus for such surface languages. λVL has
the terms for combining multiple versions of definitions and the type system for
identifying version-safe programs in multiple versions.
This section first describes the advantages of a language-based approach in section

3.1 and then illustrate core features through programming with λVL in section 3.2.

3.1 Advantages of Language-Based Approach

The language-based approach has advantages over the package-based versioning
approach as follows:
1. An appropriate version of a dependent implementation is selected for each expres-

sion.
This feature allows programmers to write programs with a mixture of values from
multiple versions, such as the program in section 2.4. Since package-based ver-
sioning requires a single dependent version to be defined outside of the language
semantics, it is impossible to write such programs in a naive way.

2. Exhaustive static analysis can be performed on multiple combinations of package
versions.
In package-based versioning, the package version is determined by the language
external to the language, so only programs with pre-fixed versions can be processed
by the language system.
We will use the same program as in section 2.4 to illustrate the advantages. For the

sake of discussion, suppose that VL is designed to bridge the usual programming style
and our proposal as follows:

Versions are held in the units of modules instead of packages.
Module interfaces are written in a version-crossing manner and contains the infor-
mation about which version each symbol is available.
The interfaces are generated by the VL language system by aggregating information
from each version of the module interface.
Based on the ideas above, we can rewrite the codes in section 2.4 in VL as follows:

1 // Package B v1.0.0 & v2.0.0
2 pub type Key = {Bv1: ... , Bv2: ... }

1 // Package A
2 fn gen_key -> Key = {Bv2: ... }

The interface of each package is rewritten in a version-crossing manner, where
individual symbols are given version information, called labels. These are denoted as
Bv1 and Bv2 and indicates the version in which the definition exists.
Note that we have given a notation for abstracting the two versions of Package B.

This is totally different from the name mangling approach shown in figure 3, where
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the two versions of Package B are considered as completely different packages. In VL,
the user of Package B can access to the both versions of definitions with the identifier
Key. Which version of the computation is actually evaluated will be determined later
by the type system as the available versions.

1 // App codes
2 let x : A::Key = gen_key() // v1.0.0 as a consistent version

Consequently, the Appwill be interpreted in VL as follows. The type system calculates
the version shared by all the values in the data flow by using type checking and rejects
them if they do not exist. In this example, the Key provided in Package B has definitions
for both versions 1 and 2, and the gen_key provided in Package A has a definition
for the Key in version 2 of Package B. As a result, it is apparent that the App code is
available in the combination of version 2 of Package A and version 2 of Package B.
In this example, there was only one version combination available, but the type

system computes all available version combinations. In this way, the language-based
approach verifies programs in multiple version combinations.

3.2 Programming with Multiple Versions Mixed Together

As explained through the example, a language-based approach requires a version-
crossing interface and a mechanism to know in which version each symbol is available.
Therefore, it is important that the core language has the following two features.
1. A notation that expresses a value that consists of sub-values of multiple versions
2. A mechanism for analyzing which versions of a program may be available in more

than one version
In this section, we will demonstrate how these features are achieved through the
introduction of the core features of λVL.

3.2.1 Versioned Values
λVL is an extension of the coeffect calculus with versioned values that have multiple
components tagged with versions. One way to construct versioned values is through
versioned records {li = t i}⁶,.⁷ We denote labels (li) to distinguish the different versions
of values and the values inside the versioned record are called version-specific terms.
Versioned record provides a mechanism to write programs that are independent of a
specific version. For example, to denote a default key length parameter that is 1024
and 4096 in versions 1 and 2 respectively, we can write

{l1 = 1024, l2 = 4096}.

6We will sometimes abbreviate a sequence as ∗, i.e. li denotes l1, ..., ln and li = t i denotes
l1 = t1, ..., ln = tn.

7 Although our system, which we will describe in detail in section 4, explicitly states the
default label such as {l = t | lk}, we omit it here for simplicity.
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Another way to construct a versioned value is through suspensions [t]. The suspen-
sion [t] promotes the term t to a versioned value such as [1] and [λx .x]. The two
constructors for versioned values delay the inside computation until a specific version
is later determined.
To conduct a suspended computation, programmers can use extractions t.l. The

extraction t.l extracts the version-specific term according to the label l from the
versioned value returned by t. For example, consider the case where version 1 generates
a key with a bit length of 1024, but version 2 generates one of length 4096. To generate
a key with the appropriate bit length for each version and then retrieve the version-
specific term in version 2, we can write

{l1 = gen_key 1024, l2 = gen_key 4096}.l2.

3.2.2 Versioned Function Application
Functions with different version-specific values across different versions are also
represented as versioned values, called versioned functions. For example, as we saw in
table 1 v3.20 and v3.22 of GDK 3 provide different named functions that have the same
functionality. To define a new function that can retrieve the number of connected
monitors in both versions, we can write

{l1 = gdk_screen_get_n_monitors,
l2 = gdk_display_get_n_monitors}.

Hereafter, we call this versioned function get_n_monitors.
To apply a versioned function, we need to pass a versioned value for the argument.

Here, we can use contextual let-binding let [x] = t1 in t2 to apply a versioned function.
For example, we apply the versioned function get_n_monitors to the versioned value
{l1 = ()} as follows:

let [ f ] = get_n_monitors in let [x] = {l1 = ()} in [ f x] (1)

This program first extracts the function gdk_screen_get_n_monitors from get_n_mo
nitors and binds it to f ; then it extracts the value () from {l1 = ()} and binds it to x .

3.2.3 Versioned-Independent Programs
In the previous example, {l1 = ()} was bound to x and had only one definition with l1.
However, if both the versioned function and versioned value have multiple definitions,
the functional application should also be evaluated in multi-version contexts. We
achieve this by using the suspension [t]. For example, we apply get_n_monitors to
{l1 = (), l2 = ()}, both of which have two definitions with l1 and l2 as follows:

let [ f ] = get_n_monitors in let [x] = {l1 = (), l2 = ()} in [ f x]

This program returns a suspended computation that can return an integer value
available in l1 and l2. Since the two version-specific terms in {l1 = (), l2 = ()} are
exactly the same, we can rewrite the above program as

let [ f ] = get_n_monitors in let [x] = [()] in [ f x].
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3.2.4 Types of Versioned Values
The type of a versioned value is denoted as �r T . The index r, called the version
resources, indicates which version-specific terms are available in the versioned value.
This notion of type comes from coeffect calculus, and the exact method of calculating
r is based on the version resource semiring described later in section 4.
For example, assuming that both version-specific functions in get_n_monitors have

type Unit→ Int, the above example programs are typed as follows:

{l1 = (), l2 = ()} : �{l1,l2}Unit
get_n_monitors : �{l1,l2}(Unit→ Int)

The type �{l1,l2}Unit denotes that this versioned value has version-specific terms of
type Unit and they are available in both versions l1 and l2.
The contextual let-binding let [x] = t1 in t2 propagates the version requirements

through the captured variable x . For example, the program of Eq. 1 is typed as follows:

let [ f ] = get_n_monitors in let [x] = {l1 = ()} in [ f x] : �{l1}Int (2)

where the result type has resource l1 because get_n_monitors and {l1 = ()} only have
l1 as their shared labels.
Note that the extraction t.l makes the type of t lose the version resource. Once

extracted, a version-specific term can be used with terms from other versions. For
example, the type of the following program no longer have a version resource.

let [ f ] = get_n_monitors in let [x] = {l1 = ()} in [ f x].l1 : Int (3)

3.2.5 Ensuring a Consistent Version of the Computation
The λVL type system ensures that all necessary versions of the implementation exist.
In other words, if a program extracts a specific version of a value even though all the
version values in the program do not have a shared label, the type system will reject
such a program. The first example is a variant of Eq. 2.

let [ f ] = get_n_monitors in let [x] = {l3 = ()} in [ f x] : �;Int

The type system keeps track of the available versions of each variable by a set of
labels in the context. In this example, it records {l1, l2} for f , and {l3} for x . For each
promotion, the type system calculates the shared version resource in the context that
should be multiplied by the term. In the program type above, [ f x] is given version
resource ;= {l1, l2} ∩ {l3}, which indicates that there is no shared version available.
It means no longer possible to extract any version-specific computation from this
program and such extractions will be rejected by the type system. The type system
can report the reason for the ill-versioned extraction by using the version information
recorded in the context.

let [ f ] = get_n_monitors in let [x] = {l3 = ()} in [ f x].l3 : (re jec ted)

– ERROR: f and x are expected to be available in l3, but f is not available in l3.
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The second example is a variation of Eq. 3. The following program is rejected
because {l1 = ()} has no definition of l2.

let [ f ] = get_n_monitors in let [x] = {l1 = ()} in [ f x].l2 : (re jec ted)

– ERROR: f and x are expected to be available in l2, but x is not available in l2.

4 The Lambda VL Type System

λVL is an extension of the coeffect calculus `RPCF [7] and GrMini [21]. We defined
the version resource algebra and extended the coeffect calculus by adding versioned
terms.

4.1 Syntax of λVL

The terms and types of λVL are as follows:

t ::= x | t1 t2 | λx .t
︸ ︷︷ ︸

λ-terms

| n
︸︷︷︸

constructors

| [t] | let [x] = t1 in t2
︸ ︷︷ ︸

coeffect terms

|

{l = t | li} | t.l | 〈l = t | li〉
︸ ︷︷ ︸

versioned terms

(terms)

A, B ::= Int
︸︷︷︸

Integer

| A→ B
︸ ︷︷ ︸

function types

| �rA
︸︷︷︸

versioned types

(types)

Many of the terms in λVL derive from linear λ-calculus. Additional terms are cate-
gorized by those for introducing and eliminating versioned values. Versioned values
can be declared through promotions [t] and versioned records {l = t | li}. The type
of versioned values �rA are indexed by a version resource r, where r ranges over the
elements of the version resource semiring R described in section 4.2. The versioned
records {l = t | li} has a default label along with a pair of labels and version-specific
definitions. In the current design, programmers can note a default label li ∈ {l} for
the case where there are multiple versions of a calculation results. The default label is
overridden in the dynamic semantics described in section 5. The term [t] is a promo-
tion of version necessity and allows t to be used to track the use of version resources
in a program. The term let [x] = t1 in t2 provides an elimination for version necessity
and provides version-aware let-binding. Finally, the versioned computations 〈l = t | li〉
represent intermediate terms whose evaluation in the default version is postponed.
We assume that versioned computations appear only in intermediate terms during
evaluation and not in the user’s code.

4.2 Version Resources

The λVL type system is parameterized by the version resource semiring R . It captures
how a program depends on its context by tracking version information on the variables
used in the program. Version resources r ∈ R appear in types with �-constructors and
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in contexts with [∗]r -notions to denote the sets of versions on which the programs
implicitly depend.
The version resources r are given by the following:

r ::=⊥ | ; | {li} | r1 ∪ r2 (version resources)

Intuitively, an element of R is a set of labels such as {l1} and {l1, l2}. The language
produced by this grammar is equivalent to the elements of the version resource
semiring R .

Definition 4.1 (Version resource semiring). The version resource semiring is given by
the structural semiring (semiring with pre-order) (R ,⊕, 0,⊗, 1,v), defined as

0=⊥ 1= ; ⊥ v r
r1 ⊆ r2
r1 v r2

r1 ⊕ r2 =











r1 r2 =⊥
r2 r1 =⊥
r1 ∪ r2 otherwise

r1 ⊗ r2 =











⊥ r1 =⊥
⊥ r2 =⊥
r1 ∪ r2 otherwise

where ⊥ is the smallest element of R, and r1 ⊆ r2 is the standard subset relation over
sets defined only when both r1 and r2 are not ⊥.
The fact that version resource semiring is structural semiring with pre-order [7] is
proven in the Appendix B.1.

Multiplication ⊗ represents that if a value is used in version li, then all values in
that data flow must also be available in version li; The versioned value to resource {l1}
can be applied with both a versioned value with resource {l1} and {l1, l2}. Addition
⊕ represents splitting the data flow of a value in a typing context. Therefore, all
values used in version li somewhere in the data flow must be permitted to be used in
version li, even if they are used elsewhere in the context of another version l j; thus,
{li} ∪ {l j}= {li , l j}.

0=⊥ is the smallest element indicating an irrelevant resource. Conversely, 1= ;
explicitly indicates that the value has no version restrictions. That is, a 1-indexed
versioned value can be usable as any versioned value unless it is a 0-indexed versioned
value. These intuitive explanations will be detailed later in the typing rules.

4.3 The Type System of λVL

Typing judgments of the type system are of the form Γ ` t : A with typing contexts Γ .
A typing context Γ (or we sometimes note ∆) is a set of typed variables defined as
follows:

Γ ::= ; | Γ , x : A | Γ , x : [A]r (contexts)

Typing contexts are either empty ; or extended with a linear variable assumption
x : A or a versioned assumption x : [A]r . For a versioned assumption, x can behave
non-linearly, with substructural behavior captured by the semiring element r ∈ R,
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λVL typing rules Γ ` t : A

; ` n : Int
(int)

x : A ` x : A
(var)

Γ , x : A ` t : B

Γ ` λx .t : A→ B
(abs)

Γ1 ` t1 : A→ B Γ2 ` t2 : A

Γ1 + Γ2 ` t1 t2 : B
(app)

Γ1 ` t1 : �rA Γ2, x : [A]r ` t2 : B

Γ1 + Γ2 ` let [x] = t1 in t2 : B
(let)

Γ ` t : A

Γ , [∆]0 ` t : A
(weak)

Γ , x : A ` t : B

Γ , x : [A]1 ` t : B
(der)

[Γ ] ` t : A

r · [Γ ] ` [t] : �rA
(pr)

Γ , x : [A]r , Γ ′ ` t : B r v s

Γ , x : [A]s, Γ ′ ` t : B
(sub)

Γ ` t : �rA l ∈ r

Γ ` t.l : A
(extr)

[Γi] ` t i : A
⋃

i({li} · [Γi]) ` {l = t|li} : �{l}A
(ver)

[Γi] ` t i : A
⋃

i({li} · [Γi]) ` 〈l = t|li〉 : A
(veri)

Figure 4 λVLtyping rules

which describes x ’s use in a term. We denote by |Γ | the typing context in which every
assumption is a versioned assumption.
Figure 4 shows the typing rules for λVL. The typing rules for λ-terms are (int),

(var), (app), and (abs). (var) shows that linear variables can only be typed in a
single context that includes themselves. Note that the typing rules for splitting a data
flow, such as (app), include context concatenation +, which permits the splitting
version resources as defined in Def. 4.2.

Definition 4.2 (Context concatenation , & +). Two typing contexts can be concatenated
by "," if they contain disjoint sets of assumptions. Furthermore, the versioned assumptions
appearing in both typing contexts can be combined using the context concatenation +
defined with the addition ⊕ in the version resource semiring as follows:

(Γ , x : A) + Γ ′ = (Γ + Γ ′), x : A iff x /∈ |Γ ′| ;+ Γ = Γ
Γ + (Γ ′, x : A) = (Γ + Γ ′), x : A iff x /∈ |Γ | Γ + ;= Γ

(Γ .x : [A]r) + (Γ
′, x : [A]s) = (Γ + Γ

′), x : [A](r⊕ s)

The (weak) rule provides weakening only for version assumptions indexed by 0.
Since 0=⊥ is defined as an irrelevant resource in R , this rule indicates that adding
unneeded versioned assumptions to the typing context does not prevent the term
from type checking, just as in linear type systems. The (der) rule converts a linear
assumption into a versioned assumption, indexed by 1. This rule indicates the intuition
that the linear assumption does not have any restrictions on versions. The (pr) rule
introduces a version necessity indexed by r to a term and propagates the assumption
into the context using the contextual multiplication · defined in Def. 4.3.
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Definition 4.3 (Multiplying contexts · by a resource). Assuming that a context contains
only version assumptions, denoted |Γ | in typing rules, then Γ can be multiplied by a version
resource r ∈ R by using the product ⊗ in the version resource semiring, as follows:

r · ; = ; r · (Γ , x : [A]s) = (r · Γ ), x : [A](r⊗ s)

Informally, r · Γ requires that all assumptions in Γ to be available in that version.
This property is the cornerstone of this type system, and will be illustrated in Example
4.6 with examples.
The (sub) rule weakens the version assumption based on the order defined in the

version resource semiring. For example, suppose a value is typable in a context where
a variable is only available in version 1. In that case, the value should be typable
as well, even if the variable is available in both versions 1 and 2. The (sub) rule
formalizes this intuition by using the preorder in the version resource semiring. This
rule is detailed in Example 4.5. The (let) rule provides a way to remove the versioned
necessity assigned to a term. From the perspective of term reuse, the version necessity
assigned to a term (�rA) is converted to a version assumption ([A]r) and add it to the
context of the body typing. Note that the contexts of the two subterms are combined
by context concatenation + as well as the (app) rule.
The last two rules (ver) and (veri) are for version records. The context of a version

record is the sum of typing contexts multiplied by the version resource corresponding
to each version-specific term. Summation of typing contexts is defined as follows:

Definition 4.4 (Context summation
⋃

). Using the context concatenation +, summation
of typing contexts is defined as follows:
⋃

i∈n

Γi = Γ1 + · · ·+ Γn

In the (veri) and the (extr) rules, note that the type of the versioned computation
and the extraction have lost their version resource. In our current design, once a
versioned value is evaluated in a particular version, it becomes a common value that
can be used with other versioned values. The concluding types of these two rules
illustrate this feature.
To aid in understanding of the type system, we show some important facts in the

following example.

Example 4.5 (Weakening version resources).

Any linear assumption in the environment can be regarded as an arbitrary versioned
assumption. This fact can be obtained by a combination of the rules (var), (der),
and (sub) as follows:

(var)
f : Int→ Int ` f : Int→ Int

(der)
f : [Int→ Int]1 ` f : Int→ Int 1v r

(sub)
f : [Int→ Int]r ` f : (Int→ Int)
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This formalizes the intuition that a linear assumption does not have any constraints
on the its variable use with respect to their versions.
As shown above, the (sub) rule allows the versioned resources in a context can be

increased. This fact supports the intuition that a term that is typed with versioned
assumptions that is only available in a particular version will still be typed with
versioned assumptions that is available in more versions.

Example 4.6 (Ensuring the existence of consistent versions).

The purpose of the type system is to ensure that all versions needed to evaluate a
given program exist. The type system ensures this property through the computation
of resources with consistent shared labels. The following program, a simplified version
of the program described in 3.2.5, is an example of a faulty program.

let [ f ] = {l1 = id, l2 = succ | l1} in let [y] = {l1 = 1 | l1} in [ f y].l2

Type-checking this program halfway yields the following derivation tree.

...

...

ERROR: {l2} ∪ r cannot be a subset of {l1} (pr)
{l1}·( f : [Int→ Int]{l1,l2}, y : [Int]{l1}) ` [ f y] : �{l2}∪r X

(extr)
{l1}·( f : [Int→ Int]{l1,l2}, y : [Int]{l1}) ` [ f y].l2 : X

(let)
f : [Int→ Int]{l1,l2} ` let [y] = {l1 = 1 | l1} in [ f y].l2 : X

(let)
; ` let [ f ] = {l1 = id, l2 = succ | l1} in let [y] = {l1 = 1 | l1} in [ f y].l2 : X

In this derivation tree, for clarity, the largest shared version resource is specified
outside the context. Now recall that (pr) requires the same version resources for the
entire context as introduced in the term. The largest shared resource in the context
is {l1}, but the resource in the term must have {l2} as a subset. As a result, the type
checker reports this discrepancy. In this way, we use the nature of ⊗ to guarantee that
each version value has a consistent version.

5 Dynamic Semantics and Metatheory

5.1 Dynamic Semantics

We give the small-step operational semantics of λVL in figure 5. They basically follow
the lazy-evaluation strategy; i.e., only functions t are evaluated to values to evaluate
applications t t ′. The operational semantics of λVL consist of two main parts – eval-
uation and default version overwriting. The λVL evaluation proceeds by alternating
between reduction and default version overwriting.
We define values and evaluation context of λVL as follows:

v ::= λx .t | n | [t] | {l = t | li} (values)
E ::= [] | E t | E.l | let [x] = E in t (evaluation contexts)
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Evaluation rule
t   t ′

E[t] −→ E[t ′]

Reduction rules

(λx .t)t ′  (t ′ Â x)t
(E-abs)

let [x] = v in t   (v Â [x])t
(E-clet)

[t].l   t@l
(E-ex1)

{l = t |m}.li   t i@li
(E-ex2)

〈l = t | li〉  t i@li
(E-veri)

Substitution rules

(t Â x)t ′ = [t/x]t ′
(Âvar)

(t Â x)t ′ = t ′′

([t]Â [x])t ′ = t ′′
(Â�)

({l = t | li}Â [x])t ′ = [〈l = t | li〉/x]t ′
(Âver)

Default version overwriting rules
n@l ≡ n (λx .t)@l ≡ λx .(t@l) (t u)@l ≡ (t@l) (u@l)

let [x] = t1 in t2@l ≡ let [x] = (t1@l) in (t2@l)

[t]@l ≡ [t] {l = t | li}@l ′ ≡ {l = t | li} (t.l)@l ′ ≡ (t@l ′).l

l ′ ∈ {l}

〈l = t | li〉@l ′ ≡ 〈l = t | l ′〉

l ′ /∈ {l}

〈l = t | li〉@l ′ ≡ 〈l = t | li〉

Figure 5 λVLdynamic semantics

Figure 5 shows the dynamic semantics for λVL. The λVL has five reduction rules.
The (E-abs) rule is the β-reduction rule for the lazy evaluation strategy, and (E-
clet) is a rule for contextual let-bindings. Each uses the captured x to assign a value
according to the following substitution rules. Note that versioned value constructors
with both variable and term are removed together in the (Â�) and (Âver) rules. A well-
typed versioned value bound to a contextual-let binding will have its outer versioned
value constructors removed along with the variable. A term that will eventually be
substituted into x loses its outermost version resource.
The next three reduction rules are for extracting versioned values. As explained

above, a versioned value can only be evaluated when it is extracted. The two versioned
values – promotions and versioned records – are evaluated in terms that lose their
version resources along with the @-notation by extraction. The @-notation is used
to override the default version; and overwriting rules scan through the terms and
overwrites the default versions of all intermediate terms 〈l = t | li〉 with their label l.
Eventually, these intermediate terms are evaluated to version-specific terms by using
the (E-veri) rule.
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Example 5.1 (Evaluation process of a versioned function application).

To aid in understanding of the dynamic semantics, we show an evaluation process
of versioned function application presented in the introduction.

let [ f ] = {l1 = λx .x , l2 = λx .x + 1 | l1} in let [y] = {l1 = 1, l2 = 2 | l1} in [ f y]

Both version function f and version variable have different definitions with labels l1
and l2. As mentioned in introduction, this program intuitively evaluates to {l1 = 1, l2 =
3} – precisely, to a suspended versioned computation that is expected to evaluate to 1
and 3 in each version. Hereafter, we abbreviate λx .x as id and λx .x + 1 as succ.
And next, since {l1 = 1, l2 = 2 | l1} is a value, the program is evaluated as follows:

−→ [{l1 = id, l2 = succ | l1}Â [ f ]] (let [y] = {l1 = 1, l2 = 2 | l1} in [ f y]) (E-clet)

= [〈l1 = id, l2 = succ | l1〉/ f ] (let [y] = {l1 = 1, l2 = 2 | l1} in [ f y]) (Âver)

= (let [y] = {l1 = 1, l2 = 2 | l1} in [〈l1 = id, l2 = succ | l1〉 y]) (substitution)

Note that in the first two lines, the (Âver) rule simultaneously removes the versioned
constructors of [x] and {l1 = id, l2 = succ | l1}. The term eventually assigned to f is a
versioned computation that inherits the default version l1.
The program is evaluated as well for y.

−→∗ [〈l1 = id, l2 = succ | l1〉 〈l1 = 1, l2 = 2 | l1〉] (E-clet, Âver, substitution)

The result suspended versioned computation contains the respective computations
for labels l1 and l2, thus we can obtain result value by extraction as shown below.

let [ f ] = {l1 = id, l2 = succ | l1} in let [y] = {l1 = 1, l2 = 2 | l1} in [ f y].l1
−→∗ [〈l1 = id, l2 = succ | l1〉 〈l1 = 1, l2 = 2 | l1〉].l1 (E-clet, Âver, substitution)
−→ (〈l1 = id, l2 = succ | l1〉 〈l1 = 1, l2 = 2 | l1〉)@l1 (E-ex1)
≡ 〈l1 = id, l2 = succ | l1〉@l1 〈l1 = 1, l2 = 2 | l1〉@l1 (def-ver overwriting)
≡∗ 1

We can perform the same kind of extraction for l2 and obtain 3.

5.2 Metatheory

We give a precise formalization to some properties of λVL. As with other coeffect calculi,
there are two variants of the substitution lemma, one through linear assumptions and
the other through versioned assumptions. The proofs are given by structural induction
on the typing derivation and are somewhat tricky. We have to carefully manage how
version resources are divided in the typing context; thus, we would like to adopt a
generalized form of the versioned substitution lemma.

Lemma 5.2 (Well-typed linear substitution). Let∆ ` t ′ : A and Γ , x : A, Γ ′ ` t : B. Then,
Γ +∆+ Γ ′ ` [t ′/x]t : B

5:19



A Functional Programming Language with Versions

Subsumption rules

A <: A

A <: B r ′ v r

�rA <: �r ′B

A′ <: A B <: B′

A→ B <: A′→ B′

A <: B r ′ v r

[A]r <: [B]r ′ Γ v Γ

Γ v ∆ A <: B

Γ , x : B v ∆, x : A

Figure 6 Subsumption rules for typing context

Lemma 5.3 (Well-typed versioned substitution). Let [∆] ` t ′ : A and Γ , x : [A]r , Γ ′ `
t : B. Then, Γ +

⋃

i(ri · [∆i]) + Γ ′ ` [t ′/x]t : B where Σi ri = r and
⋃

i[∆i] =∆

In most cases, this generalization is unaffected, i.e.,
⋃

i(ri · [∆i]) = r ·∆, but in the
case where the last derivation of t is derived from (ver)-rule, this difference becomes
essential.
By using the two substitution lemmas, we give proof of λVL type safety.

Theorem 5.4 (λVL progress). Let Γ ` t : A. Then, (i) t is a value or (ii) ∃t ′.t −→ t ′

Theorem 5.5 (λVL preservation). Let Γ ` t : A and t −→ t ′. Then, ∃Γ ′.Γ ′ ` t ′ : A∧Γ ′ v Γ

The conclusions of the above two theorems allow for an order between typing
contexts described in figure 6. This ordering relation v intuitively implies that for
any assumption in Γ ′, the version resource is less than that in Γ such as x : [A]{l1}, y :
[A]{l2} v x : [A]{l1,l2}, y : [A]{l1,l2}.

6 Related Work

6.1 Software Product Lines

Software Product Lines (SPLs) [22, 25] are methods for creating a collection of similar
software from a shared set of programs. Since program updates can be considered as
a kind of program extension, some programming techniques in SPLs [6, 26, 30] are
closely related to this work.

6.1.1 Delta-Oriented Programming
Delta-oriented programming (DOP) [29, 30, 31] provides a mechanism called delta-
modules for modularizing program modifications. The delta-module language allows
not only the addition and overriding of classes and methods, but also their removal.
Each delta module contains the application conditions for modifications, and delta
modules can be combined to form complex constraints on the features of a product.
We think that the DOP approach is complementary to our research. For imple-

mentation of version analysis by type checking in the future, it is essential to have
a packaging system with expression-level dependency information. Given that the
evolution of packages today is basically linear over versions, it should be possible to
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develop a package system modularized by program diffs. Patrick Lam et al. [18] point
out that the lack of tool support for package changes requires developers to pay a
great deal of attention to compatibility, and discuss the implications of calculating
compatibility information in the context of program analysis. For implementation of
version analysis by type checking in the future, it is essential to have a packaging
system with expression-level dependency information. We believe that such tools will
lead to the development of a novel package system with more detailed information
about compatibility.

6.1.2 Variational Programming
Variational Programming [15, 34, 35] is a language paradigm with syntactic support
for data variation. For example, the Variational Programming Calculus [8] (VPC)
represents differences as binary choices called dimensions, such as A<1,true>, which
can be passed as function arguments. In addition, we can extract and manipulate
choices. For example, a program that applies the identity function to either 1 or true
and extracts left one can be written as sel A.L (λx.x A<1, true>).
At first glance, it seems that the main part of the λVL can be encoded by VPC, but

this is impossible. The key difference is semantics: VPC doesn’t have a mechanism
to deal with computations that lack definitions like versioned records in λVL. In λVL,
functions and arguments with different dimensions are applied according to a smaller
dimension: the calculation is allowed by the type system only if they have common
versions, i.e. let [x] = {v1= 1, v2= 2} in let [y] = {v1= 1, v2= 2, v3= 3} in [x+ y]
is well-typed and interpreted as {v1= 1+ 1, v2= 2+ 2} defined only in versions v1
and v2. In contrast, in VPC, such computations are interpreted according to a larger
dimension: functions/values with smaller dimensions are interpreted in a distributed
manner, i.e. A1<1, 2> + A1<1, A2<2, 3> > is interpreted as A1<1 + 1, A2<2 + 2, 3 + 2> >
that have three variations. Since our primary interest is in disallowing programs to
run in versions for which no definition exists, the semantics of VPC don’t meet our
motivations.

6.2 Coe�ect Calculus

Coeffect calculus simultaneously arose from several contexts in the literature [7, 16, 23]
since 2010s. The common denominator of these formalizations is that they annotate
the assumptions in the typing context with usage information derived from a semiring.
Recent studies use coeffect calculus to track bounded reuse [7, 23], deconstructor
use [24], security levels [21], and scheduling constraints in hardware synthesis [16].
Granule [21] is a fully-fledged functional language focused on coeffect calculus, and

its core Gr demonstrates a good combination between coeffect calculus and standard
language features, i.e., data types, pattern matching, and recursion. Since the core
subset of Granule, GrMini, has almost the same structure as λVL, we expect that most
of the language extensions from GrMini to Gr can be applied to λVL. On the other
hand, the difference is that the only thing that affects resources in these languages
is the availability of each functions, whereas λVL provides a means to manipulate
resources such as version records and extractions.
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7 Future Work and Conclusion

7.1 Towards a Per-expression Dependency Analysis

The current λVL type system cannot express the range of compatibility that cargo and
npm do in packages. For example, even if the versions 1.0.0 and 1.0.1 of package P
are compatible and we apply the value of type �1.0.1P.T to the function that expects an
argument of type �1.0.0P.T , this function application is rejected. This is because there
is no relationship between types annotated with version resource 1.0.0 and 1.0.1 as
the current type system focuses on preventing computation on versions for which a
definition does not exist. Considering that many updates change only a small part
of the package code and remain backward compatible for the most part, the current
type system is too strict.
The next step of our research is to track the range of compatibility in the type

system. Incorporating semantic versioning into types is a promising idea. Semantic
versioning can also be seen as a compatibility contract from the package provider
to the package users. For example, a 1.0.1 package is guaranteed to be backward
compatible with 1.0.0. From the point of view of Liskov’s substitution principle [19],
emulating the semantic versioning strategy at the expression level, it is possible to
regard �1.0.1A as a subtype of �1.0.0A. Such a type system paves the way for type-safe
casts between objects derived from different-version packages.

7.2 Implementation and Further Language Extensions

One future challenge is to develop an efficient implementation. Since our semantics
are based on a lazy evaluation strategy, it will not be easy to implement them efficiently
with the current system.
One possible approach is to implement a mechanism for version analysis in the

existing coeffect language. The core calculus of the Granule language demonstrates
the simultaneous use of various computational resources in the same type system
scheme. Furthermore, recent work [9, 10] seeks to integrate the coeffects calculus
with dependent type systems, which allow user-defined resource algebras to provide
internally extensible systems in Granule [21]. These enable version analysis to be
incorporated into the coeffect language in a more sophisticated form.
Another possible approach is to implement version analysis as a preprocess in

the compilation of an existing language. This approach would require defining a
meta-language with a type system to be versioned and would need to consider
interactions with more advanced language features (class inheritance, higher-order
polymorphism, etc.). We expect that if we can add version information to each value
and function in a package interface with extended syntax, we can aggregate more
detailed compatibility information by type checking. The advantage of this approach
is that once type checking has identified the single version required for each program,
we can reuse the existing runtime. We are currently trying to apply our findings from
λVL to the ML-like language.
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7.3 Conclusion

Even though dependency hell has been considered a problem for many years, it is
still difficult for most programmers to solve. Most recent build tools use compatibility
maintenance strategies like semantic versioning, but name mangling may burden the
development community in programming languages with sophisticated type systems.
Our research aims to enable programmers to more freely combine and control

programs of different versions in a single code. This research brings versions, which
used to be simply identifiers of packages, into a programming language, and provides
a new perspective on handling multiple versions of programs. As a first step toward
our goal, we discussed the type safety of programs with multiple versions in λVL. We
hope that this research will stimulate a discussion in the research community on
compatibility in the context of program analysis.
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A De�nitions

λVL syntax

t ::= x | t1 t2 | λx .t | n | [t] | let [x] = t1 in t2

| {l = t | li} | t.l | 〈l = t | li〉 (terms)

v ::= λx .t | n | [t] | {l = t | li} (values)
A, B ::= Int | A→ B | �rA (types)
Γ ,∆ ::= ; | Γ , x : A | Γ , x : [A]r (contexts)

r ::=⊥ | ; | {li} | r1 ∪ r2 (version resources)
E ::= [] | E t | E.l | let [x] = E in t (evaluation contexts)

Definition A.1 (Version resource semiring). The resource algebra is given by the struc-
tural semiring (semiring with pre-order) (R ,⊕, 0,⊗, 1,v), defined as

0=⊥ 1= ; ⊥ v r
r1 ⊆ r2
r1 v r2

r1 ⊕ r2 =











r1 r2 =⊥
r2 r1 =⊥
r1 ∪ r2 otherwise

r1 ⊗ r2 =











⊥ r1 =⊥
⊥ r2 =⊥
r1 ∪ r2 otherwise

where ⊥ are the smallest element of R , and r1 ⊆ r2 is the standard subset relation over
sets defined only when both r1 and r2 are not ⊥.

Definition A.2 (Context concatenation , & +). Two typing contexts can be concatenated
by "," if they contain disjoint sets of linear assumptions. Furthermore, the versioned
assumptions appearing in both typing contexts can be combined using the addition ⊕
defined in the version resource semiring. We define the context concatenation + as follows:

(Γ , x : A) + Γ ′ = (Γ + Γ ′), x : A iff x /∈ |Γ ′| ;+ Γ = Γ
Γ + (Γ ′, x : A) = (Γ + Γ ′), x : A iff x /∈ |Γ | ;+ Γ = Γ

(Γ .x : [A]r) + (Γ
′, x : [A]s) = (Γ + Γ

′), x : [A](r⊕ s)

Definition A.3 (Multiplying contexts · by a resource). Assuming that a context contains
only version assumptions, denoted |Γ | in typing rules, then Γ can be multiplied by a version
resource r ∈ R by using the product ⊕ in the version resource semiring, as follows:

r · ; = ; r · (Γ , x : [A]s) = (r · Γ ), x : [A](r⊗ s)

Definition A.4 (Context summation
⋃

). Using the context concatenation +, summation
of typing contexts is defined as follows:
⋃

i∈n

Γi = Γ1 + · · ·+ Γn
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B Proofs

Lemma B.1 (Version resource). Version resource semiring (R ,⊕,⊥,⊗,;,v) is a struc-
tural semiring.

Proof. Version resource semiring (R ,⊕,⊥,⊗,;,v) induces a semilattice with ⊕ (join).
(R ,⊕,⊥,⊗,;) is a semiring, that is:
– (R ,⊕,⊥) is a commutative monoid, i.e., for all p, q, r ∈ R

* (Associativity) (p⊕ q)⊕ r = p⊕ (q⊕ r) holds since ⊕ is defined in associative
manner with ⊥.

* (Commutativity) p⊕q = q⊕ p holds since ⊕ is defined in commutative manner
with ⊥.

* (Identity element) ⊥⊕ p = p⊕⊥= p

– (R ,⊗,;) is a monoid, i.e., for all p, q, r ∈ R

* (Associativity) (p⊗ q)⊗ r = p⊗ (q⊗ r) holds since ⊕ is defined in associative
manner with ⊥.

* (Identity element) ; ⊗ p = p⊗ ;= p

· if p =⊥ then ; ⊗⊥=⊥⊗;=⊥
· otherwise if p 6=⊥ then ; ⊗ p = ; ∪ p = p and p⊗ ;= p ∪ ;= p

– multiplication ⊗ distributes over addition ⊕, i.e., for all p, q, r ∈ R , r ⊗ (p⊕ q) =
(r ⊗ p)⊕ (r ⊗ q) and (p⊕ q)⊗ r = (p⊗ r)⊕ (q⊗ r)

* if r =⊥ then r ⊗ (p⊕ q) =⊥ and (r ⊗ p)⊕ (r ⊗ q) =⊥⊕⊥=⊥.

* otherwise if r 6= ⊥ and p = ⊥ and q 6= ⊥ then r ⊗ (p ⊕ q) = r ⊗ q = r ∪ q =
(r ∪ r)∪ q = r ∪ (r ∪ q) = (r ⊕ p)∪ (r ∪ q) = (r ⊗ p)⊕ (r ⊗ q)

* otherwise if r 6= ⊥ and p = ⊥ and q = ⊥ then r ⊗ (p ⊕ q) = r ⊗⊥ = ⊥ and
(r ⊗ p)⊕ (r ⊗ q) =⊥⊕⊥=⊥.

* otherwise if r 6= ⊥ and p 6= ⊥ and q 6= ⊥ then r ⊗ (p ⊕ q) = r ∪ (p ∪ q) =
(r ∪ p)∪ (r ∪ q) = (r ⊗ p)⊕ (r ⊗ q)

The other cases are symmetrical cases.
– ⊥ is absorbing for multiplication: p⊗⊥=⊥⊗ p =⊥ for all p ∈ R
(R ,v) is a bounded semilattice, that is
– v is a partial order on R such that the least upper bound of every two elements

p, q ∈ R exists and is denoted by p⊕ q.
– there is a least element; for all r ∈ R , ⊥v r.
(Motonicity of ⊕) p v q implies p⊕ r v q⊕ r for all p, q, r ∈ R
– if r =⊥ then p⊕ r v q⊕ r⇔⊥⊆⊥, so this case is trivial.
– otherwise if r 6=⊥, p = q =⊥ then p⊕ r v q⊕ r⇔⊥⊆⊥, so this case is trivial.
– otherwise if r 6= ⊥, p = ⊥, q 6= ⊥ then p⊕ r v q⊕ r ⇔⊥⊆ q ∪ r, so this case is
trivial.

– otherwise if r 6= ⊥, p 6= ⊥, q 6= ⊥ then p ⊕ r v q ⊕ r ⇔ p ∪ r ⊆ q ∪ r, and p ⊆ q
implies p ∪ r ⊆ q ∪ r.

(Motonicity of ⊗) p v q implies p⊗ r v q⊗ r for all p, q, r ∈ R
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– if r =⊥ then p⊗ r v q⊗ r⇔ p ⊆ q, so this case is trivial.
– otherwise if r 6=⊥, p = q =⊥ then p⊗ r v q⊗ r⇔ r ⊆ r, so this case is trivial.
– otherwise if r 6= ⊥, p = ⊥, q 6= ⊥ then p ⊗ r v q ⊗ r ⇔ r ⊆ q ∪ r, and r ⊆ q ∪ r
holds in standard subset relation.

– otherwise if r 6= ⊥, p 6= ⊥, q 6= ⊥ then p ⊗ r v q ⊗ r ⇔ p ∪ r ⊆ q ∪ r, and p ⊆ q
implies p ∪ r ⊆ q ∪ r.

Lemma B.2 (Well-typed linear substitution). Let ∆ ` t ′ : A and Γ , x : A, Γ ′ ` t : B.
Then, Γ +∆+ Γ ′ ` [t ′/x]t : B

Proof. By induction on the derivation of Γ , x : A, Γ ′ ` t : B.

Lemma B.3 (Well-typed versioned substitution). Let [∆] ` t ′ : A and Γ , x : [A]r , Γ ′ `
t : B. Then, Γ +

⋃

i(ri · [∆i]) + Γ ′ ` [t ′/x]t : B where Σi ri = r and
⋃

i[∆i] =∆

Proof. By induction on the derivation of Γ , x : [A]r , Γ ′ ` t : B.

Lemma B.4 (Default version overwriting type safety). Let [Γ ] ` t ′ : A. Then, ∃t ′.t@l ≡
t ′ ∧ {l} · [Γ ] ` t ′ : A

Proof. By induction on the derivation of [Γ ] ` t ′ : A.

Theorem B.5 (VL type safety). Let Γ ` t : A. Then, (i) t is a value or (ii) ∃t ′, Γ ′.t  
t ′ ∧ Γ ′ ` t ′ : A′ ∧ Γ ′ v Γ

Proof. By induction on the derivation of Γ ` t : A.
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